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Preface 

The Fifth International Symposium on Recent Advances in Quantitative Remote Sensing, 
was held in Torrent, Spain from 18 to 22 September, 2017. It was sponsored and organized 
by the Global Change Unit (GCU) from the Image Processing Laboratory (IPL), University 
of Valencia (UVEG), Spain. Other sponsors include: 

- City Council of Torrent (Spain); 
- L’Auditori Torrent (Spain); 
- European Space Agency (ESA); 
- National Aeronautics and Space Administration (NASA); 
- Airbus Defence & Space; 
- EOLAB; 

This Symposium addressed the scientific advances in quantitative remote sensing in 
connection with real applications. Its main goal was to assess the state of the art of both 
theory and applications in the analysis of remote sensing data, as well as to provide a forum 
for researcher in this subject area to exchange views and report their latest results. In this 
book 89 of the 262 contributions presented in both plenary and poster sessions are arranged 
according to the scientific topics selected. The papers are ranked in the same order as the 
final programme.  

To conclude, I would particularly like to thank the participants who have contributed to 
constructive discussions and the members of the International Scientific Committee, who 
greatly contributed to select the papers presented at the Symposium providing an attractive 
scientific programme. The success is also due to the efforts made by the Organizing 
Committee. Many thanks to all of them.  

José A. Sobrino 
Symposium Chairperson 

Global Change Unit, 
Universitat de València 

Valencia, 2018 
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ABSTRACT- The aim of this work is to assess the utility of combining Sentinel-2A and Landsat (Landsat-7 
ETM+ and Landsat-8 OLI) LAI time series for rice crop monitoring. LAI maps were produced in three countries 
(Italy, Spain and Greece) using state-of-the-art machine learning algorithms trained on simulated radiative 
transfer modelling data specifically generated to characterize rice features. Retrievals were focused on rice 
areas using a rice mask obtained with Sentinel-1A data. The availability of both Landsat-7/8 and Sentinel2-A 
imagery in 2016 allowed to generate a very dense temporal data set of high resolution LAI maps, useful to 
monitor crop development at field level. The intercomparison between Sentinel-2A and Landsat-8 estimates 
showed high spatial consistency between estimates over the three areas. Direct validation was performed with in 
situ LAI measurements acquired in coordinated field campaigns, revealing a good accuracy and correlation in 
all cases. These results suggest that a very frequent time series of LAI at high resolution can be obtained from a 
multi-sensor approach to better outline rice-growing behavior. The use of combined curves of LAI can be 
exploited to identify agronomical dynamics (management and crop phenology) for the retrieval of phenological 
stages, and monitoring vegetation production or deriving multitemporal training sets for mapping purposes. In 
particular it is also illustrated as the anomalous drops in LAI time series can help identifying problems/damages 
at field level due to the effects of plant diseases or other factors. 

1  INTRODUCTION 

Information of the actual development crop 
status is a fundamental element in crop monitoring and 
modelling studies. Crop monitoring is necessary to 
identify the onset of stress conditions, which require 
agro-practises in order to mitigate their impact on crop 
yield. In this framework, leaf area Index (LAI) 
estimation at high spatial resolution is key information 
for assessing vegetation status.  

LAI can be estimated from remote sensing 
using statistical, physical, or hybrid methods (Camps-
Valls et al., 2011). Pure statistical methods extract 
patterns and trends from a data set, and try to 
understand the underlying physical laws ruling the 
relationships between them. Physically-based methods 
are based on the physical knowledge describing the 
interactions between incoming radiation and 
vegetation though radiative transfer models (RTMs).

  1
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For their part, hybrid methods couple statistical non-
parametric with physically-based methods. Hybrid 
methods rely on inverting a database generated by a 
radiative transfer model exploiting the generality of 
RTMs and the flexibility and computational efficiency 
of non-parametric non-linear regression methods. The 
advantage of hybrid approaches is that a broad range 
of land cover situations can be simulated (e.g., up to 
hundred thousands), leading to a data set much bigger 
than what can be collected during a field campaign 
and the RTM can be inverted  in a flexible and 
accurate manner with machine learning methods. 

In relation with biomass and crop yield 
estimation, LAI estimates can be assimilated in crop 
models (Confalonieri et al., 2009) by means of forcing 
and/or recalibration techniques (Dorigo et al., 2007; 
Busetto et al., 2017). Derive and assimilate accurate 
LAI estimates improves the accuracy of grain yield 
estimates (Curnel et al., 2011) and an operational 
application of this workflow for rice was successfully 
demonstrated in Asia in the framework of the RIICE 
(Remote sensing-based Information and Insurance for 
Crops in Emerging economies) project 
(http://www.riice.org/) where rice yield is estimated 
from the Oryza2000 model by assimilating LAI maps 
derived from synthetic aperture radar (SAR) images 
(Holecz et al., 2013). Similarly, LAI has been used 
assessment in the framework of the ERMES (an Earth 
obseRvation Model based RicE information Service) 
project (http://www.ermes-fp7space.eu/) with the aim 
of  developing a prototype of Copernicus down-stream 
services assimilating Earth observation (EO) and in 
situ data on crop modeling dedicated to the rice sector. 

This work provides a general overview of the 
Landsat-7/8 and Sentinel-2A LAI estimates derived 
through a hybrid retrieval methodology and used for 
crop assessment from multisource LAI time series in 
the framework of the ERMES. 

2  MATERIALS 

2.1 Study areas 

In this work, we used the ERMES study areas which 
are located in Italy, Spain and Greece. The Italian 
study area belongs to the Lomellina rice district 
(south-western Lombardy region). The Spanish study 
area is located in the rice district of Valencia (east of 
Spain), and the Greek study area is located in the rice 
district of Thessaloniki, which is the main rice 
cultivation area for Greece. Within each study area, 
rice is a common crop with a long tradition and 
economic value. 
2.2 Field data 

In the framework of the local ERMES field 
activities, LAI ground measurements were conducted 

over the study areas. In Spain, Italy and Greece, 32, 16 
and 10 ESUs (elementary sampling units) were 
selected. The temporal frequency of the campaigns 
was approximately 7–10 days starting from the very 
beginning of rice emergence (early June) up to the 
maximum green rice LAI development (mid-August).
A range of 18–24 measurements over every ESU was 
taken following the guidelines and recommendations 
of the Validation of Land European Remote sensing 
Instruments (VALERI) protocol. LAI measurements 
were acquired using a dedicated smartphone app 
(PocketLAI) which has shown similar estimates 
obtained using plant canopy analyzers (e.g., LAI-
2000) and DHP (digital hemispherical photography) 
over rice fields (Campos-Taberner et al., 2016a) 
2.3 Remote sensing data 

In this study Landsat-8 Operational Land Imager 
(OLI) and Landsat-7 Enhanced Thematic Mapper 
(ETM+) surface reflectance data at 30-m spatial 
resolution were used during the 2016 rice season over 
the three study areas. Images were available every 16 
days in Italy and Greece, and every seven and nine 
days in Spain. In adition, Sentinel-2A Level 1C data 
(top-of-atmosphere reflectances) were used in the 
same period over the three study areas providing 
information every 10 days in 13 bands  in the visible, 
near infra-red and short wave infra-red spectrum at a 
10, 20 and 60 m spatial resolution depending on the 
band. 

The remote sensing data used in this study was 
completed by Sentinel-1A data which were used 
during the 2016 European rice season over the 
aforementioned rice areas. Both Sentinel-1A and 
Sentinel-2A were downloaded from the ESA Sentinels 
Scientific Data Hub, while Landsat-7/8 images were 
downloaded through the United States Geological 
Survey (USGS) Earth Resources Observation and 
Science (EROS) Center Science Processing 
Architecture (ESPA). 

