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Preface

The Fifth International Symposium on Recent Advances in Quantitative Remote Sensing,
was held in Torrent, Spain from 18 to 22 September, 2017. It was sponsored and organized
by the Global Change Unit (GCU) from the Image Processing Laboratory (IPL), University
of Valencia (UVEG), Spain. Other sponsors include:

- City Council of Torrent (Spain);

- L”Auditori Torrent (Spain);

- European Space Agency (ESA);

- National Aeronautics and Space Administration (NASA);
- Airbus Defence & Space;

- EOLAB;

This Symposium addressed the scientific advances in quantitative remote sensing in
connection with real applications. Its main goal was to assess the state of the art of both
theory and applications in the analysis of remote sensing data, as well as to provide a forum
for researcher in this subject area to exchange views and report their latest results. In this
book 89 of the 262 contributions presented in both plenary and poster sessions are arranged
according to the scientific topics selected. The papers are ranked in the same order as the
final programme.

To conclude, I would particularly like to thank the participants who have contributed to
constructive discussions and the members of the International Scientific Committee, who
greatly contributed to select the papers presented at the Symposium providing an attractive
scientific programme. The success is also due to the efforts made by the Organizing
Committee. Many thanks to all of them.

José A. Sobrino
Symposium Chairperson
Global Change Unit,
Universitat de Valencia

Valencia, 2018
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Evaluation of multisource LAI time series for crop assessment
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ABSTRACT- The aim of this work is to assess the utility of combining Sentinel-2A and Landsat (Landsat-7
ETM+ and Landsat-8 OLI) LAI time series for rice crop monitoring. LAl maps were produced in three countries
(Italy, Spain and Greece) using state-of-the-art machine learning algorithms trained on simulated radiative
transfer modelling data specifically generated to characterize rice features. Retrievals were focused on rice
areas using a rice mask obtained with Sentinel-1A data. The availability of both Landsat-7/8 and Sentinel2-A
imagery in 2016 allowed to generate a very dense temporal data set of high resolution LAl maps, useful to
monitor crop development at field level. The intercomparison between Sentinel-2A and Landsat-8 estimates
showed high spatial consistency between estimates over the three areas. Direct validation was performed with in
situ LAl measurements acquired in coordinated field campaigns, revealing a good accuracy and correlation in
all cases. These results suggest that a very frequent time series of LAI at high resolution can be obtained from a
multi-sensor approach to better outline rice-growing behavior. The use of combined curves of LAl can be
exploited to identify agronomical dynamics (management and crop phenology) for the retrieval of phenological
stages, and monitoring vegetation production or deriving multitemporal training sets for mapping purposes. In
particular it is also illustrated as the anomalous drops in LAI time series can help identifying problems/damages
at field level due to the effects of plant diseases or other factors.

1 INTRODUCTION

Information of the actual development crop
status is a fundamental element in crop monitoring and
modelling studies. Crop monitoring is necessary to
identify the onset of stress conditions, which require
agro-practises in order to mitigate their impact on crop
yield. In this framework, leaf area Index (LAI)
estimation at high spatial resolution is key information
for assessing vegetation status.

LAI can be estimated from remote sensing
using statistical, physical, or hybrid methods (Camps-
Valls et al., 2011). Pure statistical methods extract
patterns and trends from a data set, and try to
understand the underlying physical laws ruling the
relationships between them. Physically-based methods
are based on the physical knowledge describing the
interactions  between incoming radiation and
vegetation though radiative transfer models (RTMs).
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For their part, hybrid methods couple statistical non-
parametric with physically-based methods. Hybrid
methods rely on inverting a database generated by a
radiative transfer model exploiting the generality of
RTMs and the flexibility and computational efficiency
of non-parametric non-linear regression methods. The
advantage of hybrid approaches is that a broad range
of land cover situations can be simulated (e.g., up to
hundred thousands), leading to a data set much bigger
than what can be collected during a field campaign
and the RTM can be inverted in a flexible and
accurate manner with machine learning methods.

In relation with biomass and crop vyield
estimation, LAI estimates can be assimilated in crop
models (Confalonieri et al., 2009) by means of forcing
and/or recalibration techniques (Dorigo et al., 2007;
Busetto et al., 2017). Derive and assimilate accurate
LAI estimates improves the accuracy of grain yield
estimates (Curnel et al., 2011) and an operational
application of this workflow for rice was successfully
demonstrated in Asia in the framework of the RIICE
(Remote sensing-based Information and Insurance for
Crops in Emerging economies) project
(http://www.riice.org/) where rice yield is estimated
from the Oryza2000 model by assimilating LAI maps
derived from synthetic aperture radar (SAR) images
(Holecz et al., 2013). Similarly, LAl has been used
assessment in the framework of the ERMES (an Earth
obseRvation Model based RicE information Service)
project (http://www.ermes-fp7space.eu/) with the aim
of developing a prototype of Copernicus down-stream
services assimilating Earth observation (EO) and in
situ data on crop modeling dedicated to the rice sector.

This work provides a general overview of the
Landsat-7/8 and Sentinel-2A LAI estimates derived
through a hybrid retrieval methodology and used for
crop assessment from multisource LAI time series in
the framework of the ERMES.

2 MATERIALS
2.1 Study areas

In this work, we used the ERMES study areas which
are located in Italy, Spain and Greece. The lItalian
study area belongs to the Lomellina rice district
(south-western Lombardy region). The Spanish study
area is located in the rice district of Valencia (east of
Spain), and the Greek study area is located in the rice
district of Thessaloniki, which is the main rice
cultivation area for Greece. Within each study area,
rice is a common crop with a long tradition and
economic value.

2.2 Field data

In the framework of the local ERMES field
activities, LAI ground measurements were conducted

over the study areas. In Spain, Italy and Greece, 32, 16
and 10 ESUs (elementary sampling units) were
selected. The temporal frequency of the campaigns
was approximately 7-10 days starting from the very
beginning of rice emergence (early June) up to the
maximum green rice LAI development (mid-August).
A range of 18-24 measurements over every ESU was
taken following the guidelines and recommendations
of the Validation of Land European Remote sensing
Instruments (VALERI) protocol. LAl measurements
were acquired using a dedicated smartphone app
(PocketLAI) which has shown similar estimates
obtained using plant canopy analyzers (e.g., LAI-
2000) and DHP (digital hemispherical photography)
over rice fields (Campos-Taberner et al., 2016a)

2.3 Remote sensing data

In this study Landsat-8 Operational Land Imager
(OLI) and Landsat-7 Enhanced Thematic Mapper
(ETM+) surface reflectance data at 30-m spatial
resolution were used during the 2016 rice season over
the three study areas. Images were available every 16
days in Italy and Greece, and every seven and nine
days in Spain. In adition, Sentinel-2A Level 1C data
(top-of-atmosphere reflectances) were used in the
same period over the three study areas providing
information every 10 days in 13 bands in the visible,
near infra-red and short wave infra-red spectrum at a
10, 20 and 60 m spatial resolution depending on the
band.

The remote sensing data used in this study was
completed by Sentinel-1A data which were used
during the 2016 European rice season over the
aforementioned rice areas. Both Sentinel-1A and
Sentinel-2A were downloaded from the ESA Sentinels
Scientific Data Hub, while Landsat-7/8 images were
downloaded through the United States Geological
Survey (USGS) Earth Resources Observation and
Science (EROS) Center Science Processing
Avrchitecture (ESPA).

3 RETRIEVAL METHODOLOGY

In this work we derive LAI from optical remote
sensing surface reflectance (Landsat-7/8 and Sentinel-
2A) by inverting the PROSAIL radiative transfer
model (Jacquemoud et al., 2009) (see Figure 2).
PROSAIL simulates surface reflectance of the
vegetated surface of interest (in our case, rice crops in
the tropics) in the range of 400 to 2500 nm. For this
purpose, PROSAIL uses a set of bio-chemical and
structural parameters at canopy and leaf levels.

PROSAIL was run 2000 times following a specific
parameterization for rice (Campos-Taberner et al.,
2016b;2017) in order to obtain a database composed
of surface reflectance corresponding to each optical
remote sensing product and the associated LAI values.
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Figure 1. Hybrid retrieval methodology including some examples of the estimated decametric LAl maps.

The simulated database was then used for training a
Gaussian process regression (GPR) (Rasmussen and
Williams, 2006) model which has proven to be an
efficient and robust machine learning non-linear
regression tool for bio-physical parameter retrieval
(Campos-Taberner, et al., 2015). In addition, Rice
maps derived from Sentinel-1A data were derived
following a multi-temporal rule-based methodology
(Nelson et al, 2014) and subsequently used as
masking layer for LAI retrieval.

3 RESULTS

Decametric LAI retrievals were obtained over
the three rice areas during the 2016 rice season
applying the retrieval methodology to both
multitemporal Landsat-7/8 and Sentinel-2A imagery.
Six Sentinel-2A surface reflectance spectral bands
were used during the retrieval process: blue, green,
red, near infrared and the two short wave infrared
channels. These channels were selected to enhance the
consistency with Landsat-7/8 data (Campos-Taberner
et al., 2017) allowing thus the creation of a robust
multi-sensor retrieval. The obtained estimates were
validated with in situ LAl measurements collected in
the three countries using the PocketLAl. The root
mean squared error (RMSE), mean error (ME), mean
absolute error (MAE) and coefficient of determination
(R?) were computed in order to assess the accuracy of

the retrievals, bias and goodness-of-fit. Good accuracy
and high correlation were found in all cases, revealing
an overall RMSE of 0.61 and 0.69 as well as R?=0.90
and R?=0.95 in the case of Landsat-7/8 and Sentinel-
2A LAl retrievals, respectively (see Figure 2 and

Figure 3).
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Figure 2. Scatter plots of Landsat-7/8 estimated LAl
values versus in situ LAl measurements during the
2016 rice season.
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Figure 3. Scatter plots of Sentinel-2A estimated LAI
values versus in situ LAl measurements during the
2016 rice season.

The use of combined curves of LAI can be
exploited to identify agronomical dynamics
(management and crop phenology) for the retrieval of
phenological stages, and monitoring Vvegetation
production or deriving multitemporal training sets for
mapping purposes. In particular, anomalous drops in
LAI time  series  can help identifying
problems/damages at field level due to the effects of
plant diseases or other factors. For example, Figure 4
shows the temporal evolution of two Sentinel-2A rice
pixels (healthy and damaged). It can be seen the
anomalous temporal LAI evolution over the same field
which is related with rice crop disease.

2016 LAl temporal profile Almenara

Damaged|
7 Healthy

LAl (m%¥m?)
- o [+:]

W

fso 180 200 220 240 260 280 300
DOY

Figure 4. Sentinel-2 LAI evolution within a rice field.
Blue line corresponds to a helathy rice pixel whereas
the red one corresponds to a damaged pixel.

4 CONCLUSIONS

This study presented multi-source LAI retrieval from
decametric Landsat-7/8 and Sentinel-2A data over

three European rice areas in the 2016 rice season. The
approach relies on the inversion of the PROSAIL
RTM with Gaussian process regression on rice fields
detected by using Sentinel-1A data. The methodology
allows us to retrieve a dense temporal dataset of LAI
maps which is fundamental to perform expert crop
monitoring and also to improve crop model
estimations exploiting assimilation techniques. This
multi-sensor approach is suitable to fill gaps in the
time series mainly due to the presence of clouds,
obtaining thus a more reliable time series for precision
agriculture applications and rice monitoring.
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ABSTRACT: Sea surface temperature (SST) is a key geophysical parameter at the ocean—atmosphere boundary.
One commonly used method to estimate SST based on remote sensing measurements is the split-window
algorithm. However, some assumptions and approximations, which do not appear to reflect the reality, were
used to derive the linear split-window algorithm. Reviewing the publications in the recent years on the SST
retrieval, the algorithm of SST determination is usually developed by recalculating the algorithm coefficients for
the new sensors. Little attention has been paid on exploring the theoretical improvement of split-window
algorithm. The goal of this paper is to investigate the assumptions and approximations used in the derivation of
split-window technique and develop the SST retrieval algorithm for the Gaofen-5 (GF-5) satellite, which is
scheduled to be launched in the second half of 2017. Two revised equations of these assumptions and
approximations were created. Combining the revised equations, a nonlinear SW algorithm was obtained that
could be simplified to the quadratic split-window equation. Based on the simulated data, the developed
algorithm gives a SST retrieval accuracy of RMSE = 0.34 K. The main difference of this study from the previous
research is that this paper focuses more on building our theoretical understanding of the semi-empirical
quadratic split-window equation.

KEY WORDS: Sea surface temperature; Split-window; Revision; Gaofen-5

radiative transfer model (RTM), is small. In

1. INTRODUCTION addition, the hypothesis Tai = Taj does not appear to

Sea surface temperature (SST) is required for
many environmental applications, such as
monitoring the thermal pollution from nuclear
power and climate change (Chen et al., 2003;
Jangid et al.,, 2017). Researchers have long
investigated the use of remote sensing data to
retrieve SST. The split-window method is at
present the most popular method for SST
estimation. One approximation used in the
derivation of split-window method is the first-order
Taylor approximation of the Planck function
(Prabhakara et al., 1974). Another assumption is
that the atmospheric equivalent temperatures in the
two adjacent thermal infrared (TIR) channels were
regarded as the same (Tai = Ta) (Sobrino et al.,
1991). Notably, there are certain restrictions for
these assumptions. The first-order Taylor
approximation of the Planck function requires that
the difference among the temperatures, that are the
at-sensor brightness temperature Ti, atmospheric
equivalent temperature Tai and the SST in the

reflect reality. This paper focuses on investigating
these assumptions and developing SST retrieval
algorithm for the coming Gaofen-5 (GF-5) satellite.

The GF-5 satellite is the fifth satellite of
China High-resolution Earth Observation System
project, scheduled to be launched in the second
half of 2017. The multiple spectral-imager (MSI) is
a payload onboard this satellite, observing the earth
almost at nadir with the spatial resolution of 40-
meter for two TIR channels (labeled as CHzo0.s and
CHu195). Figure 1 shows the spectral response
functions of GF-5/MSI split-window channels.

2. METHOD

Based on the RTM, the following equation
can be obtained by using Taylor's expansion of the
Planck function,

T, =T, +7,(T,-T,;) + AT, 1)
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Figure 1. Spectral response functions of Gaofen-5
split-window channels.

where 7 is the transmittances through the
atmosphere from the surface to the satellite in
channel i, Ts is the sea surface temperature (SST),
ATi is the error in Ti caused by linearizing the
Planck function. In the published literature, ATi is
small and always be neglected (Prabhakara et al.,
1974; Sobrino et al., 1991). Writing Eq. (1) for two
channels i and j, Eq. (2) can be derived,

T, =T +A -T)+AT,+AT, 2

where ATs1 = - ATi - A(ATi- AT)) with A= (1 - ) /
(i - 1), ATs2 = Aa(Tai - Taj) with Aa=-(1-7) (1 -
1) / (zi - 7). ATs1is the error of Ts retrieval caused
by linearizing the Planck function and ATs: is the
impact of the hypothesis Tai = Taj On Ts retrieval.

In order to evaluate the influence of ATs and
ATs2 on Ts retrieval, 81 profiles from TIGR 2000
database were selected as input to execute the
radiative transfer simulation procedure. These 81
profiles remain representative of a worldwide
description of the atmosphere with the near surface
air temperature (To) 236.25-303.41 K and the total
water vapor content (W) 0.09-5.69 g/cm?. The
atmospheric radiative transfer model MODTRAN
was used to simulate the atmospheric upwelling
radiance and the atmospheric transmittance
considering a nadir viewing. Using these
parameters, according to the RTM, the total
radiance was calculated with 5 surface
temperatures: To -5 K, To—-2 K, ToK, To+ 2 K
and To+ 5 K. Then the brightness temperature can
be obtained by inverting the Planck function. The
atmospheric  equivalent temperature can be
obtained from the atmospheric upwelling radiance.
According to the simulated data, ATs1and ATs2 in
Eq. (2) were calculated.

The range of ATs is about -0.4~0.5 K. If the
linearization of Planck function were used, a root
mean square error (RMSE) of 0.1 K and a bias of -

0.06 K can be obtained for Ts retrieval. To reduce
or eliminate the error, the second-order derivative
of Taylor expansion of Planck function was
considered. Based on the simple mathematical
manipulation, We found, there is a good linear

(Ts _Ti)ZTi
T(l-7)
sufficient accuracy of Ti (RMSE lower than 0.01 K)

for both channels, as shown in Figure 2. Thus, the
revision of AT was given,

relationship between AT; and , with

AT =g T'7 3)
I I T.(l-7)

where ai is the regression coefficient, which is 1.40
for CHiosand 1.21 for CH11.95, respectively.
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Figure 2. Parameterization of ATi using (Ts — Ti)?
/ (Ti (1 — w)) for Gaofen-5 TIR channels centered at
(a) 10.8 um and (b) 11.95 pum. Here, Ts is the sea
surface temperature, Ti is the simulated brightness
temperature, zi is the transmittance and AT; is the
error of linearization of Planck function.
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According to the expression of ATs, if the
hypothesis of Tai = Taj is adopted, ATs2would be 0.
However, according to the values of Taws and
Tair05, ATs2 ranges from about -6~2 K, as
displayed in Figure 3. We can see that the Tai = T
hypothesis can produce the RMSE of 1.74 K and
bias of -0.88 K for the SST estimation. In fact, the
linear dependence, not the equal relationship, exists
between Tai0.s and Ta11.95, as shown in Figure 4.

Ta11.95 = aTalO.B +b 4)
28 -
24 RMSE =174 K
Bias =-0.88 K —
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Figure 3. Histogram of error caused by the
hypothesis of Tai0s = Ta11.95 for SST retrieval. Here,
Tat0s and Tai1.95 are the atmospheric equivalent
temperatures in  Gaofen-5/MSI  split-window
channels.
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Figure 4. The linear dependence of the atmospheric
equivalent temperatures for Gaofen-5 split-window
channels.

Writing Eq. (1) with ATi substituted by Eq. (3)
for two channels of CH1os and CHu1.95, one can get,

SST —Tipg = (M =1)(Tipg —Tyg5) + (M =14+ N)T,, o ®)

where M = #T and
2(A-A, ﬁ)
\/ AL = AT+ AT, A)
N = 108 11.95

2(A 22— p)

10.8
, with

A = 2005 (1~ 711.65) T10s
1-7y4

A, = %1051 7106) 11 05
1-74

Ay =bQ-75) 1711 5) ;
A =2(A-A)-all—1y65)7505 + (1 - T306)Tr105 0
A=-A +a(1_711.95) and A=A —(1-1y) )

According to the calculated result, M ranged from
0.9620~0.9941, close to 1. The first term of Eq. (5)
(i.e., (M - 1)(T1o8 — Tir95)) is thus small even if
multiplied by the maximum of (Tis — Ti1.05)
(approximately 4 K). While the second term (i.e.,
(M =1 + N)T1r05) makes the main contribution to
Eq. (5), because of the large value of T11.95. Taking
the structure of the split-window algorithm into
consideration, the relationship between (M — 1 +
N)T1195 and (Tios — Ti1.95) was investigated. As
shown in Figure 5, (M — 1 + N)Ti195 can be
parameterized using (T10.8 — Ti1.95), with RMSE =
0.30 K.
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Figure 5. The relationship between (M -1 +
N)T1195 in Eq. (5) and the difference of the
brightness temperatures in split-window channels
(T10.8— T11.95).
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Based on the above analysis, Eqg. (5) can be
simplified as:

SST _T10.8 = A(TlO.S _T11.95)2 + B(rm.s _T11.95) +C
(6)

where A, B and C are the algorithm coefficients.
Using the least-square fitting method, A = 0.4253,
B = 1.123 and C = 0.28 were obtained for GF-5
data, with RMSE = 0.30 K.

3. RESULTS

This section aims to assess the general
applicability of the developed quadratic split-
window algorithm (Eq. (6)) to different
atmospheric conditions. Therefore, another dataset
was established using 23 atmosphere profiles with
a nearly uniform distribution of W. For these
profiles, W is ranging from 0.12~5.56 g/cm? and
To is within 232.25~303.15 K. Again, MODTRAN
model was used to simulate the atmospheric
parameters in the thermal radiation process and at-
sensor brightness temperatures with the surface
temperatures ranging from To -5 K, To— 2 K, ToK,
To+ 2 Kand To+ 5 K. Based on 115 simulated
situations (23 profiles * 5 surface temperatures),
the SST was calculated using Eqg. (6). A RMSE of
0.3 K and a bias of 0 K were obtained. Among the
difference between the truth and the retrieved SST,
93.04% of the error is within £0.5 K and 76.52% is
within £0.3 K.

4. CONCLUSIONS

Some assumptions and approximations, that
are the linearization of Planck function and the
same atmospheric equivalent temperatures in two
adjacent split-window channels, were used in the
derivation of split-window algorithm. These
assumptions and approximations were investigated
in this paper. Two revisions of the assumptions and

approximations were then created for GF-5/MSI
data. Based on these two revisions, the quadratic
split-window algorithm suitable for GF-5/MSI TIR
data was developed. The developed algorithm was
evaluated using another simulated dataset. A
RMSE of 0.3 K and a bias of 0 K, implying the
satisfactory accuracy, were obtained. Performing
an analysis of the developed algorithm in a future
period when the GF-5 satellite data is available
would be valuable.
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ABSTRACT (In this research paper the relative bathymetry of the Suez Canal Water way and the Temsah
Lake will be derived using the new bands of the WorldView-2 satellite. The non-linear model introduced by
(Stumpf et al. 2003) will be used to examine the role of each of the new bands and their expected improvement
in the quality of the classification of the bottom types and the relative depths.

For this purpose a calibration process will take place first by converting digital numbers into radiance then
to reflectance values. Dark pixel correction will be applied to account for atmospheric and sun-glint effects then
six different ratios will be used to derive relative bathymetry of the study area.

1 INTRODUCTION

Typically, bathymetric charts are generated from ship-
borne sounding surveys with single- or multi-beam
echo sounders, in which they can operate to depths
more than 500 m. State-of-the-art acoustic multi-beam,
swath-mapping systems can achieve 6 m spatial
resolution and about 8 ¢cm depth accuracy in 200 m
water depth (Su et al. 2008). However, in case of
shallow water, ship-borne surveys may not be the
proper solution for the following reasons:

- The survey will be time consuming and
expensive, as the survey swaths are narrow.

- It may not be feasible to survey waters
shallower than 2-3 m deep because of sound
saturation or/and inaccessibility of survey
vessels.

Recently, airborne bathymetric LiDAR (Light
Detection And Ranging), introduced an optimum
solution for the mapping of shallow coastal waters.
The only limitations occur with this relatively new
technology are; the high cost of operation and that the
amount of maximum penetration of LIDAR systems is
greatly dependent upon water transparency. Average
penetration depth for most of currently operated
systems are in the range of 30 meters, LADS (Laser
Airborne Depth Sounder) developed by Tenix LADS
Corporation is an exception where penetration depth
reaches 70 meters. Also, most systems can reach up to
4 meters spatial resolution with 20 cm accuracy (Su et
al. 2008). In 2012, Optech developed CZMIL, coastal
zone mapping and imaging LIiDAR. CZMIL is an
innovative airborne coastal zone mapping system that

10

integrates bathymetric LiDAR, with a hyper-spectral
imaging system and digital metric camera to produces
simultaneous high-resolution 3D data and imagery of

the beach and shallow water  seafloor
(www.optech.ca/Optech News Release CZMIL-
120507.html).

Optical remote sensing was also introduced as an
alternative solution for bathymetric applications.
David R. Lyzenga, first introduced a model for
shallow water depth estimation using a single band
from aerial photography (Lyzenga 1978). This model
was then expanded to multi-spectral satellite imagery
using a non-linear bathymetric inversion model
(Stumpf et al. 2003). According to Beer’s law, the
basic physical principles underlying the retrieval of
bathymetric information from optical remote sensing
images are:

e  Light attenuation in the water column
increases exponentially as depth increases.

e Additionally, attenuation  varies by
wavelength, resulting in less attenuation and
greater depth penetration in the blue region
of the visible spectrum than the green or red
regions (Lyzenga 1978; Lyzenga 1981).

These two properties are the basis for optically-
derived bathymetry from multispectral, passive
sensors. In the next section a brief summary of these
two properties and how they can be applied to finally
derive water depth of shallow waters will be
introduced.
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Figure 1 Four main components of the total radiance
(Jensen 2007)

2 Bathymetric Models for Optical Multi-spectral
Imagery

According to (Jensen 2007), the total upwelling
radiance (Lt) recorded by the remote sensor consists of
four components, as shown in Figure 1.
Li=Lp+Lv+Ls+Lp Eqg.1
Where, (Lp), atmospheric path radiance, is a
function of atmospheric scattering, including both
Rayleigh (molecular) scattering and Mie (aerosol)
scattering, (Lv), subsurface volumetric radiance,
results from volume scattering from the water and its
organic/inorganic constituents like sediment and
chlorophyll. (Ls), Specular radiance, is the reflection
from the water surface, including possible sun-glint
effects. Finally, (Lv), the bottom radiance, is the
energy reflected from the seabed, which integrates the
information about water depth and bottom
characteristics.
In order to retrieve water depth information from the
total radiance, bottom radiance (Ln), has to be
extracted from the total radiance (L:). Atmospheric
correction and sun-glint removal are applied first to
remove (Lp) and (Ls), then deep water correction is
accomplished to remove (Lv) (Lyzenga 1978; Lyzenga
1981; Stumpf et al. 2003).
As long as, the bottom radiance (Lb) equals zero for
deep water, then the measured total radiance over
optically-deep water (L) includes the joint effects of
subsurface volumetric radiance (Lv), specular radiance
(Ls), and atmospheric path radiance (Lp). After
atmospheric and sun-glint corrections, the deep water
radiance (L») only contains subsurface volumetric
radiance (Lv) (Su et al. 2008). Assuming that the
values of (Lv) of shallow and deep waters will not
change, then we can use optically deep water radiance
(L») recorded by the remote sensor to correct the
subsurface volumetric radiance (Lv) in shallow water.
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Based on Beer’s Law, (Lyzenga 1978; Lyzenga 1981)
introduced a simple radiative transfer model for
shallow waters:

L = L[ 1- exp(-gz) ] +Ad exp(-92) Eq. 2
Where, L = Lt — Lp — Ls, is the measured radiance after
atmospheric and sun-glint corrections, L. is deep
water radiance (equivalent to volumetric radiance Lv),
Aq is the upwelling spectral radiance directly reflected
from the bottom before interacting with the overlying
water column, g is a two-way attenuation coefficient,
and z is depth. Rearranging this equation, putting z in
the left hand side, results in the equation of the
bathymetric inversion model for a single spectral band
as follows:

z2=9g[In(Ad- Lo ) —In(L - L )] Eg. 3
Later on, Lyzenga developed a new bathymetric
inversion model using more than one band as follows:

z=a,+3a In[L() - L.(A)]  Eq.4

Where, ai are the constant coefficients, N is the
number of spectral bands, L(Ai ) is the remote sensing
radiance after atmospheric and sun-glint corrections
for spectral band Ai , and Lo(Ai ) is the deepwater
radiance for spectral band Ai .