3  RETRIEVAL METHODOLOGY 

In this work we derive LAI from optical remote 
sensing surface reflectance (Landsat-7/8 and Sentinel-
2A) by inverting the PROSAIL radiative transfer 
model (Jacquemoud et al., 2009) (see Figure 2). 
PROSAIL simulates surface reflectance of the 
vegetated surface of interest (in our case, rice crops in 
the tropics) in the range of 400 to 2500 nm. For this 
purpose, PROSAIL uses a set of bio-chemical and 
structural parameters at canopy and leaf levels. 
PROSAIL was run 2000 times following a specific 
parameterization for rice (Campos-Taberner et al., 
2016b;2017) in order to obtain a database composed 
of surface reflectance corresponding to each optical 
remote sensing product and the associated LAI values.
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Figure 1. Hybrid retrieval methodology including some examples of the estimated decametric LAI maps. 

The simulated database was then used for training a 
Gaussian process regression (GPR) (Rasmussen and 
Williams, 2006) model which has proven to be an 
efficient and robust machine learning non-linear 
regression tool for bio-physical parameter retrieval 
(Campos-Taberner, et al., 2015). In addition, Rice 
maps derived from Sentinel-1A data were derived 
following a multi-temporal rule-based methodology 
(Nelson et al., 2014) and subsequently used as 
masking layer for LAI retrieval. 

3 RESULTS 

Decametric LAI retrievals were obtained over 
the three rice areas during the 2016 rice season 
applying the retrieval methodology to both 
multitemporal Landsat-7/8 and Sentinel-2A imagery. 
Six Sentinel-2A surface reflectance spectral bands 
were used during the retrieval process: blue, green, 
red, near infrared and the two short wave infrared 
channels. These channels were selected to enhance the 
consistency with Landsat-7/8 data (Campos-Taberner 
et al., 2017) allowing thus the creation of a robust 
multi-sensor retrieval. The obtained estimates were 
validated with in situ LAI measurements collected in 
the three countries using the PocketLAI. The root 
mean squared error (RMSE), mean error (ME), mean 
absolute error (MAE) and coefficient of determination 
(R2) were computed in order to assess the accuracy of 

the retrievals, bias and goodness-of-fit. Good accuracy 
and high correlation were found in all cases, revealing 
an overall RMSE of 0.61 and 0.69 as well as R2=0.90 
and R2=0.95 in the case of Landsat-7/8 and Sentinel-
2A LAI retrievals, respectively (see Figure 2 and 
Figure 3).  
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 Figure 2. Scatter plots of Landsat-7/8 estimated LAI 
values versus in situ LAI measurements during the 
2016 rice season. 
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Figure 3. Scatter plots of Sentinel-2A estimated LAI 
values versus in situ LAI measurements during the 
2016 rice season. 

The use of combined curves of LAI can be 
exploited to identify agronomical dynamics 
(management and crop phenology) for the retrieval of 
phenological stages, and monitoring vegetation 
production or deriving multitemporal training sets for 
mapping purposes. In particular, anomalous drops in 
LAI time series can help identifying 
problems/damages at field level due to the effects of 
plant diseases or other factors. For example, Figure 4 
shows the temporal evolution of two Sentinel-2A rice 
pixels (healthy and damaged). It can be seen the 
anomalous temporal LAI evolution over the same field 
which is related with rice crop disease. 

 

 
Figure 4. Sentinel-2 LAI evolution within a rice field. 
Blue line corresponds to a helathy rice pixel whereas 
the red one corresponds to a damaged pixel.  
4 CONCLUSIONS  

This study presented multi-source LAI retrieval from 
decametric Landsat-7/8 and Sentinel-2A data over 

three European rice areas in the 2016 rice season. The 
approach relies on the inversion of the PROSAIL 
RTM with Gaussian process regression on rice fields 
detected by using Sentinel-1A data. The methodology 
allows us to retrieve a dense temporal dataset of LAI 
maps which is fundamental to perform expert crop 
monitoring and also to improve crop model 
estimations exploiting assimilation techniques. This 
multi-sensor approach is suitable to fill gaps in the 
time series mainly due to the presence of clouds, 
obtaining thus a more reliable time series for precision 
agriculture applications and rice monitoring. 
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ABSTRACT: Sea surface temperature (SST) is a key geophysical parameter at the ocean–atmosphere boundary. 
One commonly used method to estimate SST based on remote sensing measurements is the split-window 
algorithm. However, some assumptions and approximations, which do not appear to reflect the reality, were 
used to derive the linear split-window algorithm. Reviewing the publications in the recent years on the SST 
retrieval, the algorithm of SST determination is usually developed by recalculating the algorithm coefficients for 
the new sensors. Little attention has been paid on exploring the theoretical improvement of split-window 
algorithm. The goal of this paper is to investigate the assumptions and approximations used in the derivation of 
split-window technique and develop the SST retrieval algorithm for the Gaofen-5 (GF-5) satellite, which is 
scheduled to be launched in the second half of 2017. Two revised equations of these assumptions and 
approximations were created. Combining the revised equations, a nonlinear SW algorithm was obtained that 
could be simplified to the quadratic split-window equation. Based on the simulated data, the developed 
algorithm gives a SST retrieval accuracy of RMSE = 0.34 K. The main difference of this study from the previous 
research is that this paper focuses more on building our theoretical understanding of the semi-empirical 
quadratic split-window equation. 

KEY WORDS: Sea surface temperature; Split-window; Revision; Gaofen-5 

1. INTRODUCTION

Sea surface temperature (SST) is required for 
many environmental applications, such as 
monitoring the thermal pollution from nuclear 
power and climate change (Chen et al., 2003; 
Jangid et al., 2017). Researchers have long 
investigated the use of remote sensing data to 
retrieve SST. The split-window method is at 
present the most popular method for SST 
estimation. One approximation used in the 
derivation of split-window method is the first-order 
Taylor approximation of the Planck function 
(Prabhakara et al., 1974). Another assumption is 
that the atmospheric equivalent temperatures in the 
two adjacent thermal infrared (TIR) channels were 
regarded as the same (Tai = Taj) (Sobrino et al., 
1991). Notably, there are certain restrictions for 
these assumptions. The first-order Taylor 
approximation of the Planck function requires that 
the difference among the temperatures, that are the 
at-sensor brightness temperature Ti, atmospheric 
equivalent temperature Tai and the SST in the 

radiative transfer model (RTM), is small. In 
addition, the hypothesis Tai = Taj does not appear to 
reflect reality. This paper focuses on investigating 
these assumptions and developing SST retrieval 
algorithm for the coming Gaofen-5 (GF-5) satellite.  

The GF-5 satellite is the fifth satellite of 
China High-resolution Earth Observation System 
project, scheduled to be launched in the second 
half of 2017. The multiple spectral-imager (MSI) is 
a payload onboard this satellite, observing the earth 
almost at nadir with the spatial resolution of 40-
meter for two TIR channels (labeled as CH10.8 and 
CH11.95). Figure 1 shows the spectral response 
functions of GF-5/MSI split-window channels. 

2. METHOD

Based on the RTM, the following equation 
can be obtained by using Taylor's expansion of the 
Planck function,  

( )i ai i s ai iT T T T Tτ= + − + ∆  (1) 
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Figure 1. Spectral response functions of Gaofen-5 

split-window channels. 

where τi is the transmittances through the 
atmosphere from the surface to the satellite in 
channel i, Ts is the sea surface temperature (SST), 
△Ti is the error in Ti caused by linearizing the 
Planck function. In the published literature, △Ti is 
small and always be neglected (Prabhakara et al., 
1974; Sobrino et al., 1991). Writing Eq. (1) for two 
channels i and j, Eq. (2) can be derived,  

 1 2( )s i i j s sT T A T T T T= + − + ∆ + ∆  
 (2) 

where △Ts1 = - △Ti - A(△Ti - △Tj) with A = (1 - τi) / 
(τi - τj), △Ts2 = Aa(Tai - Taj) with Aa = - (1 - τi) (1 – 
τj) / (τi - τj). △Ts1 is the error of Ts retrieval caused 
by linearizing the Planck function and △Ts2 is the 
impact of the hypothesis Tai = Taj on Ts retrieval. 

In order to evaluate the influence of △Ts1 and 
△Ts2 on Ts retrieval, 81 profiles from TIGR 2000 
database were selected as input to execute the 
radiative transfer simulation procedure. These 81 
profiles remain representative of a worldwide 
description of the atmosphere with the near surface 
air temperature (T0) 236.25-303.41 K and the total 
water vapor content (W) 0.09-5.69 g/cm2. The 
atmospheric radiative transfer model MODTRAN 
was used to simulate the atmospheric upwelling 
radiance and the atmospheric transmittance 
considering a nadir viewing. Using these 
parameters, according to the RTM, the total 
radiance was calculated with 5 surface 
temperatures: T0 – 5 K, T0 – 2 K, T0 K, T0 + 2 K 
and T0 + 5 K. Then the brightness temperature can 
be obtained by inverting the Planck function. The 
atmospheric equivalent temperature can be 
obtained from the atmospheric upwelling radiance. 
According to the simulated data, △Ts1 and △Ts2 in 
Eq. (2) were calculated.  

The range of △Ts1 is about -0.4~0.5 K. If the 
linearization of Planck function were used, a root 
mean square error (RMSE) of 0.1 K and a bias of -

0.06 K can be obtained for Ts retrieval. To reduce 
or eliminate the error, the second-order derivative 
of Taylor expansion of Planck function was 
considered. Based on the simple mathematical 
manipulation, We found, there is a good linear 

relationship between △Ti and 
2( )

(1 )
s i i

i i

T T
T

τ
τ

−
−

, with 

sufficient accuracy of Ti (RMSE lower than 0.01 K) 
for both channels, as shown in Figure 2. Thus, the 
revision of △Ti was given, 

 

2( )
(1 )

s i i
i i

i i

T TT
T

τα
τ

−
∆ =

−
  (3) 

where αi is the regression coefficient, which is 1.40 
for CH10.8 and 1.21 for CH11.95, respectively. 

 

(a) 

(b) 

 
Figure 2. Parameterization of △Ti using (Ts – Ti)2 τi 
/ (Ti (1 – τi)) for Gaofen-5 TIR channels centered at 
(a) 10.8 μm and (b) 11.95 μm. Here, Ts is the sea 
surface temperature, Ti is the simulated brightness 
temperature, τi is the transmittance and △Ti is the 
error of linearization of Planck function.  
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According to the expression of △Ts2, if the 
hypothesis of Tai = Taj is adopted, △Ts2 would be 0. 
However, according to the values of Ta10.8 and 
Ta11.95, △Ts2 ranges from about -6~2 K, as 
displayed in Figure 3. We can see that the Tai = Taj 
hypothesis can produce the RMSE of 1.74 K and 
bias of -0.88 K for the SST estimation. In fact, the 
linear dependence, not the equal relationship, exists 
between Ta10.8 and Ta11.95, as shown in Figure 4.  

11.95 10.8a aT aT b= + (4) 

Figure 3. Histogram of error caused by the 
hypothesis of Ta10.8 = Ta11.95 for SST retrieval. Here, 
Ta10.8 and Ta11.95 are the atmospheric equivalent 
temperatures in Gaofen-5/MSI split-window 
channels. 

Figure 4. The linear dependence of the atmospheric 
equivalent temperatures for Gaofen-5 split-window 
channels. 

Writing Eq. (1) with △Ti substituted by Eq. (3) 
for two channels of CH10.8 and CH11.95, one can get, 

10.8 10.8 11.95 11.95( 1)( ) ( 1 )SST T M T T M N T− = − − + − +  (5) 

where 4

10.8
1 2

11.95

2( )

AM TA A
T

=
−

 and 

2 1 2
4 5 10.8 6 11.95 3

10.8 11.95

11.95
1 2

10.8

4( )( )

2( )

A AA A T A T A
T T

N TA A
T

+ − + +
=

−

, with 

10.8 11.95 10.8
1

10.8

(1 )
1

aA α τ τ
τ
−

=
−

, 

11.95 10.8 11.95
2

11.95

(1 )
1

A α τ τ
τ
−

=
−

, 

3 10.8 11.95(1 )(1 )A b τ τ= − − , 

4 1 2 11.95 10.8 10.8 11.952( ) (1 ) (1 )A A A a τ τ τ τ= − − − + − , 

5 1 11.95(1 )A A a τ= − + −  and 6 2 10.8(1 )A A τ= − − .
According to the calculated result, M ranged from 
0.9620~0.9941, close to 1. The first term of Eq. (5) 
(i.e., (M - 1)(T10.8 – T11.95)) is thus small even if 
multiplied by the maximum of (T10.8 – T11.95) 
(approximately 4 K). While the second term (i.e., 
(M – 1 + N)T11.95) makes the main contribution to 
Eq. (5), because of the large value of T11.95. Taking 
the structure of the split-window algorithm into 
consideration, the relationship between (M – 1 + 
N)T11.95 and (T10.8 – T11.95) was investigated. As
shown in Figure 5, (M – 1 + N)T11.95 can be 
parameterized using (T10.8 – T11.95), with RMSE = 
0.30 K.  

Figure 5. The relationship between (M – 1 + 
N)T11.95 in Eq. (5) and the difference of the

brightness temperatures in split-window channels 
(T10.8 – T11.95). 
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Based on the above analysis, Eq. (5) can be 
simplified as: 

2
10.8 10.8 11.95 10.8 11.95( ) ( )SST T A T T B T T C− = − + − +

                              (6) 
where A, B and C are the algorithm coefficients. 
Using the least-square fitting method, A = 0.4253, 
B = 1.123 and C = 0.28 were obtained for GF-5 
data, with RMSE = 0.30 K. 

3. RESULTS 

This section aims to assess the general 
applicability of the developed quadratic split-
window algorithm (Eq. (6)) to different 
atmospheric conditions. Therefore, another dataset 
was established using 23 atmosphere profiles with 
a nearly uniform distribution of W. For these 
profiles, W is ranging from 0.12~5.56 g/cm2 and 
T0 is within 232.25~303.15 K. Again, MODTRAN 
model was used to simulate the atmospheric 
parameters in the thermal radiation process and at-
sensor brightness temperatures with the surface 
temperatures ranging from T0 – 5 K, T0 – 2 K, T0 K, 
T0 + 2 K and T0 + 5 K. Based on 115 simulated 
situations (23 profiles * 5 surface temperatures), 
the SST was calculated using Eq. (6). A RMSE of 
0.3 K and a bias of 0 K were obtained. Among the 
difference between the truth and the retrieved SST, 
93.04% of the error is within ±0.5 K and 76.52% is 
within ±0.3 K. 

4. CONCLUSIONS 

Some assumptions and approximations, that 
are the linearization of Planck function and the 
same atmospheric equivalent temperatures in two 
adjacent split-window channels, were used in the 
derivation of split-window algorithm. These 
assumptions and approximations were investigated 
in this paper. Two revisions of the assumptions and 

approximations were then created for GF-5/MSI 
data. Based on these two revisions, the quadratic 
split-window algorithm suitable for GF-5/MSI TIR 
data was developed. The developed algorithm was 
evaluated using another simulated dataset. A 
RMSE of 0.3 K and a bias of 0 K, implying the 
satisfactory accuracy, were obtained. Performing 
an analysis of the developed algorithm in a future 
period when the GF-5 satellite data is available 
would be valuable.   
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ABSTRACT (In this research paper the relative bathymetry of the Suez Canal Water way and the Temsah 
Lake will be derived using the new bands of the WorldView-2 satellite. The non-linear model introduced by 
(Stumpf et al. 2003) will be used to examine the role of each of the new bands and their expected improvement 
in the quality of the classification of the bottom  types and the relative depths. 

For this purpose a calibration process will take place first by converting digital numbers into radiance then 
to reflectance values. Dark pixel correction will be applied to account for atmospheric and sun-glint effects then 
six different ratios will be used to derive relative bathymetry of the study area. 