The model explained in Eq. 4 referred to as the log-
linear inversion (or deepwater correction) model, this
model has been extensively used for estimating water
depths from optical multi-spectral remote sensing
imagery (Su et al. 2008).

In 2003, (Stumpf et al. 2003) proposed a non-linear

bathymetric inversion model based on a log-
transformed band ratio:
7 —mINOLCL)

~ M In(nL(A)) °

Where, mo, m1, and n are constant coefficients for the
model, and L (A1) and L (A2) are the atmospheric and
sun-glint corrected remote sensing radiances for bands
M (short wave length), and A2 (long wave length)
(Stumpf et al. 2003).

When two bands are used, with different water
absorptions, the log values change with depth and the
whole ratio will change. If we abide to retain the
shorter wave length in the nominator and the longer
wave length in the denominator so the log ratio will
increase as the depth increase. This ratio will
compensate for the implicitly for variable bottom type
(Stumpf et al. 2003), but changes in depth affect the
high absorption band more. As a result, the effect of
change in ratio because of depth is much greater than
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that caused by change in bottom reflectance.
Generally, (Stumpf et al. 2003) demonstrated that their
non-linear inversion model is more robust and
accurate than the conventional log-linear inversion
model for relatively deep areas. This is why we will
utilise this method with worldview-2 imagery to
examine the role of the new bands in bathymetry.

Blue light (450-510 nm) can penetrate clear down to
30 m depth, and thus serves as the optimum spectral
band from which to extract depth information (Su et
al. 2008). Worldview-2 provides a new band; costal
blue (400-450 nm), with higher capability of
penetrating water (Globe 2009). Also, the yellow band
(585-625 nm) will be examined as the longer
wavelengths attenuate rapidly in water.

The main assumption for both aforementioned models
is based on the assumption that water optical
properties are spatially homogeneous, which results in
uniformity in water quality over the area of study. In
addition, both models assume that the ratio of bottom
reflectance’s is the same for different types of bottoms
in the same scene. In general, high water clarity and
uniform bottom types are two vital conditions, that
must be met for reliable depth retrieval from optical
multispectral imagery (Su et al. 2008). In this research
the relative depths of part of the water way of the Suez
Canal and the over polluted Temsah Lake will be
derived from the worldview-2 imagery, using the non-
linear bathymetric inversion model derived by Stumpf.

3 Data description

Lake Temsah has a nearly triangular shape with
elongated sides extending East-West. The lake is small
and shallow. It has a surface area of about 8 square
kilometers with an average depth of only 11 meters
and containing about 90 million cubic meters of water.
The lake is surrounded by industrial workshops for
shipyards, domestic areas, recreational beaches and
agricultural lands. The Suez Canal pathway is deep,
about 24 m depth, but narrows about 300-360 m wide
at water level. Figure 2 illustrates a false color image
for the area of study.

Unlike the Canal pathway, Temsah Lake receives a
great deal of untreated domestic and industrial waste
discharges and agricultural drainage return flows.
Consequently, the lake and its beaches exhibit serious
water quality problems in many locations. Moreover,
the substantial amounts of sediment loads, which enter
the lake, produce higher accumulation rates and
seriously obstruct lake transportation (Donia 2011).

A water quality index, WQI, is a mathematical way of
summarizing multiple properties into a single value.
This index values are ranging between 0 and 100, with
higher numbers indicating lower quality water. (Donia
2011), introduced one of the standers WQI chart for
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the Temsah Lake and it used in this study to
demonstrate the differences in water quality across this
region.

Water Quality (AWQIS)
Shell Fishy

B gooc

3 medum wndy elmaghoul
El

B verybad A
Figure 3 A WQI for the Temsah Lake,(Donia 2011)

The figure above shows that almost all the lake water
quality is considered very bad except the southern
region of the lake that is considered better quality but
still bad.

4 Methodology

Generally, any imagery will be wused in a
radiometric/spectral analysis must be converted to
spectral radiance at a minimum, or top of atmosphere
reflectance in order to account for the variation in the
relative positions between the sun, the Earth and the
satellite to obtain absolute values for the NDVI ratios
can be applied in any other scene (Updike and Comp
2010). Converting the Digital Numbers (DN) to Top
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of Atmosphere (ToA) reflectance is a two-step
process. First DNs are converted to ToA radiance
values. Then these radiance values are then converted
to reflectance values (Observation 2010).

4.1 Conversion to Top-of-Atmosphere Spectral
Radiance

According to (Globe 2009), WorldView-2 products
are delivered to the customer as radiometrically
corrected image pixels. The values of these pixels are
calculated as a function of the amount of the spectral

geometry), and atmospheric effects (absorption and
scattering) (Updike and Comp 2010). As mentioned
earlier that converting multispectral data into
reflectance before performing spectral analysis
techniques such as band ratios, Normalized Difference
Vegetation Index (NDVI), matrix transformations,
etc., is a must. For each scene the distance between the
sun and earth in astronomical units, the day of the year
(Julian date), and solar zenith angle must be known.

Table 1 Absolute Radiometric Calibration and
Effective Bandwidth for the Given Bands

radiance enters the telescope aperture and the
instrument conversion of that radiation into a digital
signal. Therefore, image pixel data are unique to

WorldView-2 and should not be directly compared to
imagery from other sensors in a radiometric/spectral
sense. Instead, image pixels should be converted to a
top-of-atmosphere spectral radiance at a minimum.
Top-of-atmosphere spectral radiance is defined as the
spectral radiance entering the telescope aperture at the
WorldView-2 altitude of 770 kms. The conversion
from radiometrically corrected image pixels to spectral

Band name Kpand Adpand
W.m-2sr.count? Hm

C 9.30E-03 4.73E-02

B 1.78E-02 5.43E-02

G 1.36E-02 6.30E-02

Y 6.81E-03 3.74E-02

R 1.10E-02 5.74E-02

R-E 6.06E-03 3.93E-02

NIR1 1.22E-02 9.89E-02

NIR2 9.04E-03 9.96E-02

radiance uses the following general equation for each
band of a WorldView-2 product (Updike and Comp
2010):

L _ Kband.- Qpixel,band.
jfpixgl,bﬂnd - A;{bami
Where, L Apixelband are the top-of-atmosphere

spectral radiance image pixels [W.mZsrtum?],
Ky, ana is the absolute radiometric calibration factor

Eqg. 6

[W.mZsrt.count™] for a given band, Qpixelband

are the given radiometrically corrected image pixels
[counts] and ﬂﬂb‘md is the effective bandwidth

[£¢m] for a given band

Both Kpgnd and Adpgnd can be found in the

image metadata files (*.IDM) attached with the
WorldView-2 product under the names (absCalFactor)
and (effectiveBandwidth) respectively. The following
table summarize both of these quantities for both the
panchromatic and the eight multi-spectral bands.

4.2 Conversion to Top-of-Atmosphere Spectral
reflectance

Right now we have the ToA spectral radiance.
However, this top-of-atmosphere spectral radiance
varies with Earth-Sun distance, solar zenith angle,
topography, bi-directional reflectance distribution
function (BRDF-the target reflectance varies
depending on the illumination and observation
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it [ im[‘l‘W}} IP 1545 B!
D=JD - 2451545.0 Eq. 8
g = 357.529 + 0.98560028 * Eq. 9
D
0es=100014-00167Lcos(@)- g 1

0.00014.cos(29)

The Earth-Sun distance will be in Astronomical Units
(AU) and should have a value between 0.983 and
1.017. For the WorldView-2 launch date, October 8,
2009 at 18:51:00 GMT corresponds to the Julian Day
2455113.285; the Earth-Sun distance is 0.998987 AU.
At least six decimal places should be carried in the
Earth-Sun distance for use in radiometric balancing or
top-of atmosphere reflectance calculations (Updike
and Comp 2010). The average solar Zenith angle has
to be calculated for the whole scene at the time of
acquisition according to the following equation:

0, =90.0 — sunEL Eq. 11

Where, sunEl value can be found in the same file
*IDM. Now we can convert the radiance values to
ToA reflectance values using the following equation.
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B La?m:,bm-dﬁsz-” Eq.

Pipixelband — Esunippg-€COS (8,) 12
Where
Pipixel band are the ToA reflectance values
L‘;_m.m’bmd are the ToA radiance values
dgs is the Earth-Sun distance in
Astronomical Units (AU)
Ecunipana WorldView-2 Band-Averaged

Solar Spectral Irradiance (Updike and Comp 2010)
6‘5 The average solar Zenith angle

The traditional NDVI ratio will be used to generate a
mask to separate the water body of the study area, as
in Figure 4. C/RE, C/Y, B/Y, C/G, B/G and G/Y ratios
will be used to derive relative bathymetry of the study
area using the non-linear bathymetric inversion model
derived by Stumpf.

Figure 4 Masked area of study

Ideally, atmospheric effects must be removed together
with the water column correction in order to achieve
radiometric values that are only representative of the
sea depth and to make the upwelling response from
different bottom types homogeneous (Deidda and
Sanna 2012). Moreover, if sun-glint is present, the
effect of the sun beams reflecting on the sea surface, it
has to be corrected. Knowing that, the upwelling
radiance of NIR bands have very low values even for
shallow waters. Subsequently, dark pixel subtract will
be applied to account for sun-glint and atmospheric
effects by subtracting the Min. value in the NIR bands
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for a deep water area from the reflectance values for
all other visible band.

5 RESULTS AND DISCUSSION

The available data about the depth of Suez Canal and
the Temsah Lake indicates that the dominant depth of
the Suez Canal water way is about 24 meters, and an
average of 11 meters for the Temsah Lake. No DEM
data was available for this site, so the analysis of this
result will be depending on the aforementioned
information and considering the environmental
condition of this area. As discussed before the
logarithmic ratio will increase as the depth increase, if
we apply this rule on the given results will leads to un
realistic results. For instance, considering C/R-E
result, if we start with a depth of 24 meters at the blue
range (1.033-1.07) will lead to a nominal depth of 46
m at the brown range (1.0885-1.11) which is not true.
The reason behind this result is the water quality and
bottom type condition of the water way of the Suez
Canal and the Temsah Lake. The water way of Suez
Canal is much better than the one exist in the Temsah
Lake as it is always running water has two sources of
fresh water coming from both the Red sea and the
Mediterranean Sea. Moreover, the bottom type is
homogeneous sand with small gravel, which follows
the main assumptions for the bathymetry derivation
from satellite imagery; shallow water with
homogenous bottom and clear water. But in case of the
Temsah Lake results, the bottom of the lake suffer
from a lot of sediments coming from the water way
plus enormous domestic pollution from the ship yards,
the agriculture land and domestic waste water. This
pollution affects both water quality and bottom type.
Based on visual comparison, C/RE, C/Y and C/G give
better results compared the other ratios, as they were
able to separate between two homogeneous ranges (the
green and the blue) to depicts both 4-5 meters and 24
meters depth ranges respectively for the water way.
Moreover, these ratios give a distinct three ranges for
the Temsah Lake (red, cyan and brown) all of them
have an average depth of 11 meters, but with different
bottom types; the more the ratio value the more
sediments and impurities.
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Figure 5 Relative non-linear bathymetric inversion results
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Clouds eliminated from AVHRR/2 images with cloud and snow
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ABSTRACT-Generally, clouds and snow are mixed in one image together, the clouds are difficult to be
identified from the image. Here, clouds were divided into high clouds, medium clouds, low clouds and thin
clouds. They were identified and eliminated according to respective thresholds, which were obtained from
experiments basing on AVHRR/2 data over Qinghai-Tibet Plateau. In the light of visual inspection, it can be
found that the results of cloud elimination were reliable and accurate.
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1 INTRODUCTION

Qinghai-Tibet Plateau is high and vast, and often
covered with clouds all year around. Then, the
pollution of clouds can be often seen in AVHRR/2
images of the plateau, and reduce the accuracy of their
mapping. Therefore, the pollution of clouds must be
eliminated from those AVHRR/2 images before the
mapping of the AVHRR/2 images. Generally, if clouds
and snow are mixed in one image together, the clouds
are difficult to be eliminated from the image. Turner et
al. detected clouds from AVHRR/2 images
successfully in Antarctica (Turner, 2001). This is a
good achievement of cloud elimination from images
with cloud and snow together. His method is used here
as a reference of cloud elimination. However, with
respect to surface features, Qinghai-Tibet plateau is
very different from Antarctica, so Turner’s method of
cloud elimination cannot be used unchangeably on the
plateau, and a new method of cloud elimination needs
to be found for the AVHRR/2 images over Qinghai-
Tibet Plateau. In addition, the focus here is how to
practically eliminate clouds from AVHRR/2 images,
rather than the mechanism of cloud elimination.
Therefore, the mechanism of cloud elimination is not
studied deeply in the work.

In 1981, AVHRR/2 sensors were first used on
board the satellite of NOAA-7, and can extend
moderate resolution data of remote sensing to 30 years
ago, and provide the data of high temporal resolution.

2 STUDY AREA AND DATA
2.1 Study Area

The study area is Qinghai-Tibet Plateau in southwest
China, with a latitude and longitude of about 26[ }
40[] and 73[3105[7 respectively, and an area and
altitude of about 2,500,000 km2 and 4000-5000 m
respectively. It has abundant snow cover and glaciers
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AVHRR/2 data

all year round. The meltwaters of these snow and
glaciers are the main runoff sources of the upper
reaches of many great rivers. Fig.1 shows the location
and terrain of the plateau.

2.2 Data

In this research, the used AVHRR/2 data come from
National Satellite Meteorological Center, China
Meteorological Administration, and are daily data of
time series, which have been geometrically corrected
and geo-located. Their boundaries are about
17°0036"N-41°00'00"N, 65°00'18"E-105°59'42"E.

The AVHRR/2 sensors have totally 5 channels,
whose NO.1 and NO.2 channels are visible and near-
infrared bands respectively, and NO.3 is middle-
infrared band, and NO.4 and NO.5 are all thermal
infrared bands. In addition, their spatial resolution is
about 1100m.

Tl

Fig.1. Location and terrain of Qinghai-Tibet Plateau

3 THE CLOUD DETECTIONS OF AVHRR/2
IMAGES

Before removing cloud pollution, the cloud
pixels must be identified from AVHRR/2 images.
Generally, cloud is easy to be separated from
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most of ground objects in remote sensing images,
because there are great differences between the
spectral features of cloud and other ground
objects. But, the spectral features of cloud are
very similar to those of snow in visual band, and
then the cloud is not easy to be separated from
the snow in remote sensing images.

Here, clouds were divided into high clouds,
medium clouds and low clouds, difference ways
were used to identify them respectively in remote
sensing images. The process of cloud
identification is as Fig.2.

AVHRR/2 data

High cloud
identification

Medium cloud
identification

Low cloud
identification

Thin cloud
identification

A 4

Cloud pixels

Cloud free pixels

Fig.2. The flow chart of cloud detection

3.1 The Detection of High Clouds Using NO.4
Channel

High clouds are mainly comprised of little ice crystal.
The temperature of cloud Hop is obviously lower than
that of ground, because the high cloud is in a very high
altitude. According to this difference of temperature,
the high clouds can be easily separated from other
ground objects. The spectra of thermal infrared depend
on the temperatures of the ground objects, thus the
data of the thermal infrared can be used to identify the
high clouds (Oleson, 1985). In the work, the data of
NO.4 channel were chosen for detecting the high
clouds from the AVHRR/2 images of Qinghai-Tibet
Plateau. Using the AVHRR/2 data in 1995, 1998 and
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2006 years in experiments, it was found that a pixel
would be a cloud pixel if the brightness temperature of
NO.4 channel was lower than 250K, that is, T4 <
250K.

3.2 The detection of medium clouds using NO.1, NO.3
and NO.4 channels

Medium clouds are mainly comprised of little ice
crystal and supercooled water, and their reflectance is
fairly high. The data of the NO.3 channels include
reflective energy and emissive energy. Generally, the
medium clouds can be identified basing on the
difference of brightness temperatures between NO.3
and NO.4. In practice, bare land may be confused with
medium clouds in the identification of medium clouds.
In order to eliminate the interference of the bare land,
the data of NO.1 channel was used to identification of
medium clouds. Finally, the identification models of
medium clouds are
{TE-T4=15K 1)
CH1<0.28

where T3 and T4 are the brightness temperature of
NO.3 channel and NO.4 channel respectively, CH1 is
the reflectance of NO.1 channel.

3.3 The detection of low clouds using NO.3 and NO.4
channels
In images which have snow and clouds together, it is
very difficult to eliminate low clouds. Turner et al. has
successfully eliminated low clouds using NO.3
channel in the Antarctic continent (Turner, 2001). But,
in Qinghai-Tibet Plateau, the results of cloud
elimination is not good if only NO.3 channel was used
in the identification of low clouds. Here, NO.4 channel
is also used in the identification for improving the
removing results of low clouds. In light of the
experiments using the AVHRR/2 data in 1995, 1998
and 2006 years, the identification models of low
clouds can be obtained as follow.
{T34=T3-T4{15K )
T34/T4=0.035

3.4 The detection of thin clouds using NO.4 channel
and NO.5 channel

Thin clouds can keep out a part of spectral radiation
from the earth's surface into a sensor, however, the
other part of the spectral radiation can still reach the
sensor. Consequently, ground objects under thin clouds
can be seen in remote sensing images, but not clearly.
The thin clouds certainly reduce the accuracy of
mappings, and should be eliminated before the
mappings.
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Yamanouchi et al. found that thin clouds can be
identified through brightness temperature differences
between NO.4 channel and NO.5 channel
(YYamanouchi, 1987). In his research, the differences
between NO.4 and NO.5 were used to identify the thin
clouds. The results of experiments indicate that if the
brightness temperature differences of a pixel are more
than 2.2K, that is, T4-T5>2.2K, the pixel is labeled as
a cloud pixel.

4 THE ELIMINATION OF CLOUD PIXELS FROM
AVHRR/2 IMAGES

After cloud detection is complete for a AVHRR/2
image, each cloud pixel of the AVHRR/2 image is
substituted with its corresponding cloud-free pixel in
another AVHRR/2 image (namely a referenced
AVHRR/2 image) taken temporally closest to the
substituted AVHRR/2 image among all referenced
AVHRR/2 images in which all pixels corresponding to
the substituted pixel are cloud-free. Nevertheless, the
temporal difference between a referenced image and
substituted image should be limited within a certain
time, such as 7 or 10 days.

5 COMPARISON BETWEEN CLOUD
ELIMINATED IMAGES AND THEIR SOURCE
IMAGES

According to the visual inspection of the cloud
eliminated result above, the pollution of clouds can be
eliminated from AVHRR/2 images, but snow cover
still stayed in them. The following figures can indicate
the comparison between clouds eliminated images and
their source images (Fig.3, Fig.4, Fig.5, and Fig.6).

DXE

High cloud

Fig.3 Comparison between high cloud eliminated
image and its source image (The left is the source
image, where the pixels of high clouds are jacinth,
such as the pixels in the white circle. The right is the
high cloud eliminated image)

19

Medium cloud

Fig.4 Comparison between medium cloud eliminated
image and its source image (The left is the source
image, where the pixels of medium clouds are yellow,
such as the pixels in the white circles. The right is the
high cloud eliminated image)

Fig.5 Comparison between low cloud removed image
and its source image (The left is the source image,
where the pixels of low clouds are deep red, such as
the pixels in the white circles. The right is the low
cloud removed image)

HE |
Thin doud

Fig.6 Comparison between thin cloud removed image
and its source image (The left is the source image,
where the pixels in the white circles are the pixels of
thin clouds. The right is the thin cloud removed image)

6 CONCLUSIONS

Qinghai-Tibet Plateau is high and vast, and often
covered with clouds all year around. Then, the
pollution of clouds often appears in AVHRR/2 images
of the plateau, and reduces the accuracy of their
mapping. Generally, clouds and snow are mixed in one
image together, the clouds are difficult to be identified
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from the image. Here, clouds were divided into high
clouds, medium clouds, low clouds and thin clouds.
They were identified and removed according to
appropriate thresholds respectively, which were
obtained from experiments basing on AVHRR/2 data
over Qinghai-Tibet Plateau. In light of visual
inspection, it can be found that the results of cloud
elimination were reliable and accurate.

In 1981, AVHRR/2 sensors were first used on
board the satellite of NOAA-7. The method of cloud
elimination is found for the AVHRR/2 images, then,
the images can be used in practice, and moderate
resolution data of remote sensing can extend to 30
years ago.
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ABSTRACT- To improve the reliability of spectral libraries acquired by field spectroscopy, the uncertainty of
the spectral reflectance measured must be estimated and reported, taken into account as many important sources
of uncertainty as possible. This work presents the initial approach to establish a complete model of uncertainty
of field spectroscopy measurements that ensures the traceability chain. The first two steps towards this objective
are presented: on one hand, the framework and the sources of uncertainty to create the model are reviewed, on
the other hand, with the intention to be aware of the uncertainty values that can result due to environmental
conditions, some empirical data using two field spectroradiometers were undertaken. Type A standard statistical
methods were applied for spectral reflectance measurements acquired with a dual system of two ASD FieldSpec3
spectroradiometers over two uniform and invariant surfaces. The reproducibility in environmental ambient were
evaluated measuring under variable of solar and atmospheric conditions. For VNIR region, where
spectroradiometer performs better, an average of 5% of uncertainty were gathered. For SWIR region both

sources, environmental and instrumental rise to 12% of uncertainty.

1 INTRODUCTION

In optical Earth Observation satellites, ground truth
data acquired by field spectroscopy plays a major role
in sensor calibration, product validation, and image
analysis. In all these activities, the uncertainty and
traceability requirements demanded for field
spectroscopy have increased substantially.

Uncertainty estimation is fundamental for data
quality evaluation and data interoperability. In this
sense, the Guide to the Expression of Uncertainty in
Measurement (GUM), developed by the Joint
Committee for Guides in Metrology (JCGM) and the
Bureau International des Poids et Mesures (BIPM),
provides guidance on how to determine, combine and
express uncertainty. The GUM became a standard
guide in 2009, and confirmed in 2015, by
International Organization of Standardization (1SO)
and the International Electrotechnical Commission
(IEC). For Earth Observation community, the main
principles of the GUM were implemented by the
Quality Assurance Framework for Earth Observation
(QA4EO) project. One of the last initiatives that are
making progress in this implementation is the project
Metrology for Earth Observation and Climate
(MetEQOC), funded by the European Metrology
Research Programme. MetEOC is developing new
infrastructure and methods to allow higher, traceable,
accuracy to be delivered to the European calibration
and validation community.
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Field spectroscopy has undergone to a remarkable
growth over the past two decades in terms of use and
application for different scientific disciplines. To
improve the reliability of the spectral libraries
acquired, the uncertainty of the spectral reflectance
must be estimated and reported, taken into account as
many important sources of uncertainty as possible.

This work presents the initial approach to establish
a complete model of uncertainty for field spectroscopy
measurements that ensures the traceability chain. In
this paper, the first two steps towards this objective are
presented. On one hand, the framework and the
sources of uncertainty to create the model are
reviewed. On the other hand, with the intention to be
aware of the uncertainty values that can result due to
environmental conditions, some empirical data using
two field spectroradiometers were undertaken.

2 FIELD SPECTROSCOPY BACKGROUND

Field spectroscopy is the measurement of high
resolution spectral radiance or irradiance in the field to
derive the reflectance or emissivity spectral signatures
of Earth’s surface targets under natural environmental
conditions (Milton et al., 2009). In comparison with
imaging spectroscopy, the sensing instrument in the
field can remain fixed over the subject of interest for
much longer, and the path length between the
instrument and the object being measured is reduced
The main applications of field spectroscopy are: to
relate spectral curves with bio-physical and bio-
chemical process; to predict the most favorable
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spectral, radiometricc and viewing geometry
configuration and the optimum time to carry out a
particular remote sensing task; to calibrate, validate
and simulate remote sensing data and products.

The rugged and portable spectroradiometers
developed in recent years, measures spectral radiance
using a fiber-optic bundle, with the possibility to
attach different optics. Manufacturers basically offer
two kinds of spectroradiometers: (1) small, light
devices to work only in the visible and rear infrared
VNIR (350-1000 nm), with levels of the signal to
noise ratio (SNR) around 250:1; and (2) bigger and
heavier devices that work in the entire solar spectrum,
with actively cooled short wave infrared (SWIR)
detectors (1000-2500 nm) and SNR around 1000:1.
The typical spectral configuration is to have a full
width half maximum (FWHM) of nearly 3 nm in the
VNIR spectral region, and a FWHM of nearly 10 nm
in the SWIR.

Single beam, where the same instrument is used to
measure both the target and the reference panel
spectral radiance, is the most widely used acquisition
methodology. Even in a cloudless sky and low solar
zenith angles, the most simultaneous radiance
acquisition between the panel and target is
recommended. In Dual beam, one spectroradiometer
measures the radiance of the target and the second one
measures the Sun irradiance using a cosine receptor,
reference panel or an integrating sphere.

3 TOWARDS THE UNCERTAINTY MODEL

An uncertainty measurement model is a mathematical
expression were all the input quantities that are
required to obtain a measurand are associated in an
algorithm. Following the GUM, each quantity has a
standard uncertainty associated, which can be
combined using the Law of Propagation of
Uncertainty to obtain the final uncertainty.

These uncertainties are grouped into two
categories, depending on the method used to estimate
its value: Type A, which are the uncertainties
evaluated by statistical processes; and Type B, the
uncertainties evaluated by non-statistical processes.

The National Physical Laboratory (NPL) considers
eight fundamental steps to establish an uncertainty
model (Woodliams at al., 2014):

a) Understanding the problem
al: Describing the traceability chain
a2: Writing down the calculation equations
a3: Considering the sources of uncertainty
b) Determining the formal relationships
b4: Creating the measurement equation
b5: Determining the sensitivity coefficients
b6: Assigning uncertainties
c) Propagating the uncertainties
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¢7: Combining and propagating uncertainties
¢8: Expanding uncertainties

Follow these eight steps, ensures the development of
the complete uncertainty model for a measurand.
Furthermore, determining a simplified version of the
uncertainty model and then adding complexity in
stages later on, as the problem becomes better
understood is recommended.