1 INTRODUCTION 

Typically, bathymetric charts are generated from ship-
borne sounding surveys with single- or multi-beam 
echo sounders, in which they can operate to depths 
more than 500 m. State-of-the-art acoustic multi-beam, 
swath-mapping systems can achieve 6 m spatial 
resolution and about 8 cm depth accuracy in 200 m 
water depth (Su et al. 2008).  However, in case of 
shallow water, ship-borne surveys may not be the 
proper solution for the following reasons: 

- The survey will be time consuming and 
expensive, as the survey swaths are narrow.  

- It may not be feasible to survey waters 
shallower than 2–3 m deep because of sound 
saturation or/and inaccessibility of survey 
vessels.  

Recently, airborne bathymetric LiDAR (Light 
Detection And Ranging), introduced an optimum 
solution for the mapping of shallow coastal waters. 
The only limitations occur with this relatively new 
technology are; the high cost of operation and that the 
amount of maximum penetration of LiDAR systems is 
greatly dependent upon water transparency. Average 
penetration depth for most of currently operated 
systems are in the range of 30 meters, LADS (Laser 
Airborne Depth Sounder) developed by Tenix LADS 
Corporation is an exception where penetration depth 
reaches 70 meters. Also, most systems can reach up to 
4 meters spatial resolution with 20 cm accuracy (Su et 
al. 2008). In 2012, Optech developed CZMIL, coastal 
zone mapping and imaging LiDAR. CZMIL is an 
innovative airborne coastal zone mapping system that 

integrates bathymetric LiDAR, with a hyper-spectral 
imaging system and digital metric camera to produces 
simultaneous high-resolution 3D data and imagery of 
the beach and shallow water seafloor 
(www.optech.ca/Optech_News_Release_CZMIL-
120507.html).  
Optical remote sensing was also introduced as an 
alternative solution for bathymetric applications. 
David R. Lyzenga, first introduced a model for 
shallow water depth estimation using a single band 
from aerial photography (Lyzenga 1978). This model 
was then expanded to multi-spectral satellite imagery 
using a non-linear bathymetric inversion model 
(Stumpf et al. 2003). According to Beer’s law, the 
basic physical principles underlying the retrieval of 
bathymetric information from optical remote sensing 
images are: 

• Light attenuation in the water column
increases exponentially as depth increases.

• Additionally, attenuation varies by
wavelength, resulting in less attenuation and
greater depth penetration in the blue region
of the visible spectrum than the green or red
regions (Lyzenga 1978; Lyzenga 1981).

These two properties are the basis for optically-
derived bathymetry from multispectral, passive 
sensors. In the next section a brief summary of these 
two properties and how they can be applied to finally 
derive water depth of shallow waters will be 
introduced. 
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Figure 1 Four main components of the total radiance 

(Jensen 2007) 
 
2 Bathymetric Models for Optical Multi-spectral 
Imagery 
 
According to (Jensen 2007), the total upwelling 
radiance (Lt) recorded by the remote sensor consists of 
four components, as shown in Figure 1. 
 
 Lt = Lb + Lv + Ls + Lp Eq. 1 
 
Where, (Lp), atmospheric path radiance, is a 
function of atmospheric scattering, including both 
Rayleigh (molecular) scattering and Mie (aerosol) 
scattering, (Lv), subsurface volumetric radiance, 
results from volume scattering from the water and its 
organic/inorganic constituents like sediment and 
chlorophyll. (Ls), Specular radiance, is the reflection 
from the water surface, including possible sun-glint 
effects. Finally, (Lb), the bottom radiance, is the 
energy reflected from the seabed, which integrates the 
information about water depth and bottom 
characteristics.  
In order to retrieve water depth information from the 
total radiance, bottom radiance (Lb), has to be 
extracted from the total radiance (Lt). Atmospheric 
correction and sun-glint removal are applied first to 
remove (Lp) and (Ls), then deep water correction is 
accomplished to remove (Lv) (Lyzenga 1978; Lyzenga 
1981; Stumpf et al. 2003). 
As long as, the bottom radiance (Lb) equals zero for 
deep water, then the measured total radiance over 
optically-deep water (L∞) includes the joint effects of 
subsurface volumetric radiance (Lv), specular radiance 
(Ls), and atmospheric path radiance (Lp). After 
atmospheric and sun-glint corrections, the deep water 
radiance (L∞) only contains subsurface volumetric 
radiance (Lv) (Su et al. 2008). Assuming that the 
values of (Lv) of shallow and deep waters will not 
change, then we can use optically deep water radiance 
(L∞) recorded by the remote sensor to correct the 
subsurface volumetric radiance (Lv) in shallow water.  

Based on Beer’s Law, (Lyzenga 1978; Lyzenga 1981) 
introduced a simple radiative transfer model for 
shallow waters: 
 L = L∞ [ 1- exp(-gz) ] +Ad exp(-gz) Eq. 2 
 
Where, L = Lt − Lp − Ls, is the measured radiance after 
atmospheric and sun-glint corrections, L∞ is deep 
water radiance (equivalent to volumetric radiance Lv), 
Ad is the upwelling spectral radiance directly reflected 
from the bottom before interacting with the overlying 
water column, g is a two-way attenuation coefficient, 
and z is depth. Rearranging this equation, putting z in 
the left hand side, results in the equation of the 
bathymetric inversion model for a single spectral band 
as follows: 
 
 z = g-1 [ ln(Ad - L∞ ) – ln(L - L∞ )] Eq. 3 
 
Later on, Lyzenga developed a new bathymetric 
inversion model using more than one band as follows:  
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Eq. 4 
 
Where, ai are the constant coefficients, N is the 
number of spectral bands, L(λi ) is the remote sensing 
radiance after atmospheric and sun-glint corrections 
for spectral band λi , and L∞(λi ) is the deepwater 
radiance for spectral band λi .  
The model explained in Eq. 4  referred to as the log-
linear inversion (or deepwater correction) model, this 
model has been extensively used for estimating water 
depths from optical multi-spectral remote sensing 
imagery (Su et al. 2008). 
In 2003, (Stumpf et al. 2003) proposed a non-linear 
bathymetric inversion model based on a log-
transformed band ratio: 
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Where, m0, m1, and n are constant coefficients for the 
model, and L (λ1) and L (λ2) are the atmospheric and 
sun-glint corrected remote sensing radiances for bands 
λ1 (short wave length), and λ2 (long wave length) 
(Stumpf et al. 2003).  
When two bands are used, with different water 
absorptions, the log values change with depth and the 
whole ratio will change. If we abide to retain the 
shorter wave length in the nominator and the longer 
wave length in the denominator so the log ratio will 
increase as the depth increase. This ratio will 
compensate for the implicitly for variable bottom type 
(Stumpf et al. 2003), but changes in depth affect the 
high absorption band more. As a result, the effect of 
change in ratio because of depth is much greater than 
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that caused by change in bottom reflectance. 
Generally, (Stumpf et al. 2003) demonstrated that their 
non-linear inversion model is more robust and 
accurate than the conventional log-linear inversion 
model for relatively deep areas. This is why we will 
utilise this method with worldview-2 imagery to 
examine the role of the new bands in bathymetry. 
Blue light (450-510 nm) can penetrate clear down to 
30 m depth, and thus serves as the optimum spectral 
band from which to extract depth information (Su et 
al. 2008). Worldview-2 provides a new band; costal 
blue (400-450 nm), with higher capability of 
penetrating water (Globe 2009). Also, the yellow band 
(585-625 nm) will be examined as the longer 
wavelengths attenuate rapidly in water.  
The main assumption for both aforementioned models 
is based on the assumption that water optical 
properties are spatially homogeneous, which results in 
uniformity in water quality over the area of study. In 
addition, both models assume that the ratio of bottom 
reflectance’s is the same for different types of bottoms 
in the same scene. In general, high water clarity and 
uniform bottom types are two vital conditions, that 
must be met for reliable depth retrieval from optical 
multispectral imagery (Su et al. 2008). In this research 
the relative depths of part of the water way of the Suez 
Canal and the over polluted Temsah Lake will be 
derived from the worldview-2 imagery, using the non-
linear bathymetric inversion model derived by Stumpf.  

3 Data description 

Lake Temsah has a nearly triangular shape with 
elongated sides extending East-West. The lake is small 
and shallow. It has a surface area of about 8 square 
kilometers with an average depth of only 11 meters 
and containing about 90 million cubic meters of water. 
The lake is surrounded by industrial workshops for 
shipyards, domestic areas, recreational beaches and 
agricultural lands.  The Suez Canal pathway is deep, 
about 24 m depth, but narrows about 300-360 m wide 
at water level. Figure 2 illustrates a false color image 
for the area of study. 
Unlike the Canal pathway, Temsah Lake receives a 
great deal of untreated domestic and industrial waste 
discharges and agricultural drainage return flows. 
Consequently, the lake and its beaches exhibit serious 
water quality problems in many locations. Moreover, 
the substantial amounts of sediment loads, which enter 
the lake, produce higher accumulation rates and 
seriously obstruct lake transportation (Donia 2011). 
A water quality index, WQI, is a mathematical way of 
summarizing multiple properties into a single value. 
This index values are ranging between 0 and 100, with 
higher numbers indicating lower quality water. (Donia 
2011), introduced one of the standers WQI chart for 

the Temsah Lake and it used in this study to 
demonstrate the differences in water quality across this 
region. 

Figure 2 Temsah Lake and Canal Suez water way 

Figure 3 A WQI for the Temsah Lake,(Donia 2011) 

The figure above shows that almost all the lake water 
quality is considered very bad except the southern 
region of the lake that is considered better quality but 
still bad. 

4 Methodology 

Generally, any imagery will be used in a 
radiometric/spectral analysis must be converted to 
spectral radiance at a minimum, or top of atmosphere 
reflectance in order to account for the variation in the 
relative positions between the sun, the Earth and the 
satellite to obtain absolute values for the NDVI ratios 
can be applied in any other scene (Updike and Comp 
2010). Converting the Digital Numbers (DN) to Top 
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of Atmosphere (ToA) reflectance is a two-step 
process. First DNs are converted to ToA radiance 
values. Then these radiance values are then converted 
to reflectance values (Observation 2010).  

4.1 Conversion to Top-of-Atmosphere Spectral 
Radiance 

According to (Globe 2009), WorldView-2 products 
are delivered to the customer as radiometrically 
corrected image pixels. The values of these pixels are 
calculated as a function of the amount of the spectral 
radiance enters the telescope aperture and the 
instrument conversion of that radiation into a digital 
signal. Therefore, image pixel data are unique to 
WorldView-2 and should not be directly compared to 
imagery from other sensors in a radiometric/spectral 
sense. Instead, image pixels should be converted to a 
top-of-atmosphere spectral radiance at a minimum. 
Top-of-atmosphere spectral radiance is defined as the 
spectral radiance entering the telescope aperture at the 
WorldView-2 altitude of 770 kms. The conversion 
from radiometrically corrected image pixels to spectral 
radiance uses the following general equation for each 
band of a WorldView-2 product (Updike and Comp 
2010): 

Eq. 6 

Where,          are the top-of-atmosphere 

spectral radiance image pixels [W.m-2.sr-1.μm-1], 
  is the absolute radiometric calibration factor 

[W.m-2.sr-1.count-1] for a given band, 

are the given radiometrically corrected image pixels 
[counts] and  is the effective bandwidth 

[ m] for a given band 

Both and can be found in the 
image metadata files (*.IDM) attached with the 
WorldView-2 product under the names (absCalFactor) 
and (effectiveBandwidth) respectively. The following 
table summarize both of these quantities for both the 
panchromatic and the eight multi-spectral bands. 

4.2 Conversion to Top-of-Atmosphere Spectral 
reflectance 

Right now we have the ToA spectral radiance. 
However, this top-of-atmosphere spectral radiance 
varies with Earth-Sun distance, solar zenith angle, 
topography, bi-directional reflectance distribution 
function (BRDF-the target reflectance varies 
depending on the illumination and observation 

geometry), and atmospheric effects (absorption and 
scattering) (Updike and Comp 2010). As mentioned 
earlier that converting multispectral data into 
reflectance before performing spectral analysis 
techniques such as band ratios, Normalized Difference 
Vegetation Index (NDVI), matrix transformations, 
etc., is a must. For each scene the distance between the 
sun and earth in astronomical units, the day of the year 
(Julian date), and solar zenith angle must be known.  

Table 1 Absolute Radiometric Calibration and 
Effective Bandwidth for the Given Bands 

Band name 

W.m-2.sr-1.count-1 m 
C 9.30E-03 4.73E-02 
B 1.78E-02 5.43E-02 
G 1.36E-02 6.30E-02 
Y 6.81E-03 3.74E-02 
R 1.10E-02 5.74E-02 

R-E 6.06E-03 3.93E-02 
NIR1 1.22E-02 9.89E-02 
NIR2 9.04E-03 9.96E-02 

D= JD - 2451545.0 Eq. 8 

g = 357.529 + 0.98560028 * 
D Eq. 9 

dES=1.00014-0.01671.cos(g)-
0.00014.cos(2g) Eq. 10 

The Earth-Sun distance will be in Astronomical Units 
(AU) and should have a value between 0.983 and 
1.017. For the WorldView-2 launch date, October 8, 
2009 at 18:51:00 GMT corresponds to the Julian Day 
2455113.285; the Earth-Sun distance is 0.998987 AU. 
At least six decimal places should be carried in the 
Earth-Sun distance for use in radiometric balancing or 
top-of atmosphere reflectance calculations (Updike 
and Comp 2010). The average solar Zenith angle has 
to be calculated for the whole scene at the time of 
acquisition according to the following equation: 

Eq. 11 

Where, sunEl value can be found in the same file 
*.IDM. Now we can convert the radiance values to 
ToA reflectance values using the following equation. 
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Eq. 
12 

Where 
are the ToA reflectance values 

are the ToA radiance values 

is the Earth-Sun distance in 
Astronomical Units (AU) 

WorldView-2 Band-Averaged 

Solar Spectral Irradiance (Updike and Comp 2010) 
The average solar Zenith angle 

The traditional NDVI ratio will be used to generate a 
mask to separate the water body of the study area, as 
in Figure 4. C/RE, C/Y, B/Y, C/G, B/G and G/Y ratios 
will be used to derive relative bathymetry of the study 
area using the non-linear bathymetric inversion model 
derived by Stumpf. 

Figure 4 Masked area of study 

Ideally, atmospheric effects must be removed together 
with the water column correction in order to achieve 
radiometric values that are only representative of the 
sea depth and to make the upwelling response from 
different bottom types homogeneous (Deidda and 
Sanna 2012). Moreover, if sun-glint is present, the 
effect of the sun beams reflecting on the sea surface, it 
has to be corrected. Knowing that, the upwelling 
radiance of NIR bands have very low values even for 
shallow waters. Subsequently, dark pixel subtract will 
be applied to account for sun-glint and atmospheric 
effects by subtracting the Min. value in the NIR bands 

for a deep water area from the reflectance values for 
all other visible band.  