In the particular case of field spectroscopy, the
spectral reflectance obtained by field
spectroradiometers is the measurand. The first
approximation in the simplified model generation, is
to review the main sources of uncertainty for spectral
reflectance.

3.1 Sources of Uncertainty

The main sources of uncertainty for spectral
reflectance measured by field spectroscopy can be
grouped into five categories: the equipment
performance, the methodology of measurement, the
sampling strategy, the properties of the surface, and
the environmental conditions.

Regarding the equipment performance, radiometric
and spectral calibration is usually accomplished by the
manufacturer. Thus, Type B uncertainty estimations is
supplied. Furthermore, the radiometric and spectral
calibration characteristics of field spectroradiometer
can be periodically evaluated in the laboratory by
Type A repeatability procedures (Anderson et al.,
2011). In addition, Type A reproducibility procedures
for environmental effects and configuration
possibilities have also be evaluated. Likewise, in case
of the use of reference panel, integrating sphere or
cosine receptor to derive irradiance in the field, the
radiometric calibration is on the manufacturer’s side,
but radiometric and angular characteristics must be
evaluated by Type A repeatability procedures.
Regarding the methodology, the time between target
and panel measurements is a critical parameter for
spectral  reflectance  accuracy  using  single
spectrometer, especially in no clear-skies conditions.
In the case of dual system, the intercalibration between
the two spectroradiometeres is the critical parameter.
In addition, the illumination and observation
geometries have to be taken into account. Concerning
sampling strategy, the size of the target, the number of
samples and the sampling type, can vary considerably
the spectral reflectance estimation. Concerning surface
properties, the lambertian degree and uniformity of the
surface, are the most important sources of uncertainty.
Regarding environmental conditions, the most
important sources are: sun position, sky cloud
coverage, atmospheric water vapor and aerosols
presence, and the adjacency effects because of
surrounding elements.
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Further steps to be taken in subsequent work, will
determine the formal relationships between the
elements and the sensitivity coefficients for each
source. Then, uncertainty assigned will be combined
and propagated. However, prior to these steps and with
the aim to quantify the impact of environmental factor
to the total uncertainty, a test was conducted trying to
leave fixed the rest of the sources.

4 THE TEST: SOME EMPIRICAL DATA

As an initial approach to become aware of the
uncertainty range that we can find in field
spectroscopy measurements, a test was carried out
with two field spectroradiometers measuring two
invariant surfaces in several days with different
illumination and atmospheric conditions.

The field spectroradiometers are two ASD
FieldSpec3 (PAnalytical, CO, USA) that measures
incoming radiance using a fiber optic which is
adaptable with a fore optic lens. It has a spectral range
from 350 to 2500 nm, with a 3 nm spectral resolution
and a sampling interval of 1.4 nm in the VNIR spectral
regions and 10 nm and 2 nm in the SWIR.

Figure 1 shows the test setup installed on the
rooftop of one of the buildings at National Institute of
Aerospace Technology (INTA, Madrid) facility. Over
a table, two very uniform and invariant surfaces: one
dark (5% reflectance) and one bright (50%
reflectance) were placed. Two white reference panels
were also placed. The two spectroradiometers were
mounted in a trolley close to the table. The
spectroradiometers” laptops were situated in the upper
part of the trolley, and the spectroradiometers itself in
the lower part covered for direct sunlight. All the
components that are placed over the table (tripods,
fibre optic, and a camera for hemispherical sky
pictures) that can produce adjacency effect in the
radiance signal are covered or painted in black.

Figure 1. Picture of the test elements and setup on the
rooftop of the building at National Institute of
Aerospace Technology (INTA, Madrid)
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4.1 Data acquisition and processing

With the premise to have single and dual spectral
reflectance measurements at the same moment, the
measurement protocol was designed following the
procedure proposed by Bachmann (Bachmann et al.,
2012). One spectroradiometer (The Rover) measures
both surfaces and one reference panel before and after
each surface, turning the tripod’s arm. The other one
(The Base), is fixed looking a second reference panel
measuring thrice for each surface acquisition: the first
measurement was simultaneously to the first Rover
measurement over the panel, for the intercalibration of
the spectroradiometers; the second measurement is
acquired simultaneously to the Rover target
measurement for surface reflectance estimation; and
the last one, is simultaneously to the other Rover panel
measurement, but with the panel covered to remove
direct irradiance component, measuring diffuse
irradiance. All the spectroradiometers measurements
are made in radiance mode, saving five files
repetitions for each sample over target or panel.

Seven days of acquisitions were carried out. For
each day, both surfaces were measured from 10:00 to
13:00 (local time) every 15 minutes, stepped up the
measurements in occasions subject to cloud presence.
Both spectroradiometer were connected to electrical
power supply, and they were turned on one hour
before the beginning of data acquisition.
Measurements were acquired directly with the fiber
optic (FOV 25°. In order to avoid any shadow
appearance over the target or panel, the Rover fiber is
nadir-oriented and held 20 cm above the target and the
panel, which has 12x12 cm size. The Base is 10° tiled
from nadir and held 5 cm above the panel, which in
this case is only 6x6 cm size to be able to cover the
whole panel for direct sunlight.

For both surfaces, the hemispherical conical
reflectance factor (HCRF) was calculated in single and
dual mode using Python in-house programme. In case
of single mode, HCRF was calculated with the panel
interpolated radiance between the before and after
acquisitions. In dual mode, the data of Rover and Base
panels was used directly, because had simultaneous
triggering.

The solar radiation diffuse-to-global ratio (DGR)
was calculated for each surface acquisition with the
ratio between the simultaneous measurement of Base
panel covered from direct sunlight and the Rover panel
measurement.

Although the uncertainty calculations have to follow
the Law of Propagation procedures recommended by
the GUM, for this test quantification the uncertainty
calculations was carried out following the procedure
proposed by Pinto (Pinto et al., 2012), that takes into
account statistical fluctuation of the data following, as
well, GUM recommendations. A total uncertainty is
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the summation of a repeatability uncertainty and a
called “various uncertainty”.

The repeatability uncertainty is the experimental
standard deviation of the global uncertainty. The
global uncertainty can calculate an overall standard
deviation, which takes into account the dispersion of
the data of all sampling points, according to the
following equation (1):
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where: k is the number of sampling points; n is the
number of repetitions on each point; xn is the value
obtained from the repetition n; and xk is the mean
value for point k.

The “various uncertainty” is calculated using all
the panel measurements using this equation (2)
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where: k is the number of points; xk is the mean of the
reference plate at point k; and “x is the mean plate for k
points

4.2 Results

From the seven measurement days, we have two
completely clear-sky, one day with no clouds but with
saharian dust intrusion, and the rest with varying
conditions of clouds presence. During those seven
days, a total of 74 measurements for each surface were
recorded. Removing a few acquisitions made it with
thick clouds standing on the way, 60 of the total were
acquired with direct sunlight or cirrus clouds, and their
get into the uncertainty calculations.

The total uncertainty for bright and dark surfaces
in single and dual mode are presented in Figure 2.
Noticing that in single mode the acquisitions of panel
and target was nearly simultaneously, minor
differences are found between the two modes, as
expected. For both surfaces, the uncertainty is about 5
% in the visible part of spectrum, where the bigger
impact of solar radiation and atmospheric constituents
take place. In case of dark surface the uncertainty
reach 10 % in the NIR part mainly due to adjacency
effects. The rise to 10 % and above in the SWIR part
of the spectrum, is mainly due to lower signal to noise
ratio of the spectroradiometer.
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Figure 2. Total uncertainty for bright and dark
surfaces in single and dual mode.

Looking in detail to the reference panel
measurements for both spectroradiometers, the impact
on the uncertainty resulting from the solar zenith angle
variation and different levels of diffuse to global ratio
were evaluated.

Figure 3 shows the standard deviation values
obtained for the Rover and Base measurements over
the reference panel corresponding to the two days with
clear-sky conditions. Measuring in both days from
10:00 to 13:00 (local time), the solar zenith angle
varies from 0.4 to 1 radians. It can be seen, that into
this medium solar zenith angle variation range,
avoiding very low or very angles, only a soft
correlation is achieved.

Figure 3. Standard deviation values obtained for the
Rover and Base spectroradiometers measurements
over the reference panel plotted against solar zenith
angle (in radians). Corresponding to the two days with
clear-sky conditions
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Figure 4 shows the standard deviation values obtained
for the Rover and Base measurements over the
reference panel corresponding to all the measurements
selected for the calculations: Those measurements
includes a wide range of illuminations conditions,
indicated by variation of the diffuse to global ratio
from 0.05 to 0.25 at 600nm wavelenght. In this case,
no correlation was found between standard deviation
and diffuse to global ratio.

Figure 4. Standard deviation values obtained for the
Rover and Base spectroradiometers measurements
over the reference panel plotted against diffuse to
global radiation, corresponding to all the
measurements selected for the calculations.

5 CONCLUSIONS

The uncertainty values for spectral reflectance
measurement by field spectroscopy due to variations
in illumination and atmospheric conditions were
estimated by Type A procedures. For VNIR region,
where spectroradiometer performs better, an average
of 5% of uncertainty were gathered. For SWIR region
both sources, environmental and instrumental, reach to
12%.

Only a small correlation were found between
standard deviation of reference panel radiance
measurement and solar zenith angle. No correlation
was found between standard deviation of reference
panel radiance measurement and diffuse to global
ratios.

25

6 REFERENCES

K. Anderson, J. L. Dungan, and A. MacArthur, “On
the reproducibility of field-measured reflectance
factors in the context of vegetation studies,”
Remote Sens. Environ., vol. 115, pp. 1893-1905,
2011.

C. M. Bachmann, M. J. Montes, C. E. Parrish, R. A.
Fusina, C. R. Nichols, R.-R. Li, E. Hallenborg,
C. A. Jones, K. Lee, J. Sellars, S. A. White, and
J. C. Fry, “A dual-spectrometer approach to
reflectance measurements under sub-optimal sky
conditions,” Opt. Express 20, 8959-8973
(2012).

Joint Committee for Guides in Metrology Working
Group 1 (JCGM/WG 1). (2008). Guide to the
Expression of Uncertainty in Measurement

. Milton, M. E. Schaepman, K. Anderson, M.
Kneubuhler, and N.Fox, “Progress in field
spectroscopy,” Remote Sens. Environ., vol. 113,
Suppl. 1, pp. S92-S109, 2009.

. Pinto, F. J. Ponzoni, R. M. de Castro, and D. J.
Griffith. Spectral uniformity evaluation of
reference surfaces for airborne and orbital
sensors absolute calibration. Revista Brasileira
de Geofisica (2012) 30(3): 263-275.

E. Woolliams, A. Hueni, J. Gorrono. (2014)
Intermediate Uncertainty Analysis for Earth
Observation  (Instrument Calibration). NPL

Training Course Textbook. Available online:
http://www.emceoc.org/ documents/uaeo-int-trg-
course.pdf



Recent Advances in Quantitative Remote Sensing - RAQRS 2017

Interest of VNIR directional measurements for parameterizing the TIR
directional anisotropy

Zunjian Bian?, Jean-Louis Roujean?, Mark Irvine!, Jean-Pierre Lagouarde?,
LINRA, UMR 1391 ISPA, F-33140 Villenave d'Ornon, France

Z Météo France CNRM-UMR3589, F-31057 Toulouse, France
Corresponding author: jean-pierre.lagouarde@inra.fr

ABSTRACT- VNIR (visible and near infrared) reflectances as well as Land Surface Temperature (LST)
measurements in the TIR (thermal infrared) domain are both prone to directional anisotropy (DA) effects.
Simple models are needed to correct remotely-sensed data from these effects. Two candidate parametric models
first proposed by Roujean (2000), referred to as Rzooo, in the VNIR and by Lagouarde and Irvine (2008) in the
TIR, referred to as RL, are first presented. Both required two parameters to be fitted, in particular a k coefficient
related to canopy structure. Their generalization is made, using a large data base generated with the
deterministic multilayer model SCOPE developed by Van der Tol et al. (2009) which allows to simulate DA in a
large range of wavelengths. The canopy is assumed to be ‘spherical’ and the input data -meteorological forcing,
water availability, LAI, hot spot parameter- are chosen for representing a large range of conditions that can
practically be met. We show that DA in the red is most related to TIR DA, and we finally propose a simple
parameterization of the k coefficient against LAI. This is a significant progress, as it now makes Rzo00 and RL

models tools requiring only one parameter to be fitted for practical applications.

1 INTRODUCTION

VNIR (visible and near infrared) as well as TIR
(thermal infrared) radiation measurements are both
prone to directional anisotropy (DA) effects. In the
VNIR spectral domain, such effects for vegetation
canopies are originating from multi-scale variability
of spectral properties andand . Generally, a canopy
owns a complex structure that causes a radiation beam
to follow different trajectories according to the
illumination properties. As a result, the relative
proportion of sunflecks and shadows in the field of
view of a remote sensing instrument are at the root of
sizeable directional effects. For the same physical,
reasons, a TIR signal will be also impacted. However,
in the TIR domain, energy transfers combine with
radiative processes to determine the surface
temperature of the leaves, which makes DA also
dependent of meteorological forcing and water status
of the plants (Duffour et al., 2016a). Hitherto, the
appraisal of this was already widely explored both
based on experimental efforts and modeling
approaches (see reviews in Paw U, 1992; Lagouarde et
al., 2000; Verhoef et al., 2007; Menenti et al., 2008).
Particularly, the SCOPE model (e.g. Van der Tol,
2009) is a coupled radiative-energy transfer multi-
layer model aiming at studying the determinism of DA
(Duffour et al., 2015). The model represents a test-bed
for examining the response of DA to varying physical
properties, though limited to the treatment of
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homogeneous  canopies.  Nevertheless,  simpler
approaches seems mandatory in the lack of detailed
information on the target with objective to processing
massive remotely sensed data sets contaminated by
DA. Nowadays, the context is the forthcoming space
mission THRISNA devoted to collect TIR
measurements at high spatio-temporal as a cooperation
between France and India throughout their respective
spatial agencies, CNES and ISRO. This paper presents
the scientific work achieved so far as a candidate to
fullfill the mission demand. Two simple parametric
models mimicking DA are presented with possible
applications in both VNIR and TIR spectral domains.

2 THE TWO CANDIDATE MODELS
2.1 The VNIR Roujean 2000 model

This model (referred hereafter as R2o00 below) is based
on a physically-based development to treat VNIR data
(e.g. Roujean, 2000):

P8y By @) = Prse ud 1

with
f = Jtan"6; + tan"6, — 2tanbtanb cosg (2)

0s and Oy solar and viewing angles, ¢ relative viewing -
solar azimuth. Roujean (2000) suggested to take k =
LAI/4, which corresponds to spherical canopies.
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2.2 The TIR RL model

The RL (RL stands for ‘Roujean Lagouarde’) model
has been adapted in the TIR from Rzo00 (Lagouarde
and Irvine, 2008; Duffour et al., 2016b):

AT (8, 65, @) = ATy, =8 (3)
The TIR anisotropy AT is defined as the difference
between of-nadir and nadir viewing surface
temperature. ATws is the value when viewing hot spot.
By replacing AT by the reflectance p, this model can
be extended to the VNIR domain (both are referred to
as RLrir and RLvnir below):

expl—kfi—expi—kfi,)
l—expi—kfiy)
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3 METHODOLOGY

Directional anisotropy is simulated with SCOPE
model (see Duffour et al., 2016 for details) for a
selection of SENTINEL 2 bands (490, 560, 665, 705,
783, 865 and 1610 nm) and in the TIR. Following
Duffour et al. (2015, 2016a), SCOPE input data have
been prescribed to describe a wide range of conditions
that can practically be met. A spherical canopy
structure is assumed, which corresponds to a random
distribution of leaf inclination and orientation. LAI
values are taken within the range [0.5, 1.0, 1.5, 2.0, 3.0
5.0]. The hot spot parameter q defined as the ratio
between leaf size and canopy height takes the values
[0.01, 0.05, 0.1, 0.50], while the vegetation height is
taken to 1 meter. For meteorological forcing, we
consider scenarios for 4 dates above 2 ICOS stations
that are Auradé (43.56°N, 1.05 °E, DOYs 79 and 174)
and Avignon (43.91°N, 4.88 °E, DOYs 118 and 147).
Simulations are performed at 13:00 LST, which is
today the time of orbit pass envisaged for the future
satellite mission TRISHNA. Finally, cases of dry/wet
soil/vegetation have been crossed using 2 values of
maximum of carboxylation Vcmo, 25 and 125
pmol'm2s* (for dry and wet vegetation), and 2
values of soil resistance to vapor transfer rss, 200, 2000
ssm™* (for wet and dry, respectively). Gathering all
these input data allows to built 384 SCOPE
simulations per wavelength.

R2000 and RL models are then fitted on each SCOPE
simulated data within the principal plane +3° in
azimuth. Privileging the principal plane - instead of
using all azimuthal directions - for the fit is justified
by the fact that the magnitude is the largest and the hot
spot effect is the best sampled. The fit is operated in
two manners:
e “l-parameter fit’: pus and ATws fitted with k
prescribed, k = LAI/4
e ‘2-parameters fit’: pus and ATws fitted,
simultaneously with k
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The overall polar plots of DA in the whole directional
space can then be reconstructed using the parameters
retrieved in the principal plane. A illustration is
provided at the end of the proceedings (see color plate)
for Rao00 and RL models against SCOPE for one case
study (LAl = 1.5, g = 0.1, Vcmo= 25 pumol-m 254,
rss= 200 s-m %, Auradé for DOY 174). The polar plots
first reveal the magnitude of anisotropy effects in the
whole directional space. The discrepancies between
the models are a narrower and more intense hot spot
peak with SCOPE.

The innovative work here is finding new value of k
determined as the best parameterization with LAL.

4 GENERALIZATION OF THE R2000 MODEL IN
THE VNIR

Figure 1 displays the comparisons on all viewing
directions (0 < ¢v < 360, 0 < Ov < 60) between
SCOPE-simulated and Raoo0 reflectances fitted
keeping 1- (Fig. 1 c,d) and 2- (Fig. 1 a,b) parameters
free, for the 865 nm red (Fig. 1a,c) and 865 nm near
infrared (Fig. 1 b,d) wavelengths. Fig. 1 shows that
using k = LAI/4 as initially proposed by Roujean
(2000) fails for NIR, and that the red band provides
the highest correlation. This is confirmed by the
analysis of similar fits made for the other SENTINEL
channels (not presented here).

The relationships between k and LAI were then
investigated for each wavelength. Only relationships
for red and NIR are presented in Figure 2. For each
LAI, the k values obtained for the 4 dates and the 4 q
values are mixed (16 points). Most of the dispersion of
the points is explained by the variability of hot spot
parameter ¢, with only little impact of the date. (i.e.
k(LAI) curves very close to each other for a given g
value). As q remains difficult to estimate and as no
robust way for estimating g from remotely-sensed data
has been proposed up to now, we looked for a unique
k(LAI) function for each wavelength A double-
exponential function was tested to explain the
relationship between k and LAI (Fig. 2). The
following revealed the more suited:

k= B(1—evian) ®)
Now combining Eq. (1) and (4) makes R2o0 a 1-
parameter model (ps), provided LAI is known. Its
performance was evaluated by fitting it on the same
dataset (Fig. 3). The loss of performance of the new
R2o00 parameterization compared to the direct ‘2-
parameters fit” is marginal. Performance is optimum in
the Red and SWIR at 1.61 pum. We also notice that the
k = LAI/4 parametirzation fails, particularly for 560,
783 and 865nm wavelengths.
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Figure 1. Comparison of Rzooo fits against SCOPE simulated data for two fitting strategies in red (665 nm) and
NIR (885 nm) wavelengths.
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5 GENERALIZATION OF THE RL MODEL IN
VNIR AND TIR

Canopy structure is a primary driver of directional
anisotropy for both TIR and VNIR, and it largely
governs the k coefficient values. It is therefore
interesting to evaluate if the k retrieved in the VNIR
bands could be also suitable in the TIR. For this
purpose we fitted the RLtir model in 3 ways:

e ATwus and krir are let free and fitted together
against SCOPE-simulated data

e ATns s let free and krir is prescribed to LAI/4

e ATus s let free and krir is from the value of kvnir
retrieved from the fit of RLvnir for each SCOPE
simulation. As they correspond to vegetation
channels most currently available on Earth
Observation satellites, only 2 wavelengths have
been considered in this exercise: red and NIR at
665 and 865 nm respectively.

The results are shown in Fig. 4. A similar good
agreement is found when ATwus and krir are let free
(Fig. 4a) and when ATws is let free and krir is given
the value of kvnir retrieved in the red (Fig. 4c). The
quality of the relationship decreases when krir is
prescribed to LAI/4 (Fig. 4b) or at 865 nm. The kvnir
values retrieved from the Rzo00 model were also tested,
but they revealed slightly less performant than RLvnir
(results not presented here).
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It is interesting to compare the values of k retrieved for
each of the 384 fits in the TIR with RLtir model
against those retrieved in the red (665 nm) and NIR
(865 nm) with the RLvnir model. Figure 5 clearly
shows that there exists a rather strong correlation in
the red contrary to NIR.
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Figure 5. Comparison of k values retrieved with RL
model in the TIR (kmir) against values ksss and ksss in
the red and NIR
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This led us to analyze the relationship between Kees
and LAI (Fig. 6). As previously we note an important
scatter behavior mainly related to the variations in the
hot spot parameter g. A simple linear relationship

k = aLAI + B is estimated in the red. We found a =
0.41 and B = 0.19.
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Figure 6. Parameterization of the relationship k(LAI)
in RLvnir model for red 665 nm.

8—— =
= doy 79

+ doy 118
4 © doy 147
doy 174

— 11

N
4/1\ A
2 //2=0.841 ]
' RMSE=0.276
4 / o |

B "
6 -4 2 ] 2 4 B

SCOPE anisotropy

0.41 LAl +0.19
L

=)

RLria DA with k

Figure 7. Comparison of the generalized RLtir model
with SCOPE-simulated directional anisotropy.



Recent Advances in Quantitative Remote Sensing - RAQRS 2017

To check its robustness, the RLrir model with k = 0.41
LAI + 0.19 was finally fitted against the 384 SCOPE
simulations of the dataset. The results is presented in
Fig. 7. The overall agreement is quite good and
comparable to the fit obtained when letting both AThs
and krir free, as confirmed by R? (0.841 and 0.888)
and RMSE (0.276 and 0.234) statistics. The
discrepancy observed for high values of anisotropy
(surrounded by a dotted circle in Fig. 7) corresponds
to the particular case of hot spots with low q values.

6 CONCLUSION

The two parametric Rao00 and RL models of directional
anisotropy in the VNIR and TIR respectively have
been consolidated and generalized against SCOPE
simulated data. For both of them, the similarity of
anisotropy in the red (at 665 nm) and in the TIR has

parameterizations of k coefficient against LAI. This is
a significant progress, as it now makes R0 and RL
models tools requiring only one parameter, either pws
or ATws, to be fitted. Because LAI is a product easily
accessible from space, this is likely to facilitate
practical applications in the future. Nevertheless a
priori prescribing either pus or ATws still remains
difficult as discussed by Duffour et al. (2016b) and
methodologies have to be developed for this purpose.

The study has been conducted assuming spherical
canopies. A generalization to other structures
(planophile, erectophile) remains to be investigated.

Finally a validation against field data is also necessary.
Ongoing UAV experiment at the laboratory based on
the use of light cameras (GoPro filtered in red and
NIR, OPTRIS for TIR) should provide robust data

been exploited in order to ropose simple
P prop P very soon for that purpose.
Red 665 nm NIR 865 nm TIR
008 SCOPE 4339:7_7_:9;‘7\?‘%0“ 045 SCOPE faﬁ/ﬁﬁ _\_]h\u 5

Example of fits of Rz2000 and RL models against SCOPE simulations
(LAI=1.5,9=0.1, Vcmo = 25, rss = 200, Auradé DOY 174)
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ABSTRACT - This study proposes an empirical methodology for mapping monthly air temperature (Tair)
(minimum and maximum) using meteorological data, geographic information and monthly land surface
temperature (LST) derived from satellite data. Two sources of data for monthly LST estimates during daytime
and nighttime were considered: 1) MOD11B3 and MYD11B3 products from the Moderate Resolution Imaging
Spectroradiometer (MODIS), with a pixel size of 5600 m, and 2) the product from the Along Track Scanning
Radiometer-2 (ATSR-2), or from the Advanced Along Track Scanning Radiometer (AATSR) (both with an spatial
resolution of about 0.05°). The study period included June and December from 2003 to 2011. The analysis
considered the spatial interpolation improvements in different land uses (Forests, Agricultural and livestock, and
Urban areas) and different degrees in the orographic complexity of Catalonia (northeast of the Iberian
Peninsula). Meteorological stations were weighted, in the calibration step, based on information from the quality
masks of LST data. The best Tair models were obtained when regression included remote sensing LST and
geographical variables, especially for minimum Tair and over Forests and Rugged lands. In general, the
improvement was more important (in terms of reducing uncertainty) for the estimation of monthly minimum Tair,
than for the estimation of monthly maximum Tair. Minimum Tair was better estimated using nighttime LST (RMS
differences up to 0.3 K), as well as maximum Tair on winter, while on summer was better estimated with daytime
LST. A simpler model, which did not include the topographic wetness index and the cost distances, provided

similar Tair estimates.

1 INTRODUCTION
Monitoring and definition of the climate and
meteorology of a specific geographic region are
essential for the knowledge of the spatial and temporal
patterns of the surface air temperature (Tair), defined as
the temperature measured by a thermometer exposed
to the air in a place protected from the direct solar
radiation (WMO, 1992), normally located at about 1.5
m above the ground. The Tair is a key climatic and
meteorological variable that makes it possible to
quantifying processes at surface level. In fact, it is
involved in many environmental processes such as
energy flows, actual and potential evapotranspiration,
water stress, and species distribution (Prihodko and
Goward, 1997). It can therefore be used, for example,
as an input parameter in weather and climate models.
Tair is usually measured at meteorological stations,
which provide point data, spatially characterized by
the density and distribution of the network of available
stations. However, in many cases (especially in large
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and heterogeneous areas) it is necessary to have a
continuous or quasi-continuous surface of the Tair.
Remote sensing is the only methodology that
effectively evaluates the spatial distribution of land
surface variables on a regional and global scale.
Thanks to the technological developments in the latest
generation of spectral band sensors in the thermal
infrared region (8-14 um) (e.g., Sentinel-3, Landsat,
MODIS, ASTER, AATSR, AVHRR) the capacity of
existing Earth observation programs has improved.
These sensors incorporate new spectral measurement
channels of and provide much better spatial and
spectral resolution than just a few decades ago.
Likewise, the long historical satellite data series that
exist today (Landsat, over 40 years, NOAA-AVHRR,
over 30 years, MODIS, 16 years) make it possible to
combine climate cartography based on data from
meteorological stations with satellite information
(Vicente-Serrano et al., 2004; Sun et al., 2005;
Cristobal et al., 2008; Hengl et al., 2012). In this
sense, there are in the literature a variety of studies
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that introduce the land surface temperature (LST)
estimated with remote sensing data (Cristébal et al.,
2008; Hengl et al., 2012). However, it is not usual to
find jobs that use extensive time series.

The present work has the general aim of
progressing in the understanding and prediction of
future environmental changes. The main objective is to
improve the monthly Tair spatial estimates (minimum
and maximum) currently provided by GIS-based
models that combine statistical (multiple regression)
and spatial (interpolation) approximations from
meteorological data, incorporating LST from satellite
data as a predictor. In this study, a long and robust
time series (from 2003 to 2011) is considered, both
from data from conventional meteorological
observations and from remote sensing data, also
integrating geographic factors such as altitude,
continentality, etc. and that also takes into account
images from different satellites. As a secondary
objective, the changes in the estimates of the Tair at the
spatial and temporal levels are evaluated, considering
the analysis of data corresponding to the different
times of the year analyzed, as well as the
differentiation between land cover and the orographic
complexity. The area of study is Catalonia, located at
the northeast of the Iberian Peninsula.

2 MATERIAL

The database includes concurrent measurements from
satellite data (daytime and nighttime LST), field
measurements of meteorological stations (Tair) and
geographic data for the summer (June) and winter
(December) months from 2003 to 2011.

2.1 Meteorological station data

The meteorological data were provided by the Spanish
National Meteorological Agency (AEMET) and the
Catalan Meteorological Service (SMC). These data
were previously subjected to a rigorous quality
control, making a selection according to several
objective criteria (stability of the time series, cross
validation test, etc.), together with the expert
knowledge (quality of the series of the meteorological
stations, proper location, etc.).

The Tair has been observed around 5 h - 6 h
(minimum) and 15 h - 16 h (maximum), although
there is some variability depending on the location and
time of the year. It is considered an average of 195
stations in each image, varying between a minimum of
180 and a maximum of 212 depending on the time of
year. The accuracy of the estimates is 0.1 K.
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2.2 Other geographic data

The model also considers geographic information
derived from a digital elevation model and other
geographic variables, such as altitude, latitude,
continentality (Euclidean distance and cost distance to
the sea), potential solar radiation and a topographic
wetness index (Bohner et al., 2002).

2.3 Satellite data

As monthly data of daytime and nighttime LST were
considered 1) the products MOD11B3 and MYD11B3
of the Moderate Resolution Imaging
Spectroradiometer (MODIS) of NASA and 2) the
product hereafter called "ATCDR" corresponding to
data of the Along Track Scanning Radiometer-2
(ATSR -2) or the European Space Agency's (ESA)
Advanced Along Track Scanning Radiometer
(AATSR).

The acquisition time of the images on the study
area is detailed in Table 1. The nominal spatial
resolution of both products is approximately 6 km
(5568 km for MODIS and 0.05 degrees for ATSR-2
and AATSR). However, the images were adapted to 90
m of spatial resolution by means of bilinear
interpolation (or the nearest neighbour, in the case of
quality masks of MODIS products) for inclusion in the
regression models.

Table 1. Average local time of acquisition of the
satellite images, after considering all the images and
pixels of the study area.

Product Daytime  Nighttime
ATCDR 10:26 21:24
MOD11B3 11:11 21:59
MYD11B3 13:08 2:04

3 METHODOLOGY

Although different spatial interpolation techniques
exist, we opted to apply a methodology based on the
multiple regression analysis combined with the spatial
interpolation of the regression residuals by the inverse
of the weighted distance (Ninyerola et al., 2000, 2005;
Sun et al., 2005). The multiple regressions provide a
predictive model of the climatic variable (Tair) from
the variables that influence the climate of the zone (the
geographic variables and the LST). The result is a
potential map obtained from the equation of
adjustment of the regression that reflects the general
behaviour of the climate. Once this potential mapping
is available, it is possible to interpolate the residuals of
the regression itself to bring the potential surface
closer to the observed data, and therefore, in general,
for the entire mapped territory. In other words, the use
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of the variance not explained by the regression model
allows, once combined with the potential map, to
obtain the most realistic maps possible. The residuals
(difference between the value predicted by the
regression model and the value observed in the
meteorological stations) show the local aspects of the
climate since they quantify how particular is that
climatology with respect to the general model.

Several reliability indexes were used to describe
the thematic quality of each map. For the calculation
of these indices it is indispensable to reserve a set of
stations (set of validation or test) that allows
comparing them with the values estimated from the set
of adjustment stations. Cross-validation leave-one-out
was applied in the present study. This process allows
to preserve to the maximum the predictive capacity of
the models and to obtain an average reliability index.

The statistical variables analysed in this study are
the root mean square error (RMSE) and the coefficient
of determination (R?).

The stations included in the model were weighted
in the calibration, based on the LST quality bands
information, according to the criteria established in
Table 2 and Table 3. Further, stations were classified
according to the land cover (Forests, Agricultural and
livestock, and Urban areas) and the orographic
complexity, which are based on the standard deviation
of the altitude within a radius of 10 km (Flatlands,
deviation <150 m; Middle ground, between 150 and
250 m; Rugged lands, > 250 m). Different
complexities for the model were considered as well,
by considering all independent variables (hereafter
called “complex model”) or all variables except the
topographic wetness index and the cost distances to
the Mediterranean and the Cantabric sea (hereafter
called “simple model”).

Table 2. Weighting of the meteorological stations
according to the uncertainty (8) of the LST product
from ATCDR.

ATCDR
SLST (K) | Weighting (%)

<1 100
>1y<l12 90
>1.2y<14 80
>1.4y<1.6 70
>1.6y<1.8 60
>1.8y<2.0 50
>2.0y<2.3 40
>23y<2.6 30
>2.6y<3.0 20
>3.0 10
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Table 3. Weighting of the meteorological stations
according to the quality masks provided by the

MOD11B3 and MYD11B3 products. QC-LST:
"QC_Mandatory QA flag"; QC-Emis:
"QC_Emis_error_flag".
QC-LST | QC-Emis | Weighting (%)

1 1,234 100

3 1 70

3 2 50

3 3 30

3 4 10
4 RESULTS
4.1 General observations for the regression

coefficients

For the estimation of the minimum Tair, solar radiation
was not considered as a dependent variable, since in
most cases its inclusion was not significant (p>0.05),
and regression coefficients were even negative,
inverting the natural relationship of the Tair with the
solar radiation (since at higher radiation is expected
higher Tair).

The regressions obtained for the estimation of the
maximum Tair during winter presented a general
tendency to not include the topographic wetness index
when considering the LST, nor the cost distance to the
Mediterranean when considering the nighttime LST.
However, for the estimation of the minimum Tair such
exclusion only occurred occasionally.

When the LST implied an improvement in the Tair
estimation, a larger coefficient was obtained for that
variable. On the other hand, its value decreased (or
was practically zero), when the improvement was
smaller or non-existent.

4.2. Performance from models with a set of common
meteorological stations

The improvements observed in the Tair estimation
by including the LST an independent variable are
summarized in Table 4, as well as the difference
observed by considering a daytime or nighttime LST
product. As a result, the LST product providing the
best estimates of Tair (in terms of RMSE) is detailed in
Table 5. Further, mention that the R had a maximum
value of 0.95 and a mean value of 0.90 and 0.83 for
the maximum and minimum Tair, respectively. There
were no large differences in R? (<0.02) in the models
that did not include the LST or between the models
obtained for summer or winter.
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Table 4. Maximum (mean) difference in the RMSE of
Tair Observed during years 2003-2011 on models with
80 common meteorological stations.

RMSEnoLsT — RMSELstd —
RMSEuwithist (K) | RMSELst (K)
Month | Max Min Max Min
June 0.16 0.15 -0.15 0.15
(0.11) (0.10) | (-0.07) (0.10)
Dec. 0.12 0.3 0.13 0.3
(0.04) (0.2) (0.02) (0.17)

Table 5. Product providing the best estimates of Tair
(in terms of RMSE). Results from regressions
considering 80 common meteorological stations for
years 2003-2011.

Month Max Min
June | MYDd ATCDRn
Dec. MYDn ATCDRn

Table 6. Maximum (mean) difference in the RMSE of Tair observed during years 2003-2011 on models
considering all meteorological stations in the fitting step but considering only stations included within each class

in the validation step.

RMSEnoLst — RMSEuithLsT (K)
N Max Min
June / Dec. June / Dec.
Forests 33-38 0.3(0.17)/0.19 (0.08) 0.3(0.16)/0.4 (0.3)
Land cover | Agric. and livestock | 99-110 | 0.06 (0.04) /0.03 (0.009) 0.11 (0.07) /0.13 (0.06)
Urban areas 44-59 0.07 (0.04) /0.09 (0.04)  0.10(0.07) /0.3 (0.19)
- Flatlands 120-131 | 0.07 (0.04) /0.04 (0.006)  0.16 (0.10) /0.2 (0.15)
oy Middle ground 33-46 | 0.16 (0.09) /0.05 (0.015)  0.08 (0.05) /0.3 (0.15)
Rugged lands 26-34 | 0.16(0.12)/0.4(0.19)  0.17 (0.04) /0.5 (0.2)

Table 7. Maximum (mean) differences in statistics obtained with the “simple” and the “complex” model. Model
results for years 2003-2011 by considering all meteorological stations and LST estimates from the product

indicated in Table 5.

RMSEsimple - RMSEcomplex (K) stimple - chomplex
Month Max Min Max Min
June | 0.15(0.08)  0.03(0.017) | -0.04 (-0.07) -0.004 (-0.010)
Dec. | 0.018(0.04) 0.04(0.011) | -0.001 (-0.03) -0.005 (-0.016)

Table 8. Maximum (mean) values for Tair observed during years 2003-2011 on models with all meteorological

stations.
RMSEnoLst — RMSEuwithLsT (K) RMSE (K) R?
Month Max Min Max Min Max Min
June 0.10 (0.05) 0.08 (0.05) 1.2(1.1) 15(1.2) | 0.945(0.922) 0.918(0.852)
Dec. 0.04 (0.03) 0.2 (0.10) 1.3(0.09) 1.3(1.3) | 0.947 (0.888) 0.899 (0.822)

4.3 Performance by considering all meteorological
stations

The improvements on the Tair estimates observed
when introducing the LST in the models, for each land
cover and orographic complexity class, is summarized
in Table 6. Table 7 presents the performance
differences between models of different complexity,
and Table 8 the overall performance.

5 DISCUSSION

The low significance of the solar radiation coefficient
in the models is attributed to the arrangement of the
meteorological stations in the geographical space,
most of them located in flat areas. This causes little

variability and does not capture the relationship in the
models.

Except for the maximum Tair on summer, the nighttime
LST product provided a higher accuracy than the
daytime LST product both for maximum and
minimum Tair. As already shown by Zeng et al. (2015)
for the estimation of the daily Tair, the ability of the
nighttime LST to estimate the maximum monthly Tair
is demonstrated, whereas the majority of the studies do
not use to explore this possibility (Vancutsem et al.,
2010).

The usefulness of remote sensing LST data on Tair
estimation is demonstrated by the improvement
observed (in terms of RMSE) in relation to the
performance provided by the classical Tair models. It is
higher for minimum Tair on winter (being up to 0.3 K),
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and lower for maximum Tair on summer (being up to
0.12).

Further, the improvement is more significant over
Forests and Rugged lands, which is an encouraging
result, given the few ground data available in such
type of surfaces. Furthermore, we also observed that
the improvement provided by the inclusion of the LST
is more important than that provided by the inclusion
of more geographic variables into the model.

6 CONCLUSIONS

The incorporation of Tair Satellite estimates into the
monthly Tair predictive models implies a significant
improvement, especially for minimum and maximum
Tair estimates on winter time. In conclusion, the LST
provides additional information regarding the thermal
inversion phenomenon, not reflected so far by
geographic variables or terrain measures, probably due
to the few meteorological stations located on Rugged
lands.

As an added value, the present work will be important
for updating and improving the "Digital Climate Atlas
of Catalonia" developed by the Universitat Autbnoma
de Barcelona and available online
(http://www.creaf.uab.cat/miramon/Index_en.htm).
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ABSTRACT- Surface soil moisture (SSM), as an important surface process parameter, plays a very important
role in water resources management, crop growth, land degradation, vegetation coverage and global climate
change research. In this study, the Moderate-resolution Imaging Spectroradiometer (MODIS) products from
2008 to 2010 over alpine vegetation region of Tibetan Plateau are selected, including MOD11A2 Land surface
temperature (LST) 8 days synthetic product and MOD13A2 Normalized differential vegetation index (NDVI) 16
days synthetic product, to construct the LST-NDVI triangle feature space. Then, the linear interpolation and
nonlinear interpolation methods are both used to estimate the SSM at the regional scale. Finally, the error
analysis between retrieval SSM and ground measured SSM was carried out to explore the applicability of the two
methods in the alpine vegetation area of the Tibetan Plateau, and the temporal and spatial variation of soil
moisture in the study area was also analysed. The results show that the accuracy of the nonlinear interpolation
method is significantly higher than the linear interpolation method. The Root mean square error (RMSE)
between the estimated SSM and the ground measured data of the linear interpolation method is 0.1007m3/m3,
and the correlation coefficient R is 0.5637 compared with the nonlinear interpolation method with RMSE of
0.0752m3/m3and R of 0.6344. At the same time, there is a consistent regional soil moisture distribution with a
decreasing trend from west to east of two retrieval methods.

1 INTRODUCTION

Surface soil moisture (SSM) plays a fundamental
role in controlling the exchange of water and heat
energy between the land surface and the atmosphere.
The electromagnetic energy emitted and reflected by
soil surface is measured to study the relationship
between remote sensing information and SSM, and to
establish the information model between SSM and
remote sensing data, so as to retrieve the soil moisture
information (Chen et al., 2012).

Bowers and Smith (1972) found that the
absorption amplitude of water in the absorption band
was linearly related to soil moisture content. Dalal
(1986) accurately estimated the soil moisture
information of a large number of soil samples by using
the moisture absorption values measured in the near
infrared band. Kahle (1977) studied the thermal inertia
model, and proposed different methods to solve one-
dimensional heat conduction equation, and combined
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with remote sensing data to solve the thermal inertia
inversion of large area. Watson (1982) proposed a
physical analytical equation for retrieving soil thermal
inertia using remote sensing data, combined with

meteorological data and soil moisture profile
calculation, the soil moisture was successfully
retrieved.

While the development of soil moisture is
retrieved by visible near infrared and thermal infrared
remote sensing, the methods of combining the two
were applied. Price (1990) proposed the concept of
triangular space, and if there were enough pixels in the
area with the clouds and water being removed, the
spatial distribution of LST and vegetation index or
vegetation coverage tends to converge into a triangle
or trapezoid, which is called the LST- vegetation index
feature space. Carlson et al. (1995) found that soil
moisture and LST and vegetation index changes are
non-linear and established a polynomial model to
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describe the relationship of the three. Sandholt et al.
(2002) proposed the Temperature vegetation drought
index (TVDI) to represent the status of soil moisture
on the base of LST-NDVI triangle feature space, and
Goward et al. (2002) established the linear relationship
between TVDI and soil moisture for the SSM
retrieval.

In the LST-NDV I feature space, the slope indicates
that there is the lowest soil moisture for different
vegetation types in the situation of the highest
temperature, and we call this "dry edge". Meanwhile,
the bottom edge of the triangle indicates that the soil
moisture is sufficient and will not become a limiting
factor for vegetation growth at the same temperature,
which we call "wet edge”. SSM can be interpolated
between the "dry edge" and "wet edge" in the LST-
NDVI feature space, and the interpolation method can
be divided into linear interpolation and nonlinear
interpolation.

Whether SSM is linear or nonlinear in LST-NDVI
feature space remains to be studied. Since the linear
interpolation method is simple, most researchers tend
to use it while the nonlinear interpolation is complex,
which is seldom used. This study aims to analyse the
application of linear interpolation and nonlinear
interpolation in regional SSM retrieval, and to analyse
the temporal and spatial variation of SSM in the study
area.

2 STUDY AREA AND DATA
2.1 Description of study area

The source area of the Yellow River (SAYR, 95°50
'E-103°30’E and 32°20'N-36°10'N) is located in the

northeast of the Tibetan Plateau with an average
elevation of 4065m., as shown in Figure 1.

30" 007E T 00T E

R

00N

90" 007 g

Wo° 007 g

Figure 1. The location of study area
The landform of the SAYR is complex, and the
vegetation types are diverse, Most of the area is

covered with alpine vegetation types, such as alpine
shrubs, alpine meadows, alpine grasslands, etc.
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Furthermore, the south and southeast of the SAYR is
characterized by cold and semi-humid climate
features, while the northern and western regions show
a cold and arid to semi-arid climate pattern. The mean

annual average air temperature is about 5°C, and the

annual precipitation varies between 320 and 750mm
over the study area.

2.2 MODIS data

MODIS is currently equipped on two satellites:
Terra and Aqua. The two satellites cooperate with each
other to observe the entire earth surface every 1~2
days, and obtain the observation values of 36 bands.
These data are widely used in the dynamic processes
of the global land, ocean and atmosphere. The MODIS
standard data products of MOD11A2 known as 8 days
synthetic products of LST with a spatial resolution of
1 km and MOD13A2 known as 16 days synthetic
products of NDVI with a spatial resolution of 1 km are
selected in this study.

2.3 Ground measured data

The Cold and Arid Regions Environmental and
Engineering Research Institute, Chinese Academy of
Sciences (CARRERI, CAS) and the Faculty of Geo-
Information Science and Earth Observation of the
University of Twente (ITC) have installed an extensive
soil moisture monitoring network in the east of the
SAYR, as shown with red triangle in Figure 2. The
network consists of 20 stations to monitor the soil
moisture (5 cm deep) and can easily validate the
satellite derived SSM.

WO 1O

HWFArE

Siehuan

Figure 2. 20 Soil moisture sites operated by CARRERI
and ITC in SAYR

3 METHODOLOGIES

3.1 LST-NDV!I triangle feature space

It is found that the spatial relationship between
NDVI and LST is triangle when the research area is
large enough, and the land cover type changes from
bare soil to complete vegetation cover, and the soil
moisture changes from drought to moist as shown in
Figure 3. In the LST-NDVI feature space, point A
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represents the condition of dry bare soil with a high
value of LST and low value of NDVI; point B
represents the condition of wet bare soil with a low
value of LST and low value of NDVI; point C
represents that vegetation is completely covered, and
soil moisture is adequate with a low value of LST and
high value of NDVI. Moreover, the slope indicates
that there is the lowest soil moisture for different
vegetation types in the situation of the highest
temperature, and we call this "dry edge". Meanwhile,
the bottom edge of the triangle indicates that the soil
moisture is sufficient and will not become a limiting
factor for vegetation growth at the same temperature,
which we call "wet edge".

~151
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Partial
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Maximum g
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Figure 3. LST-NDVI feature space

3.2 Linear interpolation method

Sandholt proposed the Temperature vegetation
drought index (TVDI) to represent the status of soil
moisture on the base of LST-NDVI triangle feature
space as expressed:

T —(a2+b2x NDVI) 1)
(a:+b1x NDVI) — (a2 +bzx NDVI )

TVDI =

Where T represents the LST of any pixel, a1 , b:

and a2 , b2 are respectively linear fitting coefficients

of dry edges and wet edges. The value of TVDI varies
from 0 to 1, and the larger the TVDI value is, the
lower the SSM of the pixel is; the smaller the TVDI
value is, the higher the SSM is. Then, we can know the
dry and wet distribution of the study area by TVDI,
but we don't know exactly how much relative water
content is in the soil so that we need to convert TVDI
into SSM.

Goward et al found that the LST-NDVI feature
space can be regarded as the contours of soil moisture
in this region. The intersection point of each contour in
this region is approximately straight line compared to
the wet edge, so we can describe the slope of the
straight line and soil moisture with unitary linear
relationship as expressed:
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M = Mu—(Mu—Ma)xTVDI
@

Where M is the SSM of one pixel; Mw is the
maximum SSM of wet edge, and we can regard it as 1;
M is the minimum SSM of dry edge, which can be
calculated by fitting the slope value of dry edge
equation and the minimum SSM.

3.2 Polynomial nonlinear interpolation method

SSM can be interpolated between the wet and dry
edge conditions in the LST-NDVI feature space. In
addition, the interpolation method can be divided into
linear interpolation and nonlinear interpolation.
Carlson found that soil moisture and LST and
vegetation index changes are non-linear and
established a polynomial model to describe the
relationship of the three as expressed:

M.~ 3a,NDVI"LST" @)

i0

Where Mc is the SSM, ajj are polynomial coefficients.

4 RESULTS AND ANYLYSIS

The results show that, as shown in Table 1, the
retrieval SSM, estimated by both linear and nonlinear
interpolation method in the LST-NDVI feature space,
is larger than the ground measured data. At the same
time, the absolute error and the RMSE between the
estimated SSM and the ground measured data of the
nonlinear interpolation method are less than the linear
interpolation method, which shows that the nonlinear
interpolation method is more accurate.

Table 1. Error analysis of two methods

Method absolute error RMSE R

Linear
interpolation
method

0.0015 0.1007 0.5637

Nonlinear
interpolation
method

0.0004 0.0752 0.6344

The correlation coefficient R obtained by the
nonlinear interpolation method is 0.6344 greater than
the linear interpolation method of 0.5637 as shown in
Figure 4, which shows that the nonlinear interpolation
method has better fitting effect with the ground
measured data. In general, the polynomial model is
better than the drought index model in terms of
computational accuracy and fitting results. In general,
the nonlinear interpolation method is better than the
linear interpolation method in the calculation accuracy
and the fitting result in this study.
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Nonlinear interpolation method

Figure 4. The correlation coefficient analysis between
the estimated SSM and the ground measured data of
two methods

Figure 5. SSM (m3/m3) retrieval by linear(left) and
Nonlinear interpolation methods (DOY, Day of the

year)

As shown in Figure 5, the soil moisture retrieved
by the two models is basically consistent in the
regional distribution. Furthermore, from east to west,
there is a trend of SSM value from high to low, and
there is higher in the West and southwest, while it's
lower in the northeast and southeast. Also, soil
moisture changes slightly over time throughout the
central region.

40

5 SUMMARY AND CONCLUSIONS

SSM plays a considerable role in various
hydrological models, meteorological studies and
ecological applications. This study takes the SAYR
covered with alpine vegetation in the northeast of
Tibetan Plateau as the research area, and LST-NDVI
feature space has been constructed using MODIS LST
and NDVI products from 2008 to 2010. Then
combined with the ground measured data from
CARRERI, the SSM has been retrieved by both linear
interpolation and polynomial nonlinear interpolation
methods. Finally, the results show that the trend of
SSM distribution in the two models is basically
consistent; in addition, the accuracy of polynomial
nonlinear interpolation method is higher than that of
linear interpolation method, which is more appropriate
for SSM retrieval over alpine vegetation region of
Tibetan Plateau.
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ABSTRACT: Grazing intensity (GI) is difficult to measure accurately because of the diversity of grazing livestock,
mobility of the grazing space and uncertainty of the grazing time. Thus, GI monitoring is often qualitative, and
few studies have quantitatively monitored Gl. In this paper, models of Gl and the Normalized Difference
Vegetation Index (NDVI), Gl and the above ground biomass (AGB) were established using a controlled Gl
experiment based on grassland ecology measurements and remote sensing. The accuracy of the model was
evaluated using Gl values estimated based on AGB samples and the principle that AGB is similar for the same Gl
in the same type of grassland. The Gl of temperate meadow grassland was quantitatively simulated based on NDVI
without field measurements. The results show that it is feasible to simulate Gl based on NDVI, the simulation
results were influenced by different climate conditions, especially for precipitation in each year. Most of the study
area was heavily grazed, except a few pastures with rational utilization (0.23-0.46 Au-ha), and in many cases,

continuous heavy grazing occurred for many years without cultivation.

1 INTRODUCTION

The grassland ecosystem in China includes 400 million
hectares of various grasslands that account for
approximately 41.7% of the total land area, making it
the largest terrestrial ecosystem in the country (Ren et
al., 2008). Additionally, it serves important ecological
and productive functions (Hoffmann et al., 2016).
Grazing, which has a long history in China, is one of
the most important types of grassland utilization
(Kawamura et al., 2005). However, 90% of the
available natural grassland is degraded to different
degrees (Harris, 2010), the monitoring studies of
grazing intensity (GI) have generally been qualitative,
and quantitative monitoring remains a challenge (Li et
al., 2016). GlI refers to the number of livestock per unit
area in a given period, and it is an important index that
reflects the degree of grazing utilization. The
conventional method of grassland ecosystem
monitoring is based on the following characteristics: (1)
this method requires considerable manpower and
material resources to investigate livestock populations
and distributions, which not suitable for a wide range to
estimate, and (2) grazing experiments have been
designed according to the GI, plot area and grazing time
in a large number of scientific studies.

Remote sensing has recently become one of the main
technologies for large-scale grassland research and has
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a wide range of applications in the grassland resource
surveying and mapping. Currently, quantitative Gl
monitoring using remote sensing technology is mainly
based on establishing models between Gl and a selected
index (Kawamura et al., 2005), such as above ground
biomass (AGB) (Li et al., 2016), net primary production
(NPP) (Hunt and Miyake, 2006), vegetation index (V1)
(Green et al., 2016), etc. This method could be further
improved; for instance, the Gl data that were used for
modelling were generally obtained via investigation or
statistical data, and these data were often associated
with inherent error; how to make full use of previously
measured and known Gl values by scientific studies; the
error in Gl estimates can be magnified because of the
error associated with the inversion of AGB, NPP, etc.