5 RESULTS AND DISCUSSION 

The available data about the depth of Suez Canal and 
the Temsah Lake indicates that the dominant depth of 
the Suez Canal water way is about 24 meters, and an 
average of 11 meters for the Temsah Lake. No DEM 
data was available for this site, so the analysis of this 
result will be depending on the aforementioned 
information and considering the environmental 
condition of this area. As discussed before the 
logarithmic ratio will increase as the depth increase, if 
we apply this rule on the given results will leads to un 
realistic results. For instance, considering C/R-E 
result, if we start with a depth of 24 meters at the blue 
range (1.033-1.07) will lead to a nominal depth of 46 
m at the brown range (1.0885-1.11) which is not true.   
The reason behind this result is the water quality and 
bottom type condition of the water way of the Suez 
Canal and the Temsah Lake. The water way of Suez 
Canal is much better than the one exist in the Temsah 
Lake as it is always running water has two sources of 
fresh water coming from both the Red sea and the 
Mediterranean Sea. Moreover, the bottom type is 
homogeneous sand with small gravel, which follows 
the main assumptions for the bathymetry derivation 
from satellite imagery; shallow water with 
homogenous bottom and clear water. But in case of the 
Temsah Lake results, the bottom of the lake suffer 
from a lot of sediments coming from the water way 
plus enormous domestic pollution from the ship yards, 
the agriculture land and domestic waste water. This 
pollution affects both water quality and bottom type. 
Based on visual comparison, C/RE, C/Y and C/G give 
better results compared the other ratios, as they were 
able to separate between two homogeneous ranges (the 
green and the blue) to depicts both 4-5 meters and 24 
meters depth ranges respectively for the water way. 
Moreover, these ratios give a distinct three ranges for 
the Temsah Lake (red, cyan and brown) all of them 
have an average depth of 11 meters, but with different 
bottom types; the more the ratio value the more 
sediments and impurities.  
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C/RE C/Y 

B/Y C/G 

B/G G/Y 
Figure 5 Relative non-linear bathymetric inversion results 
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ABSTRACT-Generally, clouds and snow are mixed in one image together, the clouds are difficult to be 
identified from the image. Here, clouds were divided into high clouds, medium clouds, low clouds and thin 
clouds. They were identified and eliminated according to respective thresholds, which were obtained from 
experiments basing on AVHRR/2 data over Qinghai-Tibet Plateau. In the light of visual inspection, it can be 
found that the results of cloud elimination were reliable and accurate. 
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1  INTRODUCTION 

Qinghai-Tibet Plateau is high and vast, and often 
covered with clouds all year around. Then, the 
pollution of clouds can be often seen in AVHRR/2 
images of the plateau, and reduce the accuracy of their 
mapping. Therefore, the pollution of clouds must be 
eliminated from those AVHRR/2 images before the 
mapping of the AVHRR/2 images. Generally, if clouds 
and snow are mixed in one image together, the clouds 
are difficult to be eliminated from the image. Turner et 
al. detected clouds from AVHRR/2 images 
successfully in Antarctica (Turner, 2001). This is a 
good achievement of cloud elimination from images 
with cloud and snow together. His method is used here 
as a reference of cloud elimination. However, with 
respect to surface features, Qinghai-Tibet plateau is 
very different from Antarctica, so Turner’s method of 
cloud elimination cannot be used unchangeably on the 
plateau, and a new method of cloud elimination needs 
to be found for the AVHRR/2 images over Qinghai-
Tibet Plateau. In addition, the focus here is how to 
practically eliminate clouds from AVHRR/2 images, 
rather than the mechanism of cloud elimination. 
Therefore, the mechanism of cloud elimination is not 
studied deeply in the work.  

In 1981, AVHRR/2 sensors were first used on 
board the satellite of NOAA-7, and can extend 
moderate resolution data of remote sensing to 30 years 
ago, and provide the data of high temporal resolution. 

2  STUDY AREA AND DATA 

2.1 Study Area 

The study area is Qinghai–Tibet Plateau in southwest 
China, with a latitude and longitude of about 26–
40 and 73–105 respectively, and an area and
altitude of about 2,500,000 km2 and 4000–5000 m 
respectively. It has abundant snow cover and glaciers 

all year round. The meltwaters of these snow and 
glaciers are the main runoff sources of the upper 
reaches of many great rivers. Fig.1 shows the location 
and terrain of the plateau. 

2.2 Data 
In this research, the used AVHRR/2 data come from 
National Satellite Meteorological Center, China 
Meteorological Administration, and are daily data of 
time series, which have been geometrically corrected 
and geo-located. Their boundaries are about 
17°00′36″N-41°00′00″N, 65°00′18″E-105°59′42″E.  

The AVHRR/2 sensors have totally 5 channels, 
whose NO.1 and NO.2 channels are visible and near-
infrared bands respectively, and NO.3 is middle-
infrared band, and NO.4 and NO.5 are all thermal 
infrared bands. In addition, their spatial resolution is 
about 1100m. 

Fig.1. Location and terrain of Qinghai-Tibet Plateau 

3  THE CLOUD DETECTIONS OF AVHRR/2 
IMAGES  

Before removing cloud pollution, the cloud 
pixels must be identified from AVHRR/2 images. 
Generally, cloud is easy to be separated from 
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most of ground objects in remote sensing images, 
because there are great differences between the 
spectral features of cloud and other ground 
objects. But, the spectral features of cloud are 
very similar to those of snow in visual band, and 
then the cloud is not easy to be separated from 
the snow in remote sensing images.  

Here, clouds were divided into high clouds, 
medium clouds and low clouds, difference ways 
were used to identify them respectively in remote 
sensing images. The process of cloud 
identification is as Fig.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. The flow chart of cloud detection 

 

3.1 The Detection of High Clouds Using NO.4 
Channel  

High clouds are mainly comprised of little ice crystal. 
The temperature of cloud Hop is obviously lower than 
that of ground, because the high cloud is in a very high 
altitude. According to this difference of temperature, 
the high clouds can be easily separated from other 
ground objects. The spectra of thermal infrared depend 
on the temperatures of the ground objects, thus the 
data of the thermal infrared can be used to identify the 
high clouds (Oleson, 1985). In the work, the data of 
NO.4 channel were chosen for detecting the high 
clouds from the AVHRR/2 images of Qinghai-Tibet 
Plateau. Using the AVHRR/2 data in 1995, 1998 and 

2006 years in experiments, it was found that a pixel 
would be a cloud pixel if the brightness temperature of 
NO.4 channel was lower than 250K, that is, T4 < 
250K. 

3.2 The detection of medium clouds using NO.1, NO.3 
and NO.4 channels 

Medium clouds are mainly comprised of little ice 
crystal and supercooled water, and their reflectance is 
fairly high. The data of the NO.3 channels include 
reflective energy and emissive energy. Generally, the 
medium clouds can be identified basing on the 
difference of brightness temperatures between NO.3 
and NO.4. In practice, bare land may be confused with 
medium clouds in the identification of medium clouds. 
In order to eliminate the interference of the bare land, 
the data of NO.1 channel was used to identification of 
medium clouds. Finally, the identification models of 
medium clouds are  

 
(1) 

where T3 and T4 are the brightness temperature of 
NO.3 channel and NO.4 channel respectively, CH1 is 
the reflectance of NO.1 channel. 

3.3 The detection of low clouds using NO.3 and NO.4 
channels 
In images which have snow and clouds together, it is 
very difficult to eliminate low clouds. Turner et al. has 
successfully eliminated low clouds using NO.3 
channel in the Antarctic continent (Turner, 2001). But, 
in Qinghai-Tibet Plateau, the results of cloud 
elimination is not good if only NO.3 channel was used 
in the identification of low clouds. Here, NO.4 channel 
is also used in the identification for improving the 
removing results of low clouds. In light of the 
experiments using the AVHRR/2 data in 1995, 1998 
and 2006 years, the identification models of low 
clouds can be obtained as follow. 

 
(2) 

3.4 The detection of thin clouds using NO.4 channel 
and NO.5 channel 

Thin clouds can keep out a part of spectral radiation 
from the earth's surface into a sensor, however, the 
other part of the spectral radiation can still reach the 
sensor. Consequently, ground objects under thin clouds 
can be seen in remote sensing images, but not clearly. 
The thin clouds certainly reduce the accuracy of 
mappings, and should be eliminated before the 
mappings.  

AVHRR/2 data 

High cloud 
identification 

          

Medium cloud 
identification 

  
 

Low cloud 
identification 

 
 

 Thin cloud 
identification 

         

Cloud free pixels Cloud pixels 
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Yamanouchi et al. found that thin clouds can be 
identified through brightness temperature differences 
between NO.4 channel and NO.5 channel 
(Yamanouchi, 1987). In his research, the differences 
between NO.4 and NO.5 were used to identify the thin 
clouds. The results of experiments indicate that if the 
brightness temperature differences of a pixel are more 
than 2.2K, that is, T4-T5＞2.2K, the pixel is labeled as 
a cloud pixel. 

4  THE ELIMINATION OF CLOUD PIXELS FROM 
AVHRR/2 IMAGES 

After cloud detection is complete for a AVHRR/2 
image, each cloud pixel of the AVHRR/2 image is 
substituted with its corresponding cloud-free pixel in 
another AVHRR/2 image (namely a referenced 
AVHRR/2 image) taken temporally closest to the 
substituted AVHRR/2 image among all referenced 
AVHRR/2 images in which all pixels corresponding to 
the substituted pixel are cloud-free. Nevertheless, the 
temporal difference between a referenced image and 
substituted image should be limited within a certain 
time, such as 7 or 10 days. 

5  COMPARISON BETWEEN CLOUD 
ELIMINATED IMAGES AND THEIR SOURCE 
IMAGES 

According to the visual inspection of the cloud 
eliminated result above, the pollution of clouds can be 
eliminated from AVHRR/2 images, but snow cover 
still stayed in them. The following figures can indicate 
the comparison between clouds eliminated images and 
their source images (Fig.3, Fig.4, Fig.5, and Fig.6). 
 

 
Fig.3 Comparison between high cloud eliminated 
image and its source image (The left is the source 
image, where the pixels of high clouds are jacinth, 
such as the pixels in the white circle. The right is the 
high cloud eliminated image) 

 
Fig.4 Comparison between medium cloud eliminated 
image and its source image (The left is the source 
image, where the pixels of medium clouds are yellow, 
such as the pixels in the white circles. The right is the 
high cloud eliminated image) 
 

 
Fig.5 Comparison between low cloud removed image 
and its source image (The left is the source image, 
where the pixels of low clouds are deep red, such as 
the pixels in the white circles. The right is the low 
cloud removed image) 
 

 
Fig.6 Comparison between thin cloud removed image 
and its source image (The left is the source image, 
where the pixels in the white circles are the pixels of 
thin clouds. The right is the thin cloud removed image) 

6  CONCLUSIONS 

Qinghai-Tibet Plateau is high and vast, and often 
covered with clouds all year around. Then, the 
pollution of clouds often appears in AVHRR/2 images 
of the plateau, and reduces the accuracy of their 
mapping. Generally, clouds and snow are mixed in one 
image together, the clouds are difficult to be identified 
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from the image. Here, clouds were divided into high 
clouds, medium clouds, low clouds and thin clouds. 
They were identified and removed according to 
appropriate thresholds respectively, which were 
obtained from experiments basing on AVHRR/2 data 
over Qinghai-Tibet Plateau. In light of visual 
inspection, it can be found that the results of cloud 
elimination were reliable and accurate. 

In 1981, AVHRR/2 sensors were first used on 
board the satellite of NOAA-7. The method of cloud 
elimination is found for the AVHRR/2 images, then, 
the images can be used in practice, and moderate 
resolution data of remote sensing can extend to 30 
years ago. 
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ABSTRACT- To improve the reliability of spectral libraries acquired by field spectroscopy, the uncertainty of 
the spectral reflectance measured must be estimated and reported, taken into account as many important sources 
of uncertainty as possible. This work presents the initial approach to establish a complete model of uncertainty 
of field spectroscopy measurements that ensures the traceability chain. The first two steps towards this objective 
are presented: on one hand, the framework and the sources of uncertainty to create the model are reviewed, on 
the other hand, with the intention to be aware of the uncertainty values that can result due to environmental 
conditions, some empirical data using two field spectroradiometers were undertaken. Type A standard statistical 
methods were applied for spectral reflectance measurements acquired with a dual system of two ASD FieldSpec3 
spectroradiometers over two uniform and invariant surfaces. The reproducibility in environmental ambient were 
evaluated measuring under variable of solar and atmospheric conditions. For VNIR region, where 
spectroradiometer performs better, an average of 5% of uncertainty were gathered. For SWIR region both 
sources, environmental and instrumental rise to 12% of uncertainty. 

1  INTRODUCTION 

In optical Earth Observation satellites, ground truth 
data acquired by field spectroscopy plays a major role 
in sensor calibration, product validation, and image 
analysis. In all these activities, the uncertainty and 
traceability requirements demanded for field 
spectroscopy have increased substantially. 

Uncertainty estimation is fundamental for data 
quality evaluation and data interoperability. In this 
sense, the Guide to the Expression of Uncertainty in 
Measurement (GUM), developed by the Joint 
Committee for Guides in Metrology (JCGM) and the 
Bureau International des Poids et Mesures (BIPM), 
provides guidance on how to determine, combine and 
express uncertainty. The GUM became a standard 
guide in 2009, and confirmed in 2015, by 
International Organization of Standardization (ISO) 
and the International Electrotechnical Commission 
(IEC). For Earth Observation community, the main 
principles of the GUM were implemented by the 
Quality Assurance Framework for Earth Observation 
(QA4EO) project. One of the last initiatives that are 
making progress in this implementation is the project 
Metrology for Earth Observation and Climate 
(MetEOC), funded by the European Metrology 
Research Programme. MetEOC is developing new 
infrastructure and methods to allow higher, traceable, 
accuracy to be delivered to the European calibration 
and validation community. 

Field spectroscopy has undergone to a remarkable 
growth over the past two decades in terms of use and 
application for different scientific disciplines. To 
improve the reliability of the spectral libraries 
acquired, the uncertainty of the spectral reflectance 
must be estimated and reported, taken into account as 
many important sources of uncertainty as possible. 

This work presents the initial approach to establish 
a complete model of uncertainty for field spectroscopy 
measurements that ensures the traceability chain. In 
this paper, the first two steps towards this objective are 
presented. On one hand, the framework and the 
sources of uncertainty to create the model are 
reviewed. On the other hand, with the intention to be 
aware of the uncertainty values that can result due to 
environmental conditions, some empirical data using 
two field spectroradiometers were undertaken. 

2  FIELD SPECTROSCOPY BACKGROUND 

Field spectroscopy is the measurement of high 
resolution spectral radiance or irradiance in the field to 
derive the reflectance or emissivity spectral signatures 
of Earth’s surface targets under natural environmental 
conditions (Milton et al., 2009). In comparison with 
imaging spectroscopy, the sensing instrument in the 
field can remain fixed over the subject of interest for 
much longer, and the path length between the 
instrument and the object being measured is reduced 

The main applications of field spectroscopy are: to 
relate spectral curves with bio-physical and bio-
chemical process; to predict the most favorable 
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spectral, radiometric, and viewing geometry 
configuration and the optimum time to carry out a 
particular remote sensing task; to calibrate, validate 
and simulate remote sensing data and products. 

The rugged and portable spectroradiometers 
developed in recent years, measures spectral radiance 
using a fiber-optic bundle, with the possibility to 
attach different optics. Manufacturers basically offer 
two kinds of spectroradiometers: (1) small, light 
devices to work only in the visible and rear infrared 
VNIR (350–1000 nm), with levels of the signal to 
noise ratio (SNR) around 250:1; and (2) bigger and 
heavier devices that work in the entire solar spectrum, 
with actively cooled short wave infrared (SWIR) 
detectors (1000–2500 nm) and SNR around 1000:1. 
The typical spectral configuration is to have a full 
width half maximum (FWHM) of nearly 3 nm in the 
VNIR spectral region, and a FWHM of nearly 10 nm 
in the SWIR. 