2 MATERIALS AND METHODOLOGY

2.1 Study Area

The study area is located in Xieertala, Hailar District of
Hulunber, Inner Mongolia autonomous region, China
(Fig. 1). The precipitation and temperature in the study
area are moderate, and the climate is temperate
continental. The annual precipitation generally
averages 300-400 mm and is mainly concentrated in
June to September.
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Fig. 1. Location of the study area

The frost-free period is typically 110 d, and the mean
annual air temperature is -4 to 1°C. The soil is
chernozem or chestnut soil with a medium fertility
level. The main types of land cover in the study area are
grassland, cropland, residential land, roads, water,
forest, etc. The grassland types include temperate
meadow steppe, temperate steppe, mountain meadow,
and lowland meadow, and the main types of grassland
utilization are grazing, cutting and fencing.

2.2 Methodology

2.2.1 Controlled GI Experiment

The controlled GI experiment was established in 2009
(Fig. 2). A randomized block design with three
replications was used. Each replication included six
grazing gradients: 0 (G0.00), 0.23 (G0.23), 0.34
(G0.34), 0.46 (G0.46), 0.69 (G0.69), and 0.92 (G0.92)
AU-hal (where 1 AU = 500 kg of adult cattle).
Eighteen plots of 5 ha (300 m x 167 m) were fenced,
and the total area was 90 ha. The six grazing gradients
included 0, 2, 3, 4, 6, and 8 head of young cattle in each
plot. Thus, a total of 69 head of cattle were used, and
each cattle weighed 250-300 kg. The cattle stayed in a
plot throughout the entire grazing period from June to
October.

2.2.2 Gl inversion and evaluation

A total of 10 images from 2010 to 2016 were used in
this study, including nine images from HJ-1A and HJ-
1B data obtained from the China Centre for Resources
Satellite Data and Applications (www.cresda.com) and
one Landsat5 TM image obtained from the United
States Geological Survey (http://glovis.usgs.gov)
because there were too many clouds in the HJ-1A and
HJ-1B images.AGB (fresh weight and dry weight) data
were collected from 17 July 2016 to 31 July 2016.
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Fig. 2. Controlled grazing intensity experiment

The fresh weight was determined in 1 mx1 m quadrats,
and the dry weight was calculated after drying for 48
hours at 65°C to constant weight in an oven. A total of
178 samples were collected in the controlled Gl
experiment, and each plot had 9-10 quadrats.
Additionally, 100 samples were collected outside of the
controlled Gl experiment but in the study area.

The pure pixels in each plot were selected in the
controlled GI experiment by visual interpretation.
Additionally, the variations in NDVI under different
Gls were compared to determine the best time to
establish the model between Gl and NDVI. The NDVI
was computed as follows:

NDVI= RniR—RRrED @)

RnIr + RRED

where Rnir is the surface reflectance in the near infrared
region and Rgep is the surface reflectance in the red
region.

It is difficult to measure the GI accurately because of
the diversity of grazing livestock, mobility of the
grazing space and uncertainty of grazing times. The
model between Gl and AGB (fresh weight and dry
weight) was established based on data from 178
quadrats in the controlled GI experiment. The model
was used to calculate the GI based on 100 samples
collected outside of the controlled GI experiment. The
Gl values calculated by the model of Gl and AGB were
regarded as true values based on the principle that AGB
is similar for the same Gl and in the same type of
grassland. The GI values calculated by the model
between Gl and NDVI were then evaluated using
measured values. Finally, the GI in temperate meadow
steppe was inverted based on the NDVI, which was
directly derived from remote sensing images.
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3. RESULTS AND ANALYSIS

3.1 The GI simulation model

The relationship between Gl and NDVI can be
established in two ways based on the controlled Gl
experiment. The first approach is to use the average
pixel-based NDVI of each grazing plot
(Fig. 3; y = -0.241x+0.700, R?=0.954, N=18), and the
second it to use the NDVI of each pixel at each grazing
gradient (Fig. 4; y = -0.242x+0.701, R?=0.911, N=40).
The results indicate that NDVI can be used to evaluate
Gl because both methods yielded R? values greater than
0.9; thus, strong correlations exist between Gl and
NDVI. The second linear model was used in this paper
because the average NDVI eliminated some of the
differences in the individual NDVI values.

0.8 y =-0.2414x + 0.7006

R?=0.954

0.6

0.4

NDVI

0.2

0\ T T T T
0 02 04 06 038 1

Grazing intensity (AU-ha't)

Fig. 3. Relationship between Gl and pixel-averaged
NDVI of each grazing plot

0.8 y =-0.2422x + 0.701

R?=0.9117
0.6

0.4

NDVI

0.2

04 06 08 1

0.2
Grazing intensity (AU-hal)

Fig. 4. Relationship between Gl and NDVI in each pixel
and at each grazing gradient

3.2 Accuracy Verification

The Gl values calculated via inversion using the Gl and
AGB model were regarded as the true values. The Gl
values simulated using the Gl and NDVI model were
compared to the true values, and a regression analysis
was performed. The R?, RMSE and relative error values
were used as accuracy evaluation indexes. As shown in
Fig. 5, the simulation results were similar to the true
values, with R? values of 0.799 and 0.816 for fresh
weight and dry weight, respectively, and RMSE values
of 0.178 AU-ha! and 0.166 AU-ha’. Additionally, the
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relative errors were between -20% and 20% and
accounted for 60% and 66% of the total error. All
evaluation indexes suggest that the simulation results of
the Gl and NDVI model were accurate based on their
agreement with true values.
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Fig. 5. Comparisons of simulated Gl based on NDVI
and true values based on AGB sampling (fresh weight
and dry weight): relationships between simulated Gl
and fresh weight (A) and dry weight (B) NDVI and the
relative error between simulated Gl and fresh weight
(C) and dry weight (D) NDVI
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3.3 Model differences in different climates

The previous analysis showed that Gl could be feasibly
estimated from NDVI. However, if the climate changes
annually, the relationship of Gl and NDVI will change
in a corresponding manner? NDVI was negatively
correlated with Gl in July 2010 to 2015 based on the
previous method (Fig. 6), but R? differences were
observed in different years, including relatively small
differences in 2013 (0.301) and 2014 (0.427) and larger
differences in 2015 (0.890) and 2012 (0.810).

3.4 Mapping the grazing intensity

The map of Gl in the study area is shown Fig. 7. Based
on the linear model between Gl and NDVI, the Gl
values were suitable at 0.23 AU-ha-1 to 0.46AU-hal in
the same controlled Gl experiment according to the
community height, density, coverage, biomass, etc.
(Yan etal., 2010, 2015). As a result, most grazing areas
were heavily grazed from 2010 to 2016, and few areas
were reasonably grazed. The average Gls in the study
area were 0.97 AU-hal, 1.14 AU-hal, 0.80 AU-ha?,
3.07 AU-ha, 3.75 AU-ha?, 1.15 AU-ha, and 1.31
AU-ha! from 2010 to 2016. Additionally, the
simulation results were not ideal in 2013 and 2014
based on the low R? values between GI and NDVI,
which may have been due to the higher-than-average
precipitation conditions during the growing seasons in
those years.
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4. CONCLUSION AND DISCUSSION

Previous studies have successfully identified the signals
of grazing impacts on grassland using remote sensing
data (Numata et al., 2007), and some studies suggested
that no direct relationship could be established between
the development of vegetation cover and animal-based
Gl at the community level (Rdder et al., 2008).
However, NDVI adequately reflects the interactions
associated with the climate-plant-animal relationship;
thus, it can be used to characterize the temporal
evolution of the green biomass in natural grassland
(Junges et al., 2016). The simulation results based on
NDVI inversion were generally good based on accuracy
verification; however, the values were underestimated
when the G exceeded 0.96 AU-ha’. This problem can
be solved by increasing the interval of the grazing
gradient.

The growth of vegetation was affected by climatic
conditions. The simulation accuracy decreased as the
precipitation during the growing season increased
because vegetation differences were small when high
precipitation occurred in the arid area. Among the
climatic variables in arid and semi-arid environments,
precipitation variability has been found to be the
primary determinant of vegetation dynamics (Paudel
and Andersen, 2010), and a previous study found that
most of the variation in production (75%) was
explained by growing season precipitation at both
grazed and un-grazed sites (Yang et al., 2012). This
finding is consistent with those of this paper.
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Fig. 7. Map of the grazing intensity in the study area from 2010 to 2016(A, B, C, D, E, F, and G)

The average area of reasonable grazing was only 4.89%
of the total area from 2010 to 2016, and the area of
heavy grazing was 83.43% of the total area, while the
lightly grazed area was only 11.68% of the total area.
The heaviest grazing in the study period was observed
in 2016, when heavily grazed areas accounted for
98.84% of the total area. The lightest grazing in the
study period occurred in 2012, when the heavily grazed
area accounted for 64.67% of the total area. Most of the
study area was heavily grazed, except a few pastures
with rational utilization, and continuous grazing often
occurred for many years without cultivation. Both the
Gl and grazing management system are key factors that
affect grassland vegetation (Ren et al., 2015). Grazing
patterns and the Gl must be adjusted to ensure the
sustainable utilization of grassland, and such
adjustment methods include rotational grazing, rest
grazing, etc.
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ABSTRACT: The temperature vegetation dryness index (TVDI) is an effective optical remote sensing method
to monitor regional surface soil moisture status. However, due to the disturbance of multiple factors, the
correlation coefficient of the dry and wet edge of the Ts-NDV1 space of the traditional TVDI method is quite low
and unstable in karst areas. Thus, this paper tried to improve the accuracy of the TVDI method by adding DEM
correction to the Ts-NDV|1 feature space to monitor soil moisture in the karst area of Guangxi, China. After DEM
correction to the Ts-NDVI feature space of the TVDI method, the change rules of the dry and wet edge
correlation coefficients with NDVI values were obtained using multiple correlation analysis. The correlation
coefficient of the dry edge with the increasing of NDVI value presents the two parabola forms of distribution
while the wet edge correlation coefficient is positively correlated with NDVI, and the accuracy of the Ts-NDVI

space of the TVDI method was improved obviously in the study area.

KEYWORDS: Remote sensing; DEM correction; Surface soil moisture; Ts-NDVI feature space; TVDI; Karst

1 INTRODUCTION

Surface soil moisture (SSM) is one of the key
factors which affect the climate and ecological
environment in Karst areas. There is a close
relationship between SSM and energy exchange
among hydrosphere, atmosphere and biosphere, and
SSM has a powerful control on the land surface
evapotranspiration, carbon cycle and water migration.
What’s more, SSM has great influence on the growth
of crops, land degradation and vegetation cover, etc.
Study on SSM of the Karst area is of great importance
to the drought and flood disaster monitoring,
evaluation of crop growth and ecological environment
problems analysis and solving in Karst areas.

SSM can be measured to some degree by all
regions of the electromagnetic spectrum, and SSM
retrieval methods can be divided into 2 big categories:
optical remote sensing methods and microwave remote
sensing methods. Each has its own advantages and
disadvantages. Temperature vegetation drought index
(TVDI) is one of the most representative optical
remote sensing methods put forward by Sandholt
(2002), which considered comprehensively the effect
of vegetation index (V1) and surface temperature (Ts)
on soil moisture, using Ts-NDVI feature space to
retrieval SSM. At present, TVDI is the most widely
studied and used method for SSM retrieval in optical
remote sensing (Kimura, 2007; Hosseini, 2011; Zhang,
2014). Many scholars have carried on research,
verification, improvement and perfection to the TVDI
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method. For example: Vicente-Serrano et al. (2004)
used AVHRR and ETM+ data in the north of Spain to
verify the accuracy and applicability of TVDI.
Holzman et al. (2014) used MODIS data in four
agricultural experimental regions of the Argentine
Pampas to verify the accuracy and applicability of the
TVDI model. Kimura (2007) improved the fitting
method of the dry and wet edge equation of TVDI, and
proposed an improved TVDI index. Hosseini et al.
(2011) used MODIS data to analyze the soil moisture
based on EVI-LST and NDVI-LST, and found that the
SSM retrieval accuracy based on EVI-LST was higher.
Zhao et al. (2011) improved the TVDI model from
multiple perspectives by using different methods.
Considering the situation of water shortage in
Northwest China, Li et al. (2012) used the modified
soil adjusted vegetation index (MSAV) to replace the
normalized difference vegetation index (NDVI) for
SSM retrieval, and the TVDI method was further
improved. However, due to the disturbance of multiple
factors, the traditional TVDI method doesn’t fit karst
areas, and the correlation coefficient of the dry and
wet edge of the Ts-NDVI space is quite low and
unstable according to the researches. Therefore, this
paper aimed to improve the fitting accuracy of the wet
and dry edge of the Ts-NDVI space of the TVDI
method by adding DEM corrections especially for the
Karst area, in order to improve SSM retrieval accuracy
in Karst area.
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2 MATERIALS AND METHODS
2.1 The study area

Guangxi (20° 54’ ~26° 20’ N, 104° 29’ ~
112° 04’ E), located in the southwest of China's
coastal areas, covers approximately 236.7 thousand
square kilometers (see Fig. 1). It is surrounded by
mountains and plateau, north of Nanling Mountains,
west of Yunnan Guizhou Plateau and close to south
Tropical Oceans. The geographical environment of the
study area is complex, with more mountains and less
land. Hills and mountains account for 70.8% of the
area. The geographical distribution is north high and
south low, from northwest to Southeast tilt, and
Underground Rivers are developed.

Fig.1 the study area

The study area is a typical subtropical monsoon
climate with warm temperature. The average annual
precipitation is of 1086 ~ 2755mm but uneven
distributed. The soil types in Guangxi are mainly
ferrisol, which is widely distributed in the subtropical
regions of the world. The study area of Guangxi has a
typical Karst landform distribution, with karst
mountain areas of 9.8x104 km?, accounting for 41%
of the whole region. In the slope soil region of Karst,
because the soil is shallow and infiltration
performance is strong, the surface runoff of the slope
is very little. Thus the SSM distribution is not directly
proportional to the rainfall.

2.2 data sets

(1) MODIS/Terra data products: The 3rd level
MODIS/Terra LST, NDVI and reflectance data
products (1-km MOD11A2, 1-km MOD13A2 and 0.5-
km MODO09AL1) included in the study are obtained
from the United States Geological Survey (USGS),
download  from  http://glovis.usgs.gov/.  The
MOD11A2 product (global 8-day 1 km surface
temperature/emissivity data), MOD13A2 product
(global 1 km 16-day vegetation index data) and
MODOQ9AL1 product (global 0.5 km 8-day reflectance
data) include the data from February to April and
August to October of 2009. To unify the resolution, the
16-day surface temperature/emissivity data are
calculated from the mean values of the 8-day data.
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(2) DEM data: ASTER GDEM -v2 data is selected
which is the product of the new generation earth
observation satellite of Terra by NASA. The data
covers all land areas from latitude of 83°N to 83°S,
and the elevation accuracy is 30 meters. There are 38
images in the study area of Guangxi. The data was
obtained from the website of http://www.gscloud.cn.

2.3 The method
2.3.1. The traditional TVDI model

Land surface temperature (Ts) and vegetation index
(VI) are significantly negatively correlated, and the
slope and intercept of the Ts / NDVI diagram differed
with types of vegetation coverage in the same
atmospheric and surface moisture conditions, and this
is the Ts-NDVI feature space (Lambin and Ehrlich.,
1996) (Fig.2).

F 3
Minimum ET
& Dry edge
Wet edpe Maximum ET
-
NDVI

Fig.2 The ideal Ts-NDV!I triangle space

On this basis, TVDI was proposed by Sandholt in
2002 for SSM retrieval, which can be expressed as
follows:

TVDI = (Ts = Tsmmn )/ (Tsmax — Ts m!’n:'(l)
In Formula (1), Ts represents the surface
temperature of any pixel, Ts min indicates the lowest
surface temperature in the same NDVI, and
Ts max represents the highest surface temperature in
the same NDV1.

Tomm = (as + B,NDVI) ()
Ts mex = (82 + b, NDVI) ©)
Formula (2) and (3) are called wet edge equation
and dry edge equation respectively. @1 and by are
coefficients of the wet edge equation, and £z and
baare coefficients of the dry edge equation. According
to the principle of TVDI, the bigger the TVDI value,
the closer to the dry edge of the NDVI/Ts feature
space, and the less SSM, and vice versa.

2.3.2. Topographic correction to the TVDI model

SSM retrieval using TVDI method is mainly
affected by the two factors of surface temperature and


http://glovis.usgs.gov/
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vegetation coverage. However, other factors such as
the topography and atmospheric conditions will cause

Tablel. The dry edge fitting equations of the Ts-

a certain impact on the SSM retrieval accuracy. In this
paper, the ground elevation were used to correct the

temperature in order to effectively eliminate the

impact of solar radiation and atmospheric background

differences.

The elevation correction model formula is as follows:
T, =

=Ty +my'H “)
In formula (4), T2 represents the modified surface

NDVI space
Time Fitting equation correlation
coefficient(R2)

Feb.2009  y=-16.4002x+312.380 0.85
Mar.2009  y=-21.0066x+315.675 0.90
Apr.2009  y=-26.6305x+324.940 0.95
Aug.2009 y=-17.9828x+321.198 0.89
Sep.2009  y=-24.0018x+321.443 0.89
Oct.2009  y=-13.6965x+312.947 0.92

temperature, Ti represents the surface temperature
before correction, mirepresents the level affected by
elevation, usually with the constant of -0.6km/°C, H

Table2. The wet edge fitting equations of the Ts-

represents the DN value of the image and the elevation
of each pixel.

3. DATA PROCESSING AND ANALYSIS

MODIS data of the study area in the year of 2009
(12 groups) were processed, using the software
platforms of ENVI5.1 and MRT (MODIS
Reprojection Tool). ENVI5.1 and MRT were used to

preprocess MODIS images, including extraction,
mosaic, projection and resampling, etc. In the
preprocessing procedure, bilinear interpolation methoc
was used in resampling for 1000m resolution, and tht
Lambert Azimuthal was selected in the projectiot
mode. The correlation between NDVI and Ts, noist
removal and elevation data processing of ASTEF
GDEM V2 were dealt with IDL programming. The
surface temperature Ts was obtained by the method o
split window algorithm using band 31 and 32 of the
MODIS data.

3.1 The traditional Ts-NDVI space

The traditional Ts-NDVI space can be obtainec
according to formula (1) to formula (3) in section 2.3,
and the results are as follows (see table 1, table 2 and
Fig.3).

As can be seen from table 2, the relative
coefficient of the wet edge in quite low, especially in
August the correlation coefficient R? is only 0.34
(Fig. 3).

3.2 Topographic correction to the Ts-NDVI space

The low fitting correlation coefficient of the wet
edge in the traditional Ts-NDVI feature space of the
TVDI method has direct relation with Karst landform,
which makes rain infiltration rate fast, resulting the
SSM retrieval by TVDI model is not consistent with
the actual soil moisture after rainfall, and the retrieval
model distorted. By the addition of topographic
correction in the TVDI method, the low correlation
coefficient of the wet edge can be improved
effectively, and the SSM retrieval accuracy can be
improved.
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NDVI space

Time Fitting equation correlation

coefficient(R2)

Feb.2009  y=15.8921x+276.582 0.57
Mar.2009  y=26.7310x+263.809 0.77
Apr.2009  y=42.4722x+255.526 0.75
Aug.2009  y=8.60516x+284.003 0.34
Sep.2009  y=10.8663x+283.655 0.71
Oct.2009  y=8.33422x+284.514 0.57

330

Dry:y=—17.9828x+321.1¢8
m2=0.891699

230 Wel:y=8.60518x+284.003
m2=0.344333
270
260 I . . | . |
0.4 0.5 0.6 0.8 0.9 1.0

N
Fig. 3 The traditional Ts-NDVI space in Aug. 2009

According to the formula (1) to (4) in section 2.3,
DEM topographic correction was added to Ts, and the
fitting coefficients of the dry and wet edge after
modified were obtained. Take the data in Oct.2009 for
example (Fig.4 and Fig.5). It is indicated from figure 4
that the correlation coefficient curve of the dry edge
after DEM correction showed a parabolic rise with the
increase of the NDVI values, while that of the wet
edge showed a significant increase in the low
vegetation area, and decreased with the increase of the
vegetation  coverage (Fig.5). The correlation
coefficient is highest in NDVI=0.3 then decreased
gradually according to Fig.5. It shows a high
correlation between topographic correction and the
fitting coefficients of the wet edge in low vegetation
areas.
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It can be concluded from Fig.4 and Fig.5 that: the
fitting coefficient of the wet edge can be improved
obviously by adding DEM correction in the low
vegetation cover areas, but with the increase of
vegetation coverage, the applicability decreased.

4 CONCLUSIONS

TVDI is an effective index from optical remote
sensing imagery as retrieval surface soil moisture.
However, the traditional Ts-NDVI space of the TVDI
method does not fit karst areas. In order to improve the
accuracy of SSM retrieval through TVDI in Karst
areas, the Ts-NDVI feature space of TVDI was
analyzed and improved by adding DEM correction to
modify the surface temperature, and good results were
obtained. The change rules of the dry and wet edge
correlation coefficients with NDVI values were
obtained using multiple correlation analysis: The
correlation coefficient of the dry edge with the
increasing of NDVI value presents the two parabola
forms of distribution. The wet edge correlation
coefficient is positively correlated with NDVI, and the
accuracy was improved obviously. The
implementation process of the TVDI method has been
optimized after DEM correction.
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ABSTRACT - The relationship between leaf area index and normalized derivative of red-edge reflectance is
derived and evaluated using simulated reflectance using the FLIGHT radiative transfer model and measurements
over corn and soybean fields. The relationship applies within the red-edge between 710nm and 760nm, where
sensitivity to the ratio of leaf reflectance to albedo is small. An algorithm for leaf area index retrieval using
Sentinel 2 is developed using this relationship. The algorithm performs comparably to published empirical
regression with the measured dataset (i.e. RMSE 0.68) with weak sensitivity to factors such as acquisition
geometry, clumping, leaf angle distribution and leaf chlorophyll concentration.

1 INTRODUCTION

Leaf area index (L) is defined as half the live foliage
surface area per unit horizontal ground area. LAl is an
essential climate variable and routinely derived using
both empirical and physically based algorithms applied
to multispectral satellite imagery. = Measurements
suggest strong (e.g. standard error 0.58), species and
chlorophyll independent relationships between L and
simple transformations of the normalized difference of
reflectance in the red-edge (i.e. 690nm to 800nm) (Dash
and Curran, 2004; Gitelson, 2005; Vina et al. 2011).

This paper develops a theoretical basis for the
relationship between LAI and the normalized derivative
of red-edge reflectance (N) given by

aan(/l/{ao,nl) 1
where R is canopy bi-directional reflectance for
directions (), (; at wavelength A. The basis is then
used to develop and algorithm for retrieving LAI from
red-edge bands corresponding to the Sentinel 2
Multispectral ~ Imager and  evaluated  using
measurements over corn and soybean fields.

N, Qy,Q,) =

2 THEORY

2.1 Black Soil Canopies

Assuming black soil and spatially uniform foliage
single scattering albedo (w), canopy reflectance is
given by (omitting angles) (Huang et al. 2007):

. -p,(Dw ()AL
Rus(D) = lopy (D (1) FL2Z000

2
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where i, is canopy interceptance, p; , Py are canopy
escape and recollision probabilities after k™ scattering
respectively and assuming these probabilities are
constant for k > 3 :

D1 P2 p

—ni_k,

_ P 2
o T p2)w pl(pa p)w? (3)

The wavelength dependence of p; is determined solely
by ¢, the ratio of foliage reflectance to w (Stenberg and
Manninen, 2015). Figure 1 indicates that between

710nm and 760nm, |6l:w| > |az/1_nz so that combining
Equations 1 and 2 gives: “)

A

(15
- s ere)] @
To relate Ny to L from Lewis et al. (2007):

P2 = ao({,LAD, ®) + a,({, LAD, ®)ps, (P) (5)

dlnw 1
Nbs = [

oA l1-p,w

where a,, a, are constants, LAD is leaf angle
distribution , @ is clumping index and (Stenberg, 2007):

n
JZ[1-exp(-®L)]sinfcosfdo
L

poo=1

(6)

Equations 4, 5, 6 provide a mathematical relationship
between N, and L termed the ‘complete’ model.

2.2 Multispectral Application
For a contribution R, from soil collided fluxes:

9Rs jOR
- /a/l

— A
Nps =N 1-R/R

0

Solving Equations 4,5 and 6 for L requires , p, , pyfor
1<k<3, w, P, ay, a;. These requirements are
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onerous for multi-spectral data where the number of
wavelengths where N is observed is limited.
Simulations from PROSPECTS5b (Feret et al., 2008)
over a wide range of leaf parameters indicates that
between 710nm and 760nm, { is primarily determined
by the ‘n;” parameter related to leaf structure while w is
primarily determined by leaf chlorophyll and dry matter
concentrations (Cyj, Cypp)-

10tp

—10
—
—%
—a
|
| ——5
0 [l il 6
[ —
—®
%
100

(dw/dN) / (3G/AN )

100F

o1k L L L L L L |
700 710 20 730 740 750 760 770 780 790 800

wavelength (nm)

Figure 1. (Olnw/OA)(0In{/O)) based on PROSPECTSb

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2. Relationship between A and A + w g—i and p2
for { = 0.5.

For homogenous canopies with horizontal bi-
Lambertian leaves p;, , p, can be expressed as analytic
functions of L and ¢ . In this case, as Figure 2 indicates,

given w both A and A + w Z—i can be approximated by
a single quadratic:
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A(n, w) = A(n, w) + w:—i =~ by(n, w)+b,(n, w)p, +
b2 (Tl, w)pZZ (8)

Combing Equation 4 and 8 allows the relationship
N,sand p, to be parameterzied only by n, C,;, and C,,

al o
Ny = 7 -o(1 = A(n, @) )pf w* ©)

Equation 9 is termed the ‘approximate’ model

3 VALIDATION

3.1 Black Soil Theory

Simulations from the FLIGHT radiative transfer model
(North, 1996) coupled with PROSPECTS5b based on a
wide range of parameters (Table 1) corresponding to
homogenous canopies were used to validate the black
soil theory. For each group of simulations sharing the
same n, C,;, and C,,,, Equation 4 of the complete model
was inverted to estimate p, using the FMINCON
routine in MATLAB. Additionally, the approximate
model was used to estimate both p, and L after
calibrating a,, a, over all simulations in a group.
Again, the FMINCON routine was used to solve for p,
and a,, a, in Equations 9 and 3 respectively

Table 1. FLIGHT/PROSPECTS parameter indicated
as start value:step:end value.

Parameter | Units Range
Q deg. 10:10:60
Q, deg. 0
L - 0.5:0.5:10
diam. cm 1,5,10
LAD - Planophile, Erectophile,
Spherical
Cap pgem? 10:10:100
Cor pgem? 0.2*C
C, gem? 0.01
Cim gem? 0.002:0.0036:0.02
Cpp - 0:0:0
n - 1:0.3:2.5

3.2 Measurements

The multispectral application was validated using
measurements from the CALMIT dataset reported in
Gitelson et al. (2005) and Vina et al. (2011). The data
consisted of in-situ measurements of (L, R ,soil
reflectance pg, C,;,, leaf reflectance R)) at 3 fields
over 3 growing seasons resulting in a total of 190 corn
and 104 soybean samples. Both ® and n were estimated
from studies of similar crops assuming they did not
change over time (Haboudane et al., 2002; Liu et al.
2013). C,,, dry matter, and w were estimated by
inverting PROSPECTS to match R; given C,;,and n.
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Figure 3. FLIGHT/PROSPECTS (circles) for leaf chlorophyll concentrations from 10 pgem? (blue) to 80
pgem?? (orange) and (lines) fitted approximate models.

The theory was validated using two different 4.2 Measurements

approaches for estimating p> The first approach inverted ~ Figure 4 shows results validating the approximate
the approximate model (Equation 9) using measured theory using multispectral measurements for one
values of leaf optical properties to estimate p2using a wavelength (735nm). For both species, L is retrieved
single red-edge wavelength for all data. In practice leaf ~with comparable accuracy (root mean square error
optical properties and soil reflectance are not known. (rmse) 0.31 for corn, 0.10 for soybean).

N, was estimated by Equation 7 using: Figure 5 shows results validating the multispectral
application of the approximate theory for Sentinel 2

Rs ~ exp(=20L)p; (10) " MSI bands. The retrieval of p, follows the relationship
with measured values of ®, L and p;. with L suggested by Equation 4 but shows evidence of
In both cases a,, a, were hold-out calibrated data for ~convergence to a single minimum value of p,. L is
the same species but with prior estimates ®. retrieved with an rmse of 0.31 for corn and 0.10 for

In the second approach the approximate model was soybean.

inverted Simultaneously using two Wavelengths) Closely These results Suggest that the theoretical basis of the

approximated by the normalized difference of Sentinel2 ~ simplified model applies in the red-edge and may be

Multispectral Imager Bands 4 and 5 (for 728nm) and 5  useful for developing retrieval algorithms for L.

and 6 (for 748nm), to estimate both leaf optical

properties and p2 given N. To avoid soil correction, a 5 CONCLUSIONS

polynomial relationship was fit between p2 and N for

dense canopies (initial estimate of p2>0.5) and thenused ~ The normalized derivative of bi-directional reflectance

with hold-out measurements to calibrate a relationship ~measurements in the red-edge was shown to be related

between L and N that was then applied for all targets. to both L and leaf chlorophyll concentration using an
analytical model. The model first relates the second

4 RESULTS recollision probability, p,, to the black soil normalized

derivative and then relates p, to L . The model was

4.1 Black Soil Theory verified with both simulated and measured datasets

Figure 3 shows results for a typical red-edge leading to the conclusion that relationship between the

wavelength from which it is observed: normalized red-edge derivative and L is, in general,
i) The relationship between N,, and L is concave sensitive to leaf chlorophyll concentration.

saturating at = 6 . The analytical model was used to develop a proof-of-

i) The relationship between N,, and L shows concept inversion algorithm using two red-edge

substantial sensitivity to Cy;. normalized derivatives. The algorithm retrieved L with

iii) The relationship between Ny;and p2 is accuracies similar to the uncertainty of in-situ

approximately quadratic before saturation. measurements but required calibration of the p, versus

iv) The approximate model provides good agreement L relationship by species. Further studies are required

with simulations of N, and L. to determine the sensitivity of this calibration to canopy

architecture and to verify the end-to-end performance
of the algorithm.
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Figure 4. In-situ L versus estimated corn (left) and Figure 4. In-situ L versus estimated corn (left) and
soybean (right) L using approximate model with soybean (right) L using approximate model with
observed m and ps. Colours indicate leaf chlorophyll observed w and pg. Colours indicate leaf chlorophyll
from 10 pgem? (blue) to >60 pgem? (orange). from 10 pgem? (blue) to >60 pgem? (orange).
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Figure 5. In-situ L versus estimated p, (left) and L (right) for both corn and soybean canopies based on inverting
the approximate model using two red-edge bands without knowledge of w or p .
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Figure 6. FLIGHT/PROSPECTS (circles) for leaf chlorophyll concentrations from 10 pgem™ (blue) to 80 pgem
(orange) and (lines) fitted approximate models.
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ABSTRACT Smoothing rough ploughed soils increases their albedo, which results a lower amount of shortwave
radiation being absorbed by their surface layer. That surface emits less long-wave radiation, leading to a
reduction in its temperature, which in turn can affect the climate. This paper presents a multistage procedure for
quantification the annual dynamics of shortwave radiation reflected from air-dried bare soils within arable lands
of the European Union (EU) and its associated, Norway and Switzerland. The soils, being in conventional tillage,
were treated as bare, formed by a plough (Pd) and a harrow (Hs), when the major crops were planted there.
Information about the areas of the soils and periods when they are bare was obtained from vectorised and
rasterized geostatistical datasets. This procedure takes into account the spatial diversity of the soils characterized
by thousands of reflectance spectra stored in the European Lucas Top Soil Database. These spectra were used to
predict the half-diurnal albedo variation of the soils on a given day of the year. The shortwave radiation reaching
the examined soils was obtained from satellite data of the SEVIRI instrument. It was found that the maximum of
radiation levels reflected from the soils occur between the beginning of April and the end of May. During these
periods, the radiation reflected from the soils formed by Pd and Hs can reach about 220 and 250 PJ/d in the
western part of the EU, 150 and 190 PJ/d in the central part and up to 280 and 330 PJ/d in the southern part.

1 INTRODUCTION 2 METHODS

The broadband blue-sky albedo of bare soil depends on The study area is the European Agricultural Region
relatively stable features over time (the content of soil (EAR) according to the Major World Crop Areas and
organic matter, iron oxides and carbonates), as well as Climate Profiles (USDA, 1994), limited to the current
the states of salinity, moisture and roughness, which countries of the European Union (EU) along with its
change dynamically due to agricultural practices on associated countries (Switzerland and Norway). The
arable lands (Cierniewski et al. 2015). Smoothing EAR was analysed as divided into its western (W),
rough ploughed soils increases their albedo, which central (C), and southern (S) sub-regions (Fig. 1).
results in a lower amount of shortwave radiation In the first stage of the procedure, using digital
absorbed by their surface layer. That surface emits less georeferenced datasets with a resolution of 5x5 arc
long-wave radiation, leading to a reduction in its minutes (Monfreda et al. 2008), it was determined
temperature, which in turn can affect the climate where and in what areas the major crops (barley,
(Desjardins 2010, Farmer and Cook 2013). wheat, maize, potato, rye, sugar beet and rapeseed) are
This paper presents a multistage procedure that cultivated in each sub-region. Using datasets from the
aims to quantify the annual dynamics of shortwave crop calendar of Sacks et al. (2010), the planting dates
radiation reflected from bare soils within the European of the individual crops was ascertained. Then, using
Agricultural Region, where its major crops are datasets from the National Center for Atmospheric
cultivated. It is assumed that these soils, being in Research (https://ncar.ucar.edu) and the growing
conventional tillage, are bare when the crops are degree days (a tool measuring heat accumulation to
planted until the crops reach the ground cover, which predict plant development rates), an evaluation was
can significantly change the bare soil’s reflectance made as to when the selected crops would reach
features. The soils are in two extreme roughness states approximately 15% ground cover. It was assumed, as
formed by a plough and a smoothing harrow and are Baumardner et al. (1986) argued, that spectral
air-dried. reflectance from fields with lower crop cover could be
treated the same as the reflectance from bare soil.

56


mailto:ciernje@amu.edu.pl
mailto:jakub.ceglarek@amu.edu.pl
mailto:cezark@amu.edu.pl
https://ncar.ucar.edu/

Recent Advances in Quantitative Remote Sensing - RAQRS 2017

Legend

regional
borders @ r

- arable soils

W o= )
. 'kg”“xh/f' ~
e 4

0 245 490 980 B

/
e - e Kilometers ey -

Figure 1. Sub-regions — western (W), central (C) and southern (S) — where arable soils covered by the major
crops can be bare.

In the second stage of the procedure, to determine ocy5=0.33 — 0.1099T5p — 5795.4%57, —
the soil units that the delineated arable areas belong to, —510.2x10g7 +7787.2x1355 + 12161x1656 +
a digital soil map (ESDB v2.0 2004), classified as major + 6932.8x695 )

reference groups according to the World Reference

Base for Soil Resources (WRB), was superimposed on where Tsp is the roughness index defined as the ratio
the croplands class taken frorln a land cover map of the real surface area within its basic unit to its flat

(GlobCover 2009). horizontal area (Taconet et al. _2007), and x_is Fhe
reflectance data transformed to its second derivative
In the third stage, the soil units that occupied more for a specified wavelength: 574, 698, 1087, 1355 and
than 5% area of the arable soils in a given sub-region 1656 nm. Meanwhile, ag under & <75° was calculated
were characterized by the reflectance spectra of all the as:
soil samples that were located in their contours. The
spectra were obtained from the European Lucas Top ag, = ays[1+ s4(05 — 45)], 2

Soil Database (Toth et al. 2013). where s expresses the slope of the « increases in this

These average spectra of the analysed sub-regions 6 range:
were used in the fourth stage to calculate the half-
diurnal albedo « variation of tghe bare soils within W, C Sq = 0.000000626 + 0.0043HSD A, ®)
and S. Their overall soil « level at a given roughness ~ where HSD is the roughness index expressing the
condition under the & = 45° (ous) was calculated as in standard deviation of a soil surface area within its basic
the paper proposed by Cierniewski et al. (2017): unit (Taconet et al. 2007). The half-diurnal « variation

of the soil units relative to &, taking into account their
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roughness, was expressed in the full & range up to 90°
by the formula:
__a+c?s
U5 = 1+b695 "’

4)

where a, b and c are fitting parameters. This equation
was individually fitted to the average half-diurnal o
distributions of the bare soils, using TableCurve
2Dv5.01software, assuming that each of them was
shaped by a plough (Pd) and smoothing harrow (Hs)
within W, C and S. It was assumed that the roughness
of the soils formed by Pd and Hs was described by
HSD values of 25 and 5 mm, and Tsp values of 1.5 and
1.05, respectively.

In the fifth stage, the ass distributions of the soils
representing W, C and S, originally fixed for every
tenth day of the year in the & function, were
transformed to the function of solar local time, which
allowed the calculation of the average values of the
diurnal albedo of the soils (ad).

In the sixth stage, using 3 channels of the satellite
SEVIRI instrument (related to 0.6, 0.8 and 1.6 um), the
amounts of shortwave radiation (Rig) reaching three
places characterizing W, C and S every day in 2011 (in
increments of one hour) in clear and cloudy conditions
were determined. These amounts were obtained by a
modified method implemented in the Land-SAF
project proposed by Gautier et al. (1980) and Frouin et
al. (1989). To smooth the impact of highly variable
atmospheric conditions the daily Riq values for W, C
and S were averaged over the year by a non-linear Erfc
Peak equation implemented in TableCurve 2D v5
software as no. 8008 (Systat software Inc., USA).
Finally, Rig values were converted to TJ/kmZ,
Multiplying the bare soil areas within W, C and S by
the averaged diurnal albedo of soils formed by Pd and
Hs values, as well as Ri values, the diurnal amount of
shortwave radiation reflected from the sub-regions
throughout the year was estimated (Rra).

3 RESULTS AND DISCUSION

It was found that the total soil areas for cultivation of
the major crops within W, C and S sub-regions is about
229, 231 and 197 thousands square kilometres,
respectively (Fig. 1). Taking into account the Eurostat
data from 2013 (ec.europa.eu/eurostat) that the above
areas are in the conventional tillage in the proportions:
56%, 69% and 74%, it was determined that the
research areas within W, C and S are 128 160, and 146
thousands km?, respectively.

The share of the WRB major soil groups covering
at least 90% of each sub-region is shown in Table 1.
Cambisols and Luvisols have a dominant share, 66%
and 56%, in W and C, respectively.
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Table 1. The proportion of the WRB major soil group
areas within the sub-regions: western (W), central (C)
and southern (S).

Soil W C b.]
units Area No. ol Area No, of Area No, of
() contlours (%) contours (%) conlours
Albeluvisols | 4.1 303 4.2 345
Arenosols = — 4.7 107 - -
Cambisols 43.0 2503 224 1386 EEES 1360
Chernozems - - — — 192 254
Fluvisols 5.9 596 9.3 612 10.7 304
Glevsols - - 4.2 389 — -
Leplosols 8.2 627 - - i3 633
Luvisols 228 1103 340 1429 14.7 715
Phacozems 3.1 121 11.1 267
Podzols 9.9 903
Regosols 2.9 247 - - — —
Vertisols 3 107
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Figure 2. Averaged spectra of the WRB major soil
groups within the analysed sub-regions.

Although the proportion of Cambisols in S is
larger than in W and C, the proportion of Luvisols is in
third  position  behind  Chernozems.Laboratory
reflectance spectra relating to 2,482, 2,373, and 968
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soil samples taken from W, C and S, respectively, were
used to characterize the reflectance features of the soil
major groups within these sub-regions. The greatest
diversity of the soil spectral reflectance is shown by the
averaged major soil groups in S, where their lowest
reflectance refers to Regosols, and the highest to
Cambisols (Fig. 2). Meanwhile, the smallest difference
in this reflectance is revealed by the main groups in W.
The averaged spectra describing all the soils that cover
the studied sub-regions clearly show the higher
reflectance of S than W and C (Fig. 3). The average
diurnal aa of the soils shaped by Hs is 14-22% higher
than the same soils formed by Pd throughout the year
within all the sub-regions (Fig. 4a).
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Figure 3. Averaged spectra of all the WRB major soil
groups within the analysed sub-regions.
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Figure 4. Annual variations in: (a) — average diurnal albedo (ad) of the averaged bare soils formed by a plough
(Pd) and a smoothing harrow (Hs) within the western (W), central (C) and southern (S) sub-regions; (b) — areas of
the bare soils within the sub-regions; (c) — real (grey line) and averaged (black line) amount of shortwave radiation
(Rig) reaching the soils within the sub-regions (d) — real amount of diurnal shortwave radiation reflected from one
square kilometre of the soils within the sub-regions (Rrbd), formed by Pd (black solid line) and Hs (grey dashed

line).
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Spring peaks of the bare soil areas, about 85,000 and
60,000 km?, were found within W and C around the 95t
day of the year (DOY) (5-April) and the 125" DOY (5-
May), respectively (Fig. 4b). The largest spring peak,
reaching 95,000 km?, was established within S around
the 110" DOY (20-April). Significantly smaller autumn
peaks of the bare soil areas within W, C, and S, reaching
10,000, 20,000 and less than 5,000 km?, respectively,
were found around the 280™ DOY (7-October). Within
S in summer around the 210" DOY an additional area
of bare soils was found measuring 10,000 km2. The
diurnal amount of shortwave radiation (Rig), reaching
the sub-regions in 2011 varied from about 2 TJ/km?
around the beginning of the astronomical winter to 17,
19, and 21 TJ/km? for C, W and S, respectively, at the
beginning of the astronomical summer (Fig. 4c).

The spring maxima of the radiation that can be reflected
from the bare soils (Rrd) in W, C and S were predicted
from the beginning of April to the end of May at 90-
125th DOY, 120-140th DOY and 110-150th DOY,
respectively (Fig. 4d). During these periods, Rrd related
to the soils formed by Pd and Hs can reach in these
periods about 220 and 250 PJ/d in W, 150 and 190 PJ/d
in C and up to 280 and 330 PJ/d in S. At the turn of
summer and autumn, between 240th DOY and 280th
DOY (from the end of August to the beginning of
October), the radiation amount reflected from bare soils
formed by Pd and Hs can only reach 20-25 PJ/d in W
and 25-30 PJ/d in C. The radiation in this period in S
can be almost imperceptible. In contrast, in summer
around the end of July, the radiation in S can reach 25
and 30 PJ/d for Pd and Hs, respectively.

4 CONCLUDING REMARKS

The results presented in this paper show a clear annual
variation of the amount of shortwave radiation reflected
from bare soils within arable lands in the European
Union (EV).

It was found that the greatest amount of radiation

could be reflected from the soils from the beginning of
April to the end of May. This instantaneous radiation
amount relating to soil shaped by a smoothing harrow
and plough was estimated at 250 and 220 PJ/d,
respectively, for the western part of the European
Union, 190 and 150 PJ/d for the central part and 330
and 280 PJ/d for the southern part.
This study indicates that the quantitative relationship
between the reflectance of soils and their blue-sky
albedo variation requires further research on arable
lands in larger areas to evaluate the impact of bare soil
reflection on a global scale.
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ABSTRACT- The water cycle and energy budget at the Earth surface tightly interact with the climate change
processes. Their monitoring as well as a number of practical applications (agriculture, soil and water quality
assessment, irrigation and water resource management, etc...) require surface temperature measurements to be
available at local scale. Such is the goal of the Indo-French high spatio-temporal TRISHNA mission (Thermal
infraRed Imaging Satellite for High-resolution Natural resource Assessment). The scientific objectives of the
mission are first presented. The definition of the mission specifications is supported by research work aiming at
a better understanding of the surface temperature signal. Recent advances in this field are briefly reviewed, in
particular original results dealing with the impact of directional anisotropy and of atmospheric turbulence on
surface temperature measurements. Progress in modelling of surface fluxes is also discussed. The main
specifications of the mission are then described and the trade-offs made for defining the revisit, the spatial
resolution, the overpass time, the spectral bands and the orbit justified. The baseline of the mission is finally

given.
1 INTRODUCTION

It is now widely recognized that humans interact
strongly and rapidly with the environment at all spatial
and temporal scales through agricultural practices,
landscape organisation, urbanization, emissions of
pollutants and greenhouse gases (IPCC 2014). These
interactions affect the water and carbon cycles and
climate processes. Exchanges of water, CO2 and
energy between the surface and the atmosphere largely
drive a number of processes such as vegetation
growth, soil moisture dynamics, ocean circulation,
biogeochemical cycles, etc... which, in turn, exert a
strong feedback on climate. Many of the processes
involved are primarily governed by water and energy
budgets where the land and sea surface temperatures
(LST and SST) appear as key signatures. As they are
largely uncorrelated to the other observable surface
variables, the surface temperatures provide new
information to describe the processes and to drive
models. The spatial variability of the surface requires
that the complexity of both physical and biological
processes involved must be assessed at small scale
which corresponds to the scale at which decisions
concerning water management or implementation of
policies devoted to the mitigation of climate change
effects are effective. In addition, surface fluxes show
short-time scale variability, which requires frequent
observations. Spatial systems combining both high
spatial resolution and revisit capacities, which do not
exist today, are therefore needed in thermal infrared
(TIR), especially as SENTINEL-2 and
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RESOURCESAT missions now provide high quality
complementary data in the optical domain.

After several advanced studies (MISTIGRI, Lagouarde
et al., 2013; THIRSTY, Crebassol et al., 2014) in
partnership with other agencies, the French CNES and
Indian Space Research Organization (ISRO) are in the
process of defining a new satellite mission, TRISHNA
(for Thermal infraRed Imaging Satellite for High-
resolution Natural resource Assessment) combining a
high spatial resolution (about 50 m) and high revisit
capacities (3 days) in the TIR with global coverage.
The scientific objectives of the mission are first
presented. Research work has been conducted to
consolidate the mission specifications and recent
results are briefly illustrated. The base line of the
mission is finally summarized.

2 SCIENTIFIC OBJECTIVES

Two primary scientific objectives drive the mission, (i)
ecosystem stress and water use and (ii) coastal and
continental waters, with four complementary goals:
(iii) urban, (iv) solid earth/geology, (v) cryosphere and
(vi) atmosphere.

2.1 Ecosystem stress and water use (design driver)

LST provides a key information on actual
evapotranspiration (AET) of vegetation (agricultural
crops as well as natural surfaces), a critical term of the
water cycle. Water used by agriculture represents
about 70% of the water consumption at global scale.
Many countries face drought problems, making water
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stress detection and irrigation optimization techniques
necessary for a better management of water resources.
Important applications are therefore expected in crop
production monitoring for assessment of food security
for example. As COz and water transfer processes in
plants are intimately related, and as water is the vector
of many dissolved nutrients and/or pollutants within
the soil, LST can help to monitor biogeochemical
cycles with applications to water quality and soil
pollution. Improved estimation of AET should
facilitate the closure of watershed water budgets
(infiltration, runoff, river flow, etc.) Other application
can be found in ecology (e.g. mapping of
microclimates, permafrost melting etc.).

2.2 Coastal and inland waters (design driver)

High spatio-temporal resolution SST is expected to
better assess the sub-mesoscale activity in coastal
areas in relation with the variability of ecosystem
productivity. As for continental biosphere, it will
improve the estimation of gas fluxes (CO2, CHy) at the
air-sea interfaces. Applications for coastal zone
monitoring and management deal with water quality,
algae blooms, fish resource, fresh water resurgences
and water discharges (e.g. pollutants, thermal plumes
etc.) among others. Additionally to similar
applications for inland waters, the surface temperature
of lakes has been defined as an essential climate
variable by GCOS (Global Climate Observing
System). The study of sea ice (extent, growth/decay of
ice, feedback with climate) will also benefit from
TRISHNA data.

2.3 Urban

In the context of an increase of urban world population
and of an increase of heat waves as a consequence of
climate change, more and more efforts are devoted to
the characterization of urban heat islands (UHI) and to
their possible mitigation or heat action plans for
comfort of inhabitants (by ’greening’ of the city, urban
planning or control of air conditioning energy
consumption for instance). Improved flux estimations
should also provide better inputs for urban and peri-
urban hydrology studies.

2.4 Solid Earth

TRISHNA should contribute to the monitoring
volcanic activity (prediction of eruptions, lava flow
The detection of thermal anomalies should fi
applications for detection of peat or coal fir:
geothermal exploration or possibly as earthquak
precursors, among others.

2.5 Cryosphere

Apart from polar regions, the monitoring of snow and
ice and the monitoring of glacial high altitude lakes in
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mountainous regions is particularly important as the
snow and glacier melt runoff represents a perennial
source of water for river basins. This is crucial for
India which is partly dependent on Himalayan
cryosphere.

2.6 Atmosphere

Different information on atmosphere (water vapour or
precipitable water content) and clouds (type, height)
can be derived from thermal infrared for improving
surface radiative budgets.

3 RECENT RESEARCH RESULTS

3.1. Impact of atmospheric turbulence on LST

The atmospheric turbulence near the surface generates
LST temporal fluctuations. Using high frequency TIR
imagery over different surfaces (pine stands, corn,
bare soil), it has been shown that their intensity and
frequency depend on the characteristics of the
turbulent flow and that their impact on LST depends
on the spatial resolution of sensors (Lagouarde et al.,
2015). High frequency structures in the surface
boundary layer correspond to typical scales of a few
meters linked to the size of the surface roughness
elements. Fluctuations in LST associated with these
structures are similar in the mechanical domain to the
“waves” or “honamis”, which propagate over wheat
fields under the influence of wind, and are smoothed
out for decametric pixels (50-100 m). Low frequency
structures within the planetary boundary layer,
conversely, have typical scales of several hundred
meters and can trigger significant fluctuations both in
time and in amplitude on pixels of smaller size.

The departure from the mean of a LST time series
illustrates the possible error made on an instantaneous
satellite measurement (Figure 1) at the 50 m
resolution. Provided an assumption of ergodicity of
the LST signal is done, simulations performed at the
laboratory with the Large Eddy Simulation (LES)
model ARPS have confirmed the experimental results
and provide a simulation of the expected errors
depending on the spatial resolution at which a satellite
measurement is performed (Figure 2).

En)
7
36 LA __.f_
I

2 i
3

L
-
T

iy

Ts (°C)

4) 42 44 45 48 50 G52 B4 56 5B OB
Time (minutes from 12:40 UTC)

Figure 1. Time trace of the LST acquired at 10 Hz over a
corn field (Bilos, SW France) at a resolution of 50 m. The
departure of LST from the average (doted line) illustrates the
possible uncertainty on satellite measurements.
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Figure 2. Cumulative uncertainty histograms (in absolute
value) at various resolutions for a maritime pine cover from
Large Eddy Simulations. The measurement error decreases
inversely with spatial resolution (for example, the error is less
than +0.4°C for 98 % of measurements at a resolution of 203
m, but for only 80 % and 60 % of them at resolutions of 56
and 21 m).

3.2 TIR directional anisotropy

LST measurements are prone to significant directional
anisotropy effects. We define anisotropy as the
difference between temperatures observed in oblique
and nadir viewing angles. Experimental work based on
airborne thermal imaging camera measurements
allowed us to illustrate directional effects in the TIR
domain for all azimuth viewing directions and on a
range of zenith viewing angles up to 60° on forest and
urban canopies (Lagouarde et al.,, 2000, 2008).
Significant hotspot effects have been characterized.
They are explained by the fact that when the surface is
viewed exactly in the direction of the Sun, the sensor
only sees sunlit elements, leading to a undesired or
spurious peak in temperature.

Modeling efforts are conducted to simulate directional
anisotropy through various approaches (a review can
be found in Verhoef et al., 2007). Combining 3D
canopy models with radiative and energy transfer
allows to simulate anisotropy for complex surfaces
such as urban areas or row crops (Krayenhoff and
Voogt, 2007). Multilayer radiative and energy transfer
coupled models, such as SCOPE (Van der Tol, 2009)
are more adapted to continuous and homogeneous
canopies (Duffour et al., 2015). But their complexity
makes none of these approaches well suited to an
operational processing of satellite data. For this
purpose attempts are made to develop simpler
parametric models (Vinnikov et al., 2012; Duffour et
al. 2016). All the above-mentioned models can help to
provide guidelines in the phase of mission
specifications definition (Figure 3). Nevertheless, a
better assessment of TIR directional anisotropy is
needed because it still remains a concern for delivering
robust operational products.

63

3.3 Surface fluxes modelling

Important research is conducted on surface flux
models for estimation of evapotranspiration. Different
approaches are developed, either based on surface
energy budget using one- or multi-source models and
referred to as ‘residual methods’, or on scaling AET in
a two-dimension LST-vegetation parameter space
referred to as ‘contextual methods’ (a review can be
found in Lagouarde and Boulet, 2016). The numerous
examples of satellite-derived AET maps given in
literature demonstrate the potential of these methods
(Mallick et al., 2009; Bhattacharya et al., 2010;
Anderson et al., 2012). The EVASPA platform
(EVapotranspiration Assessment from SPAce) brings
several algorithms all together to provide an ensemble
simulation, which allows not only computing AET but
also deriving its uncertainty (Gallego-Elvira et al.,
2013). As LST measurements from space are available
only once a day at satellite overpass and for cloud-free
conditions, monitoring of seasonal water budgets
requires extrapolation (reconstitution of the diurnal
cycle) and interpolation (gap-filling between two
successive images) steps (Delogu et al., 2012). The
evaporative fraction (the ratio between latent heat flux
and available energy) or stress index (the ratio
between latent heat flux and potential evaporation) are
the supports currently used for the temporal

interpolation. Research is currently made to propose
alternative more efficient supports such as surface
meteorological

humidity or
instance.

models outputs for

Figure 3. Qualitative modelled anisotropy for May, 21% using
the Duffour parametric approach. The hot spot peak appears
in white. It depends on location and time: Bordeaux 10:00
and 13:00 solar time (a and b), idem for Bangalore (c and d).
The white dotted line indicates a scan line.
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4. MAIN MISSION SPECIFICATIONS

4.1 Revisit

A daily revisit would be the optimum (i) to minimize
the impact of uncertainty of LST due to atmospheric
turbulence on the accuracy of AET retrievals and (ii)
to cope with the high probability of clouds in many
parts of the world. However, for a single satellite
mission, the revisit is also severely constrained by the
swath angle required for the global coverage of Earth.
Orbit studies show that a reasonable scan angle lower
than 35° can only be obtained with 3 day-revisit.

4.2 Spatial resolution

A high spatial resolution is required to access small
size fields. Several papers in literature argue for a
resolution lower than 100 m. An analysis of the size of
fields in a typical agricultural landscape in the South
West of France led us to recommend a 50 m resolution
at nadir, corresponding to about a hundred meters at
the swath edges. In many places of India, the very
fragmented landscape makes 50m at least mandatory
(Eswar et al., 2013). However, at lower resolution, the
atmospheric turbulence induced uncertainty may
increase significantly (see section 3.1). Technical
constraints are also to be considered, in particular the
size of existing detectors with respect to the swath to
be covered. The final trade-off is a 50m spatial
resolution at nadir.

4.3 Overpass time

The specification of overpass time results from a

trade-off of 4 constraints :

e  Models show that the best accuracy of AET
retrievals is obtained for a LST acquisition
around 1 pm (Delogu et al., 2012).

e The sensitivity of time d(LST)/dt is minimum
(close to 0 °C/hour) when LST reaches its
maximum around solar noon. This makes more
robust the comparison of instantaneous satellite-
retrieved AET against integrated values derived
from surface or meteorological models at time
steps of around half an hour. For comparison,
around 10:00 (solar time), the variation of LST is
about 4 °C/hour.

e  Surface temperature measurements over water
bodies should ideally be performed late enough in
the night, to remove inertia effects of a thin
surface layer heated by solar radiation the
previous day. The night overpass time being
delayed by 12 hours, a daytime 1 pm overpass is
preferred whereas an earlier overpass (~10:00 as
for Landsat) would be less adapted for summer
months for instance.

e  For mid latitudes, the hot spot being situated in a
plane perpendicular to the scan line (provided the
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orbit inclination at Equator adequately chosen,
see figure 3) the impact of TIR directional
anisotropy is limited. This is not true for the inter-
tropical zone.

An overpass around 1 pm is finally recommended.

4.4 Orbit

For the 3 day orbit first selected for TRISHNA (666
km) a point at ground is always observed in the same
viewing geometry. A consequence is that, in inter-
tropical zone, the hot spot may affect some regions
during several months per year. The lack of any robust
model of hot spot makes difficult using LST data and
derived fluxes obtained in such conditions. An
alternative orbit with a 8 day-revisit (761 km) is
considered which sub-cycles 3/2/3 could provide at
least 2 hot spot free data out of 3 in the inter-tropical
zone.

4.5 Sensitivity

Because of the intrinsic atmospheric turbulence
induced uncertainty on LST, a NeDT better than 0.3 K
@ 300 K is useless for continental surfaces. This value
has still to be confirmed for water bodies.

4.6 Spectral bands

In the TIR domain, two bands centered on 10.3 and
11.5 pm (with about 1 pm banwidth) have been
chosen in the atmospheric window above 10 pum to
apply the split-window method. Two additional bands
in the 8-9.4 um window have been selected to perform
the temperature - emissivity separation using the TES
method (after Gillespie et al., 1998): they are centered
at 8.6 and 9.1 pm (~0.35 pm banwidth). A end-to-end
simulator is used to determine the exact shape of TIR
spectral filters.

Moreover, in response to scenarios considering the
possibility of flying a thermal instrument along with
VNIR data provided by other systems (such as
Sentinel, Landsat, etc...), a study (not detailed here)
has been conducted to demonstrate that it is mandatory
to embark both TIR and VNIR/SWIR instruments on
the same platform.

In the VNIR domain, the classical red and near-
infrared vegetation bands at 0.650 and 0.860 pum are
mandatory. A green band (0.555 um) will be used for
coastal applications and snow discrimination (through
NDSI). A blue band at 0.485 um will allow cloud
discrimination. A band at 1.38 um to detect cirrus and
high thin clouds is highly desirable. These last two
bands will be acquired at a degraded resolution (100 or
even 200 m) to limit the downward data volume.
Finally a SWIR band is needed to address aerosol
characterization and related incident shortwave
radiative forcing, snow discrimination and albedo
estimation. 1.650 and 2.130 um are still debated.
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5. CONCLUSION

The summary of the baseline is as follows:

Resolution : 50 m (nadir (<100 edges of swath)

Revisit : 3 observations for any ground location per 8
days period (using the 3 sub-cycles of a 8 day-orbit at
761 km)

Coverage : global

NeDT :0.3K

TIR bands : 8.6 and 9.1 um (with AA ~0.35 um), 10.3
and 11.5 um (with AX ~1.0 pm)

VNIR bands : 0.485, 0.555, 0.650 and 0.860 pm
mandatory, 1.38 pm highly desirable. Possible
degradation of the spatial resolution for blue (0.485)
and cirrus (1.38) bands.

SWIR band : 1.650 or 2.130 pum (being studied)

Two preliminary studies of TIR instrumental concepts
are currently being conducted. They are based on two
different concepts, a classical scanner and a step and
stare instrument.

TRISHNA is currenty in a A phase till end 2019. It
will be followed by a one-year B phase. The launch
could be foreseen at the 2023-2025 horizon.
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ABSTRACT- The thermal radiation of water is polarized and the study of the thermal infrared polarized
characteristics of water is the foundation of the detection of thermal infrared polarized remote sensing, and also
significant theoretical support for water remote sensing interpretation. In this paper, quantitative analysis of the
influence of the detection angle, the azimuth angle, the wave band, the temperature and their interactions in
different polarized conditions on the thermal infrared polarized characteristics of water has been made by the
orthogonal experimental design and spectrum analysis. The results show that, the polarized brightness
temperature of water decreases with the increase of the detection angle and increases with the temperature rises.
There is a parabolic distribution between the polarized brightness temperature and the azimuth angle, and the
peak of the parabola is located near the azimuth angle of 180 °. The polarized brightness temperature in the four
wave bhands is different and presents distinct characteristics in different detection conditions. The interaction
between the temperature and the detection angle has an extremely significant effect on the thermal infrared
polarized characteristic of water. It provides new ideas and methods for remote sensing technology to monitor
the water, having crucial theoretical significance and practical value for making full use of the polarized

information and promoting the development of quantitative remote sensing.

1 INTRODUCTION

Water is one of the most important research objects
in Geosciences (R.-F. Zhao, 2005). In recent years,
many achievements have been made in the study of
the reflection polarization of water (Y.-F. Lv, 2012).
However, the thermal infrared polarized detection of
water still belongs to a new research direction in
remote sensing, which has great potential of
application and development.

Scientists in this field at home and abroad have
carried out some tentative research work and achieved
plenty of considerable results. It is found that water is
the only one in the natural background which has more
obvious thermal radiation polarized characteristic than
others (B.Ben Dor, 1992). Analysis of the influence of
the detection angle and the state of water on the
thermal radiation polarized characteristic of water has
been made (Shaw 2001, 2007) to point out that it can
provide more effective information for the application
of thermal radiation polarized remote sensing with the
observation of a larger detection angle. X.-B. Sun
(2010) has pointed out the great theoretical
significance of research on the thermal infrared
polarized detection of water.

But there are still a lot of problems in the spectrum
database construction and guantitative research on the
influencing factors and their interactions of thermal
radiation polarization of water. The study of polarized
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spectrum is the foundation of the study of thermal
radiation polarized image of water. This study can
accumulate basic scientific data for thermal radiation
polarized remote sensing and provide references for
the design and development of the platform and sensor
of polarized remote sensing.

2 THEORETICAL BASIS AND EXPERIMENTAL
CONDITIONS

2.1 Theoretical basis

Malus first discovered the polarization of light.
Maxwell had established the electromagnetic theory of
light, which is essentially proved to be polarized (Y.-B.
Liao, 2003). Fresnel had found that in the process of
reflection and refraction, the light would produce
polarization (H.-F. Zeng,2012). By the Fresnel formula
of thermal radiation, as the two orthogonal polarized
components of the thermal radiation of the reflection
on the surface of the two kinds of media have
polarization, the degree of absorption of the two is
different according to the principle of energy
conservation. So the absorption will also change the
polarized characteristics of light. Combined with
Kirchhoff's law, good at absorbing is also good at
thermal radiation, so the thermal radiation will also
have polarization characteristics, which is the physical
basis of thermal radiation polarized detection.
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2.2 Experimental Conditions

The platform is BPDF measuring platform (as
shown in Figure 1), which refers to the Bidirectional
Polarized-reflectance  Distribution ~Function. The
measuring instruments are: CE312-1b thermal infrared
radiometer (as shown in Figure 2), and thermal
infrared polarizer (3-18um). The BPDF platform, the
thermal infrared radiometer and the thermal infrared
polarizer are combined into a thermal radiation multi-
angle polarized detector. Others in the temperature
measurement are using three thermometers, they are
the first-class standard thermometer, the second-class
standard thermometer and the weather thermometer
respectively.

Figure 1. BPDF measuring platform

Figure 2. The thermal infrared radiometer

3 INFLUENCING FACTORS ANALYSIS OF
POLARIZATION OF WATER

It is discussed from four aspects of the detection
angle, azimuth angle, wave band and temperature in
the analysis of the factors affecting the thermal
radiation polarization of water.

3.1 The effect of detection angle

It can be seen from Figure 3 that the detection
angle has a certain influence on the polarized
brightness temperature of water. It shows that the
polarized brightness temperature decreases with the
increase of the detection angle, and the larger the
detection angle is, the faster the rate of descent is.
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Figure 3. The polarized brightness temperature of water varies with detection angle

3.2 The effect of azimuth angle

It can be seen from the Figure 4 that the polarized
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brightness temperature of water in the four bands with
azimuth angle is very similar, which is basically
parabolic and the peak of the parabola is near the
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azimuth angle of 180 degrees.
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Figure 4. The polarized brightness temperature of water varies with azimuth angle

3.3 The effect of wave band

It can be seen from the Figure 5 that the polarized

wave bands and combined bands and presents distinct
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Figure 5. The polarized brightness temperature of water varies in different wave bands

3.4 The effect of temperature

It can be seen from the Figure 6 that the polarized
brightness temperature of water is monotonically
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increasing with the temperature rises. The curve is
smooth and the polarized spectrum in the four wave
bands is almost completely coincident.
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Figure 6. The polarized brightness temperature of water varies with temperature

4 INTERACTIONS OF

POLARIZATION OF WATER

ANALYSIS

In order to make study of the effect of interactions,

an orthogonal experiment has been designed in this
paper.

Table 1. The factor-level orthogonal experimental design of water

Factor Temperature Wave band Azimuth angle Detection angle
Level (4) (B) (C) (D)

1 25T 10.3-11.3pm 180° 40°

2 451C 8.2-92um oo 60°

In the orthogonal experiment design of water (as
shown in Table 1), there are four factors and each
factor has two levels. The arrangement of factors and
interactions is shown in the orthogonal experimental
design Lis (2'%) header design of water (as shown in
Table 2).

In the experiment, each factor and interaction is
occupying one column and only the first, the second,
the fourth, and the eighth columns of factor A, B, C,
and D are arranged in the experiment. The interactions
do not schedule any experiments.

Table 2. The orthogonal experimental design Lis (2!°) header design of water

Column

1 2 3 4 5 &6 7 8 9 10 11 12 13 14 15
Number
Factor A B AB C AC BC D AD BD CD

According to the experimental design scheme, the
thermal radiation polarized data of water under
different combination of factors and levels is obtained.
With the polarized brightness temperature as the
evaluation index, we have got the difference between
the factors and the interactions of these factors.

The primary and secondary relationship between
the factors and the interactions is obtained by means of
range analysis. The influence of the factors and the
interactions on the thermal radiation polarized
characteristics of water is determined by variance
analysis and significance test.
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According to N.-Z. Zhao (2008), if the F value of a
factor (or interaction) is greater than 1% of F on the
table, the impact of this factor is extremely significant,
which is recorded as “**”. If it is between 5% and 1%
of F, the impact of this factor is significant, which is
recorded as “*”. If it is between the values of 20%

and 5% of F, it has a certain effect, which is recorded
as “(*)”. If it is less than 20% of F on the table, it can
be considered that the factor does not have much
impact. The results of variance analysis in different
polarization conditions are shown in Table 3 to Table 5.

Table 3. The result of variance analysis in 0° polarization angle

Table 4. The result of variance analysis in 45°

Table 5. The result of variance analysis in 90° polarization angle

The results of variance analysis show that the
influencing factors and interactions on the polarized
characteristics of water are basically the same in the
conditions of 0 °, 45 ° and 90° polarization angle.
Both of the temperature, the detection angle and their

7

interaction have extremely significant impact on the
polarized brightness temperature. But there are still
differences on the interactions of different factors. The
interaction between the detection angle and the
azimuth angle has some influence on the polarized
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brightness temperature in the 0 ° and 90 ° polarization
angle and the interaction between the temperature and
the azimuth angle has some influence on the polarized
brightness temperature in the 0 ° polarized conditions.
Other interactions have no significant impact.

5 CONCLUSION

In this paper, the polarized characteristics of water
have been discussed from the influencing factors and
their interactions. From the study above, we can draw
some general conclusions on this problem.

(1) The polarized brightness temperature of water
decreases with the increase of detection angle, and the
larger the detection angle is, the faster the rate of
descent is.

(2) There is a parabolic distribution between the
polarized brightness temperature and the azimuth
angle, and the peak of the parabola is located near the
azimuth angle of 180 °.

(3) The polarized brightness temperature varies in
the four wave bands and presents distinct
characteristics in different detection conditions.

(4) The polarized brightness temperature increases
monotonically with the temperature rises.

(5) The interactions among these factors do exist
and the influence varies in different polarized
conditions. The interaction between the temperature
and the detection angle has an extremely significant
effect on the thermal infrared polarized characteristics
of water.
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ABSTRACT - Aerial Platforms for Research (PAI) is a unique infrastructure conceived as a comprehensive
measurement capability. It provides support to the requests and needs of the atmospheric, remote sensing and
R&D scientific instrumentation communities. From 2008 to 2011, 12 organizations members of EUFAR worked

together on the COPAL project (COmmunity heavy

PAyload Long endurance instrumented aircraft for

tropospheric research and geosciences), with the objective to provide the scientific community with a high
payload and long endurance aircraft (HPLE). From 2016-2020 the Strategic Plan of the infrastructure identified
as one of its key weaknesses the obsolescence of the C212, core of the ICTS. With the objective of avoid this
obsolescence and guarantee the future of the Spanish airborne research, the Spanish Ministry of Economy,
Industry and Competitiveness has approved the funds required for the acquisition and modification of a new
heavy payload long endurance instrumented aircraft: FENYX.

1 INTRODUCTION

An Aerial Research Platform (PAI, initials in Spanish)
is an aircraft modified for the installation and
operation of scientific instrumentation, able to perform
flight campaigns to carry out scientific experiments
and testing equipment and systems within the Earth's
atmosphere.

INTA  (National Institute for  Aerospace
Technology) has three PAI: two C-212-200 aircraft,
manufactured by CASA, and a motorglider Stemme
S15, modified and adapted for scientific use. These
aircraft provide support for the needs of the
community Flight Test trials, atmospheric research,
data collection from remote sensing/observation of the
Earth and tests for the development and qualification
of new scientific instrumentation, among others.

The Spanish Ministry of Economy has recognized
the PAI of INTA as ICTS (Singular Scientific and
Technological Infrastructure). It is an infrastructure
conceived so as to acquire data from aerial platform
for scientific applications.

The ICTS consists of an air segment, which
includes these three aerial platforms, the onboard
scientific instrumentation and auxiliary systems
necessary to perform data acquisition campaigns. The
ground segment of the ICTS, is composed of the
airfield, home-base of the ICTS, with the aeronautical
infrastructure for the safe operation of the aircraft:
control centre for operations, runway, taxiway,
platforms, hangars, guidance for navigation, etc. Also,
includes, a computer network,  workshops,
warehouses, laboratories, offices, etc. The ground
segment also includes all the necessary
instrumentation to acquire complementary field data of
the data taken from the air, weather station,
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instrumentation calibration and maintenance of
sensors, modules for the analysis and validation of
data, etc.

The data obtained by the instrumentation of PAI
can be on occasion complex and unique due to their
format, variable  measurements, = measurement
technique, etc. The PAI team offers to its users the
necessary support to interpret the generated data and to
extract the useful information.

The complete system is offered to the national and
international scientific community through
partnerships, as a commercial transaction, within the
framework of projects Horizon 2020, etc.

2 THE ORIGIN OF PROJECT FENYX: COPAL

The leading European countries in research with
airborne facilities, each have different types of aerial
research platforms. These countries are integrated
through the EUFAR program (www.eufar.net); this
enables the European scientific community access to
the most suitable aerial platform for their experiment,
regardless of the country to which it belongs.

EUFAR is an Infrastructure Integration Initiative
(13), which began during the 6th framework program,
and currently comprises 24 European institutions that
operate over 30 instrumented aircraft. Spain
participates with the PAI of INTA.

The EUFAR instrumented aircraft fleet is
composed of more than 30 aircraft with operating
speeds from 30 to 200 m/s, payloads of between 80
and 4500 kg and a ceiling of operation that reaches up
to 21 km. All of them with a flight range not
exceeding that of five hours.

Due to the limiting factor of space and weight on
the current European research aircraft fleet, the
integration of new instrumentation is always difficult
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and sometimes even impossible. A new aircraft with a
large capacity and autonomy, allows for the
development of new technologies, as well as the
expansion of the operational capabilities of the current
European research aircraft fleet.

For the construction and commissioning of this
new platform called COPAL (COmmunity heavy-
PAyload Long endurance Instrumented Aircraft for
Tropospheric Research in Environmental and Geo-
Sciences), which aims to provide the scientific
community with an aerial platform for research of
troposphere loads and autonomy, unique in Europe,
able to reach and operate anywhere in the world such
as remote oceanic or continental and polar
regions. This  will provide an unprecedented
opportunity to countries which, do not operate these
types of platforms but have the scientific potential to
develop research papers by making use of the
observations and measurements from the instrumented
aircraft, allowing for the development of new
multidisciplinary international experiments.

The participants in this program were universities
and research centres devoted to the study of the
atmosphere, some aircraft operators, most of them
members of EUFAR.

Spain actively participated in COPAL, being in
charge of the technical part of the project: definition of
the aircraft, study of costs, selection of the operator of
the aircraft and the data operator.

Selection of aircraft: three aircraft were selected
(A-400M, C-130 and the C-295), the option preferred
by the majority of the members of the project was the
C-130, similar to the American aircraft.

After the feasibility study, which took place
between 2007 and 2011, and which was financed
through ESFRI, insufficient funding was found for the
implementation of this new aircraft.

3 FENYX: PROJECT DESCRIPTION

As previously indicated, the European scientific
community does not currently have an aerial platform
of great autonomy and load for testing in the
troposphere, this type of platform vital in flight
campaigns associated with specific research projects
related to climatic, chemical and large scale
meteorological studies.

FENYX aims to develop a new aircraft that will have
capacity to carry more than 6 tons of instrumentation
for a maximum of 8 hours. The choice of the payload,
is associated with the operation of least cost and
greatest benefit to research. In this way, the wide
ranging capabilities of FENY X increase the likelihood
of  obtaining  adequate  scientific  demand
(approximately) that of close to 10 hours of autonomy
with more than 5 tons of maximum payload.
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FENYX will in addition include significant
advantages, such as the existence of a rear doorway,
this greatly facilitates the loading and unloading of
bulky and heavy equipment for operations of STOL
(Short Take Off and Landing) characteristics, which
make it possible to operate in remote areas. On the
other hand, the turboprop, the velocity range of the
aircraft is less than that of a turbo fan, which is of
great benefit when it comes to the collecting of
samples, data or images in flight

Various initiatives at the European level
GMES (Global Monitoring for Environment and
Security) and around the world have launched a plan
to establish a system for observation of the Earth
(GEOSS, Global Earth Observation System of
Systems), agreed to by more than sixty Nations, which
together with the initiatives of the European
Commission, are proof of the importance which these
observation initiatives have acquired.

To install the scientific equipment, the aircraft must
undergo several modifications, such as:

v Capacity to install scientific instrumentation:
a. Pods under the wings
b. Holes on the fuselage

c. Capacity for equipment
installation on the windows

d. LIDAR holes

e. Remote sense holes.
New avionic system
Electrical power for scientific equipment
Tube for air data probe
Cabin configuration for 8 different scientific
experiments
FTI
Pressure taps throughout the cabin, available
for the 8 possible scientific groups

v/ Button camera types.

v"Ice core sampling
With these observation systems, aerial platforms play
a fundamental role as a unique tool in the fields of
remote sensing and atmospheric research for the
realization of in situ measurements as well as a
privileged place of observation of the Earth. This new
platform creates the possibility of investigations in
remote areas of the continent or ocean areas away

from the coast and specifically, in the polar areas
The phases referred to in the project are:

AN NN

ANERN

3.1 Specification.

To launch this new ICTS research platform, the
documentation generated during the COPAL project
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would be used as a reference. As well as data collected
from current users. This lays out the technical
characteristics which a research platform should have,
as well as: an analysis of costs of acquisition,
modification, operation and maintenance, scientific
equipment and the aircraft operator requirements and,
where appropriate operator of data, updating said
study with updated information provided by the
manufacturer and by the scientific community. From
there, proceed to write the specifications of the aircraft
and technical documentation that determines the
characteristics that must be met to fulfil the
requirements of the scientific community

3.2. The modifications that are necessary for the
insertion of the scientific instrumentation.

The aircraft will be a platform for research and for this
purpose must be installed with the scientific
equipment needed for the campaigns. It will be
necessary to design and implement the modifications
to the aircraft (structural, electrical,
communications...) that will allow for the housing of
the instrumentation on board.

3. Certification of modifications.

All aircraft must have a certificate of airworthiness,
which ensures that it is safe for flight. This certificate
should take into account both the aircraft and the
modifications.

4 EXPANSION OF CAPACITY FOR SCIENTIFIC
APPLICATIONS

We plan to base the aircraft in Galicia, in particular at
the CIAR (Rozas Airborne Research Center).

Infrastructure with these capabilities, ready to be
deployed and operated anywhere in the world, will
allow the scientific community, local, national and
international, to make atmospheric studies in situ, of
meteorological variables, pollution, climate change,
remote sensing or observation of the Earth,
microbiology, or development of new instrumentation.
The existence and availability of the PAI infrastructure
allows us to react and respond to certain catastrophic
events that occur with relative frequency, and thus
mitigate their effects on the society and its economy. A
good example was the international reaction to the
eruption in April 2010 of the Icelandic volcano
Eyjafjallajokull. The combined effect of the ash cloud
and winds dragged the particles onto the continent and
resulted in the immediate closure of airspace to
commercial flights, which, in turn, triggered a crisis
for the transportation of people and goods, creating a
situation of chaos without precedent in the recent
history of the continent. Researchers in the field
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grouped together to discuss and agree on coordinated
actions to the dramatic situation created by the ash. In
particular, centres and institutes of the European
Consortium EUFAR - European Facility for Airborne
Research in Environmental and Geo-sciences, reacted
by planning and coordinating flights to collect data
within the critical areas, established protocols of
interpretation, procedures concerning the sharing of
data and the results of its analysis. One of the most
important conclusions was the determination that the
concentration of ash in the atmosphere was 1000 times
lower than that predicted by the British numerical
model. Once established the upper limit of the
concentration of particles was compatible with the safe
operation of the aircraft, it was possible to finally re-
open the air space to commercial operations.

Another example are the flights carried out to integrate
manned and unmanned aircrafts into the same
airspace, within the framework of the SESAR project.

Apart from the value of having the appropriate means
to react to crises associated with disasters natural or
those caused by human activity, a new platform with
features such as those already described, expand the
capacity for data collection, in both quantitative and
qualitative terms, being able to perform the flight
paths most appropriate and cover larger areas, as well
as acquire more parameters for longer and with less
uncertainty, thereby increasing productivity and
efficiency, in scientific terms, of the infrastructure.

In addition, the commissioning of a platform so
complex and costly, will facilitate the creation and
development in its environment of technology based
companies, highly specialized in servicing the needs of
onboard instrumentation, companies which in turn will
benefit from access to the facilities of the Centre
(CIAR) to carry out their tests, test instrumentation or
debug their hardware or software solutions. A
paradigm of this model is the complex of companies
of scientific instrumentation development that
emerged on the outskirts of Boulder, Colo., when the
enclave was chosen as a base of operations for large
U.S atmospheric research aircraft, and today, are the
world reference within the sector.

The new platform will also allow new aeronautical
equipment and prototypes to be tested in flight before
being accepted and implemented in commercial
aircraft.

The policy of the major aircraft manufacturers is not to
use any equipment which has not previously
demonstrated and been qualified for aeronautical use,
thus hampering the entry of new suppliers to the
market, so this aircraft may be used as a test bench for
those entrepreneurs with the aim of developing
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equipment, eliminating barriers, improving
competition and densifying the industrial fabric of the
aeronautical sector.

5 CONCLUSIONS

The Aerial Research Platforms, ICTS-PAI, are
important tools for the realization of a large part of the
projects within certain scientific fields, in particular
those related to environment (both from the aspect of
atmospheric and Earth observation), being an essential
element in many scientific branches for obtaining data
from land or air.

This new aircraft will not only ensure the permanence
in the long term of the ICTS, but will also broaden the
already existing capabilities (autonomy, payload,
range, ceiling...), both at the national level and in
Europe.

With this new aircraft, studies can be performed in any
part of the Earth's atmosphere below its flight ceiling
(25,000 ft), reaching remote areas such as polar or
desert regions, areas unreachable with aircraft
available today.

This increased research capacity will increase our
knowledge of the characteristics and operation of the
atmosphere that surrounds us, and those characteristics
and phenomena that occur on the Earth's surface,
providing data that will be applicable to many fields of
study, many of them in close relationship with the
environment, enabling us to better understand the
current situation, its evolution, what are the threats
that cause degradation, etc.; that will enable us to react
actively to promote its preservation and eventually,
will lead to an improvement in the quality of life of the
society.

Other areas to benefit will be companies from within
the private sector that are undertaking research
projects in collaboration with bodies of research to
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expand knowledge of aircrafts, for example
aerodynamic studies, noise or icing. For example, the
European Commission recently approved a grant for
the PHOBIC2ICE project, which involved Airbus
Defence and Space, INTA and the CSIC, in
collaboration with agencies from other countries, to
study new materials, coatings and treatments that may
reduce the formation of ice on aircraft, thus increasing
their safety. The new aircraft will expand our currently
existing capabilities to carry out these types of
projects.

In addition, the FENYS aircraft would have
capacity to integrate up to 8 different groups of
researchers, which would encourage collaboration
between national or international groups, as well as the
transfer of knowledge. Due to the coexistence on
board of several scientific groups, this encourages a
multidisciplinary research (for example, performing
microbiological studies whilst simultaneously taking
weather or atmosphere physics data) and international
cooperation, and can carry out flights with different
groups from different countries

6 THANKS

It is important to mention the support received by the
PAI from the Spanish Ministry of Economy, Industry
and Competitiveness. Since the integration of PAI into
the list of Spanish ICTS, the Ministry has approved
the funds required for projects, such as project CIAR,
base of the ICTS, or the future acquisition and
modification of a new heavy payload long endurance
instrumented aircraft: FENY X.



Recent Advances in Quantitative Remote Sensing - RAQRS 2017

Analysis of new vegetation index from
GF-5 satellite simulation data

Ziyang Zhang' 2, Bo-Hui Tang® %", Zhao-Liang Li*? 3, Ronglin Tang' 2, and Hua Wu* 2

1 State Key Laboratory of Resources and Environmental Information System, Institute of
Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China.

2 University of Chinese Academy of Sciences, Beijing, 100049, China.

% Key Laboratory of Agri-informatics, Ministry of Agriculture/Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing

100081, China.

* Corresponding to whom should be addressed:

ABSTRACT

tangbh@igsnrr.ac.cn

This paper aims to evaluate the potential of newly developed indices for retrieving leaf water content (LWC)
from GF-5 satellite simulation data. In this study, PROSPECT model was selected to calculate leaf reflectance
from 400nm-2500nm, and the range of the parameters in the model was set based on LOPEX93. 6 band
reflectance was calculated from the GF-5 spectral response function (SRF) and simulated reflectance in
PROSPECT. In order to find LWC sensitive band, the standard deviation was introduced to analyse the degree of
dispersion of the reflectance along with the change of LWC. Simulation analysis shows that bands 5 and 6 are
sensitive bands of leaf water content. To further analyse the influence of different combination of bands, new
indices are extracted from Normalized difference vegetation index (NDVI), difference vegetation index (DVI),
ratio vegetation index (RVI) under 11 band combinations. Polynomial regression was used to establish the
relationship between the vegetation index and the leaf water content. Coefficient of determination (R?) was used
to evaluate the strength of the relationship. In the end, data in LOPEX93 was used to evaluate the accuracy of
the predicted LWC from the index. RMSE was employed to do the accuracy assessment. We find that DVI (4, 5) is
the best index to retrieve leaf water content from GF-5 data. The results show that the retrieval accuracy can be

as high as 0.0007g/cm?,

1 INTRODUCTION

Leaf water content is one of the main controlling
factors of the photo synthesis, respiration and biomass
in plant leaves, Spatial and temporal variability of leaf
water content is critical for monitoring drought risk,
diagnosing plant diseases and insect pests, predicting
wildfires and estimating crop yields (M. E. Bauer,
1986; B.Datt 1999; H. G. Jones 1998; Yanosky, T. M
2005). Traditional measurement of water content of
vegetation, which compares the difference in weight
between fresh and dry leaves to address leaf water
content, can only be carried out manually at field
scale. (F. M. Danson 2004). Remote sensing, on the
other hand, provides a means to monitor water content
of vegetation at large scale with flexible spatial and
temporal resolution (H. Erjr 1989). Leaf water content
has been widely retrieved using spectral data collected
in the visible, near infrared and shortwave infrared
(VNIR and SWIR) Thomas et al. studied the
relationship between water content and spectral
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reflectance of vegetation leaves by obtaining the
reflectance  spectra of different leaf  water
content(Thomas 1971). They found that the
reflectance of vegetation leaves increased with the
decrease of leaf water content. And reflectance at
1450nm and 1930nm are significantly correlated with
leaf water content. Carter found that reflectance at
1450 nm, 1950 nm, and 2500 nm was most sensitive
to leaf water content changes(Carter 1991);Sims found
that the reflectance at the 950 ~ 970 nm and 1150 ~
1260 nm was related strongly to the leaf water
content(Sims 2003). Zhang found that the solar
spectral reflectance indicated a leaf water absorption
zone near 970nm, 1200nm, 1450nm, 1930nm and
2500nm, at which reflectance can be used for the
estimation of leaf water content (Zhang 2006). Based
on this water sensitive wavebands, combined with the
absorption and scattering characteristics of visible
light, near infrared and shortwave infrared reflectance,
the vegetation moisture index model of different types
such as moisture stress index (MSI), water index (WI),
normalized difference water index (NDWI), global
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water moisture index(GWMl)are put forward. Based
on the above research, in order to extract the water
content index of LWC, we should first carry out the
analysis of leaf water content sensitive index to find
out which band is suitable for LWC retrieval.

GF-5 satellite is launched for the main use of Chinese
Ministry of Environmental Protection .The satellite
also carries the most sensors, has the highest spectral
resolution in National Science and Technology Major
Project. The satellite data can be used to monitor
aerosols, terrestrial vegetation, urban heat islands and
other environmental factors. In this paper, we use the
radiative transfer model of vegetation leaves to
simulate reflectance under different LWC, Analyse the
sensitive band of LWC. Based on the classical
vegetation index and the GF-5 SRF, the remote
sensing LWC vegetation index based on GF-5 data is
established.

2.1 Use of model

Leaf reflectance was first simulated by the
PROSPECT model. PROSPECT model is a radiative
transfer model obtained by simulating the upwards and
downwards radiation flux of the leaf. With a few
parameters as input, it is able to simulate the
reflectance and transmittance of the blade from 0.4pum
to 2.5um. The parameters such as chlorophyll content,
carotene content, leaf structure parameters, brown
pigment content and dry matter content were kept
constant. The leaf water content was changed in steps
to simulate the change of leaf reflectance under
different leaf water content.

2.2 Parameter range

In the data simulation process, the first step is to set
the value of the parameters. In order to make the value
of the parameters closer to the true leaf content of the
biochemical substance, the parameter values in the
PROSPECT model in this paper are derived from the
average measured values for the 1993 LOPEX93
experiment. In which, different types of leafy plant
species were collected at two different times.The
values of each input parameters were determined
according to the biochemical content of 70 leaves in
the experiment. In order to carry out the sensitive band
analysis of LWC, the most frequent value was selected
as the fixed value of other non-essential parameters. It
is noteworthy that, for example, the dry matter content
of different leaves is very different, the most frequent
value of this parameter is around 0.004 g / cm?, but the
maximum value reaches 0.014 g / cm?, so the most
frequent value is chosen as the representation to
simulate the reflectance. (Table 1).
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Table 1. The values of parameters according to
LOPEX 93’

leaf structure parameter 15
chlorophyll a+b content 40 p,g/cmz
carotenoids content 13 ng/sz
brown pigments 0

concentration

0.011-0.05g/cm’

Leaf water content 2
(0.001g/cm™ as step)

dry matter content 0.004 g/cm2

At the same time, we used the reflectance measured in
the LOPEX93 experiment as the validation dataset.
The simulation results and accuracy of the calibration
group were evaluated by 330 sets of measurement data
in this experiment. For the calibration group, a
standard deviation of the reflectance of the sample
with 40 different water contents was used to find the
band suitable for retrieval. The simulated
hyperspectral  reflectivity and calculated band
reflectance under 40 different LWC are also displayed
in Figure 1.
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Figure 1. The simulated hyperspectral reflectivity and

calculated wide band reflectance under 40 different

LWC.

2.4 GF-5 band reflectance

In order to obtain the wide band reflectance of the
satellite based sensor, we used the spectral response
function of GF-5 to convolve the simulated
hyperspectral reflectance. The GF-5 satellite sensor
has a visible short-wave infrared region with bandl
(400 to 520 nm), band 2 (520 to 600 nm), band 3 (620
to 680 nm), band 4 (760 to 860 nm), band 5 (1550 nm
to 1750 nm), band 6 (2080 ~ 2350nm). The spectral
response function of band 4, for example, can be seen
in Figure 2.
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Figure 2. 4™ band spectral response function of the
sensor on GF-5 satellite

2.5 Data analysis

In order to find a sensitive band, the standard deviation
was introduced to analyse the degree of dispersion of
the reflectance along with the change of LWC. The
greater the degree of dispersion, the more sensitive it
is. Band reflectance in both sensitive bands and
insensitive bands were used as the input of the new
vegetation index to calculate the vegetation index.

In the field of remote sensing applications, the
vegetation index has been widely used to qualitatively
and quantitatively assess vegetation cover and its
growth vigor. Because the spectral index can
effectively reduce the scattering effect of vegetation
leaves on single spectral band reflectivity. Therefore,
the vegetation LWC index is established by using the
combination  of absorption and  scattering
characteristics of different leaf segments. In this paper,
we use the three vegetation index types, namely, the
ratio vegetation index model, the difference vegetation
index model and the normalized difference vegetation
index model. According to the results of band
sensitivity analysis, a total of 11 combinations of the
following can be obtained. (Table 2)

Polynomial regression was used to establish the
relationship between the vegetation index and the leaf
water content. Coefficient of determination (R?) was
used to evaluate the strength of the relationship. In the
end, data in LOPEX93 was used to evaluate the
accuracy of the predicted LWC from the index. RMSE
was employed to do the accuracy assessment

3 RESULT

The standard deviation of the simulated reflectivity
does not change much in band 1 to band 4. Indicating
that in these bands, changes in water content cannot
cause a large change in reflectivity, so these bands are

100 leaf water content insensitive bands. In band 5 and
csaband 6, however, the standard deviation of the
oso reflectance is large, indicating that the two bands are
.70 the sensitive band.

:::Table 2. Three vegetation index under different band

w40 COMbINations

o2 BAND NDVI DVI RVI

o1 145 NDVi@ 5y DV, 5 RVl 5

245 NDVle 5y  DVie. 5 RVie. 5
3+5 NDVI@E 55 DV, 5 RVIg, 5
445 NDVl@ 55 DVl 5 RVl@, s
1+6 NDVI@ 6y DVlq, g RVIw 6
2+6 NDVl@ 6y DVl ) RV, 6
3+6 NDVIi@E 6y DV, ) RVIg, 6
4+6 NDVla, 6y DVlg, 6 RVIa, 6)
5+6 NDVI@E 6) DV, 6 RVIe, 6)

Standard Dov

Wavelangth |

Figure 3. The standard deviation curve of reflectance
in different band

Three classic vegetation index models NDVI,
DVI, RVI, were introduced to calculate the
corresponding new vegetation index. As mentioned
above, band 1 to band 4 are not sensitive to leaf water
content changes, so here band 1 to band 4 are
combined with band 5 and band 6, respectively, there
are 11 ways to combine the wide band reflectance in
total. According to 11 band combinations, the
correlation coefficients between simulated water
content and simulated wide-band reflectance are
shown in the following table. At the same time,
according to the LOPEX93 experiment, the regression
results were verified using the water content and
spectral measurements of 330 samples in the
experiment. RMSEs are also shown in the table below
and in Figure 4-6. The result shows that NDVI (4, 5),
DVI (2, 6), RVI (4, 5) are the best to retrieve leaf
water content.
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Table 3. R? between vegetation index and leaf water

content, RMSE between real LWC and predicted LWC a1 S
in LOPEX93 regressed by index. 47 /,/'
INDEX NDVI RVI DVI < o0s] P '
BAND R2 RMSE R2 RMSE R2 RMSE %‘\, /,//
1+5 0.758 | 0.248 | 0.758 1.185 | 0.992 | 0.639 S 7 d
245 0.999 | 0.021 | 0.997 | 0.154 | 0.993 0.06 > ..//’/
3+5 0.981 | 0.104 | 0981 | 0.542 | 0.992 | 0.275 /
4+5 | 0.998 | 0.012 | 0.993 | 0.089 | 0.993 | 0.007 : RMSE=0.046g/om’”
1+6 0.935 | 0.109 | 0.932 | 0.358 | 0.974 | 0.191
2+6 0.999 | 0.014 | 0989 | 0.046 | 0.976 | 0.021 : [;{ 0.01 0.02 003 004 005 006
3+6 0.994 | 0.042 | 0.988 | 0.142 | 0.975 | 0.076 Predicted LWC (gfch)

4+6 099 | 0013 | 0.975 | 0.066 | 0.974 | 0.006 Figure 6. RMSE of RVI at the band combination of 2

5+6 0.996 | 0.012 | 0.989 | 0.086 | 0.368 | 0.011 and6.

To analyse the sensitive of the spectral
reflectance to the change of LWC, change of standard
deviation of the reflectance with LWC respect to
wavelength has been calculated. The results show that

= = the spectral reflectance at band 5 and band 6 are

0 oo ouz om - An sensitive to the variation of LWC
Predicted LWC (g/cm?) '

Figure 4. RMSE of DVI at the band combination of 4 Three vegetation indices, normalized difference
and 5. vegetation index (NDV1), ratio vegetation index (RVI)

and difference vegetation index (DV1), have been used
/"" to retrieve the LWC. Comparisons of the retrieval
0.045 1 . LWC showed that the DVI combined by band 4 and
e band 5 is the best with RMSE of 0.007 g/cm?.

0.05¢ 4 CONCLUSION

00 - /// In this paper, new vegetation index using the
o | s combination of 11 band reflectance simulated from
Ng 0.035 | / GF-5 sensor has been proposed to retrieve LWC. The
D o003} o vegetation leaf model PROSPECT model have been
3] P P used to simulate the hyperspectral reflectance. LOPEX
% o 93 dataset was used for accuracy validation.
.
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Abstract Land surface temperature and emissivity separation (TES) is a key problem in thermal infrared (TIR) remote
sensing. Many TES algorithms have been proposed and have been validated on natural surface materials. However,
when applied on low emissivity materials, the retrieval accuracy still needs to be improved. Aiming at the problem of
stronger coupling between land surface and atmosphere in the retrieval of low emissivity materials, a method for
quickly estimating relative accurate initial LST are proposed on the basis of atmospheric absorption. And through
exploring the offset characteristic of atmospheric downward radiance, a temperature/emissivity retrieval algorithm
based on atmospheric offset characteristic are proposed from hyperspectral thermal infrared data. The results show
that the accuracy of first guess temperature estimated with new method is well improved compared with the
traditional method for low emissivity materials. By using the estimated first guess temperature, a comparison
between the proposed TES algorithm and iterative spectrally smooth temperature and emissivity separation (ISSTES)
is further carried out in this paper. The accuracy of proposed TES algorithm is about 0.4K better than ISSTES for low
emissivity materials, which means the proposed algorithm can weaken the influence of the error of atmospheric
downward radiance. In addition, the proposed algorithm just involves several groups of channels, which make the
computation efficiency be higher than ISSTES. In conclusion, the proposed algorithm can provide an accurate and
fast TES for low emissivity materials.

Index Terms--Land surface temperature and emissivity, hyperspectral thermal infrared, low emissivity

development and erosion, bedrock mapping,

1. INTRODUCTION resource exploration and so on(Gillespie, A,1998,
Land surface temperature (LST) and Land surface Li, Z. L,2013, Vaughan, R. G.,2003). The most
emissivity (LSE) are important physical efficient method to investigate the LST and LSE
parameters for characterization of surface state. over a local/global region is utilizing the remotely
LST is vital in the physical processes of surface sensed hyperspectral thermal infrared (TIR) data.
energy and water balance at local through global While the retrieval of LST and LSE is carried out
scales(Li, Z. L,2013, Friedl, M. A,2002, Anderson, from the at-surface radiance, since N observed
M. C.,2008, Hashimoto, H.,2008) and also widely equations need to calculate N emissivity with one
used in a variety of fields include temperature, the core issue is how to solve the ill-

evaporation(Salvucci, G. D,1997, Kalma, J,2008), posed  problem in  temperature-emissivity
urban heat islandIclimate modelization(Gillespie, separation (TES). Up to now, many TES methods
A,1998). LSE is important for studies of soil have been proposed for solving the problem, such
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as iterative spectrally smooth temperature and
emissivity separation (ISSTES)(C. C. Borel,1998),
the automatic retrieval of temperature and
emissivity using spectral smoothness method
(ARTEMISS)(C. C. Borel,1998), downward
radiance residual index (DRRI) method(Xinghong
Wang,2008), stepwise refining algorithm of
temperature and emissivity separation(Cheng
Jie,2008), linear spectral emissivity constraint
temperature and emissivity separation(Ning
Wang,2011). For natural surface materials (such as
water, vegetation and soil) which have high
emissivity in the thermal infrared band, various
kinds of uncertainty have small impact on retrieval
results 81, The existing hyperspectral thermal
infrared surface temperature/emissivity retrieval
algorithm has achieved good accuracy(Wan,
Z,1997, Sobrino, J. A,2001).

However, except for natural surface
materials, ground targets also includes metal
materials (such as steel), artificial materials
(aluminum foil, ceramic tiles, glass, etc.), low
emissivity coatings, which are made up of
relatively low emissivity materials, those objects
are closely linked with human activities and have a
wide range of applications. Some research also
pointed out that retrieval algorithm could not
recover LST with the nominal accuracy, especially
for the surfaces with lower emissivity(Boonmee,
M,2007).The possible reasons are as follows: (1)
For low emissivity materials, because of the land-
atmosphere coupling problem, the accuracy of
retrieval results could reduce with the influence of
the instrument noise and the uncertainties in
atmospheric downward radiance. From Qian yg’
work(Qian, Y.,2016), the uncertainty in
atmospheric downward radiance dominate the
large retrieval error of low emissivity materials.
(2) The existed ways of estimation of initial
temperature like brightness temperature method
are not suitable for low-emissivity materials. In
term of a nonlinear problem, an initial temperature
has a large difference with actual LST will lead to
efficiency decrease or failure to search the result.
In this paper, by exploring the absorption
characteristics of atmospheric downward radiance,
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an algorithm is proposed from hyperspectral
thermal infrared data to retrieve the temperature
and emissivity for low emissivity materials. In this
paper, the low emissivity is defined as the value of
emissivity is low on whole spectra, since when
high value band exists, the band can be used for
retrieving a high accuracy result.

2. METHODOLOGY

2.1 Radiative transfer equation

In TIR domain (8~14 1 m), ignoring the scattering
effect of atmosphere and assuming a local
thermodynamic equilibrium, the at-sensor radiance
measured by an instrument can be described by

atmospheric radiative transfer equation
(RTE)( zhao-Liang Li,1999).
L(4) = L, (A)z(1) + L () O

Ly (1) =(A)B(4,T) +(1-£(A)L, (1)
Where L(4) and L (4) is the radiance

measured at sensor and at ground in wavelength
A, &(4) isthe land surface emissivity, B(4,T) is
the Planck’s function at land surface temperature
T, L(4) and L (4) is upward and downward

atmospheric radiance.
According to the radiative transfer equation,
the land surface emissivity can be estimated as:

CLA-L Q)
W=Ban-Lw @

2.2 A temperature and emissivity retrieval algorithm
based on atmospheric absorption feature

Experiments found the atmospheric downward
radiance spectrum’s integral offset phenomenon
when water vapor profile and temperature profile
have estimation error (Figure 1), on the basis of
the assumption that downward radiance’s offset at
atmospheric absorption peak/valley channels is
approximately invariant, this paper attempts to
weaken the influence of uncertainty of
atmospheric downward radiance through the
adjacent atmospheric absorption peak/valley
channel’s difference, then achieve an rather
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accurate initial temperature, finally the LST and
LSE will be extracted. The specific process is as
follows.

According to the equation (1), calculate the
difference of at-ground radiance at atmospheric
absorption peak/valley channels:
Lg(j’peak)7Lg(j‘valley):[g(ﬂ'peak)B(A‘peak T)-¢ Z‘valley)B(ﬂ'valley Tl

+H[(L = e (Apea )Ly (o) = (1= € ( Ay DLy (aiey )]

©)

Where L, (4,,) and L, (4,,) are the at-
ground radiance at atmospheric absorption
peak/valley channel, L, (4,,) and L, (4,,,) are

the atmospheric downward radiance, &(4,,) and
&(Ayaey) are the emissivity.

Additional constraints are required for
extracting the LST and LSE from equation (2). For
hyperspectral thermal infrared data, assuming that
surface emissivity in adjacent channels are
approximately equal, and the self-radiance in the
adjacent channels due to the small wavelength
variation are also assumed approximately equal.

g(/lpeak) ~ g(/lvalley) (4)
g(lpeak) ' B(/Ipeak ’T) ~ g(ﬂ'valley) ' B(j’valley ’T)
By the above assumptions, according to the

equation (2), the average emissivity between
peak/valley channels can be calculated as:

8(/1) —1_ Lg (ﬂ’peak) - Lg (ﬂ\/alley)
Li (j’peak ) - LL (ﬂ'\/alley)
The initial temperature can be estimated as:

=B* (Avatiey & ()“valley )

Based on the acquired initial temperature, the
process of the retrieval of LST and LSE is as
follows:

According to the radiative transfer equation,
the land surface emissivity can be estimated as:

L,(A)-L, (1)
) = o ©)
B(4, To) — L, (4)
An approach is that the emissivity at adjacent
channels are approximately invariant, the

Q)

lnmal

&(4,T,

L (ﬂ“valley) [l g(ﬂ“valley)]l— (A\/alley ) (7)
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equivalent emissivity at two adjacent channels can
be presented as:

;i,opt = I:gi (/1peak 'Topt) +& (ﬂﬂ/alley 'Tupt ):|/2 (9)
An index is defined to find the best-fitting
temperature T,, by computing the difference of

the measured minus the simulated radiance at two
adjacent channels:

Rdlﬁ [ (peak) Lq (j\/a\\ey)}_{l-gw(/{peak’Topt’g‘UPI)
L (ﬂ,T 6‘\‘opt):El‘op(B(/i,Tgm)-!'(l—é'i,opt)l.l(/i)

Yi it ot

(/Lvalley » opt? g‘ OP‘) '

(10)
Where L, (Z,) and Ly (Aue) are the

measured at-ground radiance at atmospheric

absorption peak/valley channels,
gI it (ﬂ‘peak » Topt? 5I,0pt) and Lgi,fit (ﬂVaIIey ’Topt ' Ei,opt)
are the simulated at-ground radiance at

atmospheric  absorption peak/valley channels,

gi,opt are the equivalent emissivity at adjacent
channels.
The above formula can be expanded as:

R <[, ()L, (o)

[ 102 (B U o) = Bl Ty ) + (=1L, )~ L, )]

(11)

Obviously, when atmospheric downward

radiance has error (Figure 1), by separating the

offset error from correct downward radiance,
above equation can be written as:

Rt =[1, ()L, (ha)]-
[gi,um( (4 peck ! upn) Uwalley’ Opl)) (PELOPI)(LV(}’WHK)_Li(lva”ey))}

(1= 610)] AL, () = AL, ()]
(12)
Where AL (4,) and AL (4,,) are the
downward radiance’s offset atmospheric
absorption peak/valley channels.
Since the downward radiance’s offset is
approximately the same at adjacent channels, i.e.:

AL¢ (ﬂ’peak) ~ AL¢ (ﬂ“\/alley) (13)

at
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Obviously, the equation (11) is equivalent to
equation (12), which means this method can
weaken the error of atmospheric downward
radiance, thereby increasing the accuracy of the
retrieval results. The criterion (cost function) is
defined as the square root of the sum of square of
index at several adjacent channel groups.

N
O-(Topt 1 gopt) = min W
i=1
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Figure 1. The atmospheric downward radiances

Table 1 The selected channel groups for retrieval

j'valley (cmil) ﬁ'peak (Cmil) # j'valley (Cmil) ﬂ“peak (Cm—l)

#

1 1134.06 1135.99 9 1209.28 1211.21
2 1139.85 1135.99 10 1215.06 1211.21
3 1162.99 1164.92 11 1216.99 1218.92
4 1166.85 1164.92 12 1222.78 1224.71
5 1172.63 1174.56 13 1226.64 1224.71
6 1176.49 1174.56 14 1234.35 1236.28
7 1195.78 1197.71 15 1242.07 1243.99
8 1199.64 1197.71 16 1247.85 1243.99

3. DATA

In this paper, to simulate hyperspectral thermal
infrared data corresponding to various atmospheric
situations and land surface types. Several
atmospheric profiles are chosen from TIGR
(Thermodynamic  Initial  Guess  Retrieval)
constructed by the Laboratoire de Meteorologie
Dynamique (LMD) (Chedin, A,1985, Achard,
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V.1991, Chevallier, F,1998). The TIGR database
contains 2311 typical atmospheric profiles which
define a 40-layer atmosphere and contain the
following data for each layer: altitude, pressure,
temperature, water vapor density. The profiles
with relative humidity at any layer greater than
90% or at two consecutive layers greater than 85%
were considered to be cloudy (Galve J M, 2008).
Firstly, we select 1413 cloudless atmospheric
profiles; secondly, taking into account the
principle of uniform distribution of water vapor,
195 atmospheric profiles are chosen from
cloudless atmospheric profiles for simulation. The
bottom temperature of the selected profiles varies
from 250K t