Single beam, where the same instrument is used to 
measure both the target and the reference panel 
spectral radiance, is the most widely used acquisition 
methodology. Even in a cloudless sky and low solar 
zenith angles, the most simultaneous radiance 
acquisition between the panel and target is 
recommended. In Dual beam, one spectroradiometer 
measures the radiance of the target and the second one 
measures the Sun irradiance using a cosine receptor, 
reference panel or an integrating sphere. 

3 TOWARDS THE UNCERTAINTY MODEL 

An uncertainty measurement model is a mathematical 
expression were all the input quantities that are 
required to obtain a measurand are associated in an 
algorithm. Following the GUM, each quantity has a 
standard uncertainty associated, which can be 
combined using the Law of Propagation of 
Uncertainty to obtain the final uncertainty. 

These uncertainties are grouped into two 
categories, depending on the method used to estimate 
its value: Type A, which are the uncertainties 
evaluated by statistical processes; and Type B, the 
uncertainties evaluated by non-statistical processes. 

The National Physical Laboratory (NPL) considers 
eight fundamental steps to establish an uncertainty 
model (Woodliams at al., 2014): 

a) Understanding the problem
a1: Describing the traceability chain
a2: Writing down the calculation equations
a3: Considering the sources of uncertainty

b) Determining the formal relationships
b4: Creating the measurement equation  
b5: Determining the sensitivity coefficients 
b6: Assigning uncertainties  

c) Propagating the uncertainties

c7: Combining and propagating uncertainties 
c8: Expanding uncertainties  

Follow these eight steps, ensures the development of 
the complete uncertainty model for a measurand. 
Furthermore, determining a simplified version of the 
uncertainty model and then adding complexity in 
stages later on, as the problem becomes better 
understood is recommended.  

In the particular case of field spectroscopy, the 
spectral reflectance obtained by field 
spectroradiometers is the measurand. The first 
approximation in the simplified model generation, is 
to review the main sources of uncertainty for spectral 
reflectance.  

3.1 Sources of Uncertainty 

The main sources of uncertainty for spectral 
reflectance measured by field spectroscopy can be 
grouped into five categories: the equipment 
performance, the methodology of measurement, the 
sampling strategy, the properties of the surface, and 
the environmental conditions. 

Regarding the equipment performance, radiometric 
and spectral calibration is usually accomplished by the 
manufacturer. Thus, Type B uncertainty estimations is 
supplied. Furthermore, the radiometric and spectral 
calibration characteristics of field spectroradiometer 
can be periodically evaluated in the laboratory by 
Type A repeatability procedures (Anderson et al., 
2011). In addition, Type A reproducibility procedures 
for environmental effects and configuration 
possibilities have also be evaluated. Likewise, in case 
of the use of reference panel, integrating sphere or 
cosine receptor to derive irradiance in the field, the 
radiometric calibration is on the manufacturer’s side, 
but radiometric and angular characteristics must be 
evaluated by Type A repeatability procedures. 
Regarding the methodology, the time between target 
and panel measurements is a critical parameter for 
spectral reflectance accuracy using single 
spectrometer, especially in no clear-skies conditions. 
In the case of dual system, the intercalibration between 
the two spectroradiometeres is the critical parameter. 
In addition, the illumination and observation 
geometries have to be taken into account. Concerning 
sampling strategy, the size of the target, the number of 
samples and the sampling type, can vary considerably 
the spectral reflectance estimation. Concerning surface 
properties, the lambertian degree and uniformity of the 
surface, are the most important sources of uncertainty. 
Regarding environmental conditions, the most 
important sources are: sun position, sky cloud 
coverage, atmospheric water vapor and aerosols 
presence, and the adjacency effects because of 
surrounding elements. 
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Further steps to be taken in subsequent work, will 
determine the formal relationships between the 
elements and the sensitivity coefficients for each 
source. Then, uncertainty assigned will be combined 
and propagated. However, prior to these steps and with 
the aim to quantify the impact of environmental factor 
to the total uncertainty, a test was conducted trying to 
leave fixed the rest of the sources. 

4 THE TEST: SOME EMPIRICAL DATA 

As an initial approach to become aware of the 
uncertainty range that we can find in field 
spectroscopy measurements, a test was carried out 
with two field spectroradiometers measuring two 
invariant surfaces in several days with different 
illumination and atmospheric conditions.  

The field spectroradiometers are two ASD 
FieldSpec3 (PAnalytical, CO, USA) that measures 
incoming radiance using a fiber optic which is 
adaptable with a fore optic lens. It has a spectral range 
from 350 to 2500 nm, with a 3 nm spectral resolution 
and a sampling interval of 1.4 nm in the VNIR spectral 
regions and 10 nm and 2 nm in the SWIR. 

Figure 1 shows the test setup installed on the 
rooftop of one of the buildings at National Institute of 
Aerospace Technology (INTA, Madrid) facility. Over 
a table, two very uniform and invariant surfaces: one 
dark (5% reflectance) and one bright (50% 
reflectance) were placed. Two white reference panels 
were also placed. The two spectroradiometers were 
mounted in a trolley close to the table. The 
spectroradiometers´ laptops were situated in the upper 
part of the trolley, and the spectroradiometers itself in 
the lower part covered for direct sunlight. All the 
components that are placed over the table (tripods, 
fibre optic, and a camera for hemispherical sky 
pictures) that can produce adjacency effect in the 
radiance signal are covered or painted in black. 

Figure 1. Picture of the test elements and setup on the 
rooftop of the building at National Institute of 
Aerospace Technology (INTA, Madrid)  

4.1 Data acquisition and processing 

With the premise to have single and dual spectral 
reflectance measurements at the same moment, the 
measurement protocol was designed following the 
procedure proposed by Bachmann (Bachmann et al., 
2012). One spectroradiometer (The Rover) measures 
both surfaces and one reference panel before and after 
each surface, turning the tripod´s arm. The other one 
(The Base), is fixed looking a second reference panel 
measuring thrice for each surface acquisition: the first 
measurement was simultaneously to the first Rover 
measurement over the panel, for the intercalibration of 
the spectroradiometers; the second measurement is 
acquired simultaneously to the Rover target 
measurement for surface reflectance estimation; and 
the last one, is simultaneously to the other Rover panel 
measurement, but with the panel covered to remove 
direct irradiance component, measuring diffuse 
irradiance. All the spectroradiometers measurements 
are made in radiance mode, saving five files 
repetitions for each sample over target or panel. 

Seven days of acquisitions were carried out. For 
each day, both surfaces were measured from 10:00 to 
13:00 (local time) every 15 minutes, stepped up the 
measurements in occasions subject to cloud presence. 
Both spectroradiometer were connected to electrical 
power supply, and they were turned on one hour 
before the beginning of data acquisition. 
Measurements were acquired directly with the fiber 
optic (FOV 25º). In order to avoid any shadow 
appearance over the target or panel, the Rover fiber is 
nadir-oriented and held 20 cm above the target and the 
panel, which has 12x12 cm size. The Base is 10º tiled 
from nadir and held 5 cm above the panel, which in 
this case is only 6x6 cm size to be able to cover the 
whole panel for direct sunlight.   

For both surfaces, the hemispherical conical 
reflectance factor (HCRF) was calculated in single and 
dual mode using Python in-house programme. In case 
of single mode, HCRF was calculated with the panel 
interpolated radiance between the before and after 
acquisitions. In dual mode, the data of Rover and Base 
panels was used directly, because had simultaneous 
triggering.  

The solar radiation diffuse-to-global ratio (DGR) 
was calculated for each surface acquisition with the 
ratio between the simultaneous measurement of Base 
panel covered from direct sunlight and the Rover panel 
measurement. 

Although the uncertainty calculations have to follow 
the Law of Propagation procedures recommended by 
the GUM, for this test quantification the uncertainty 
calculations was carried out following the procedure 
proposed by Pinto (Pinto et al., 2012), that takes into 
account statistical fluctuation of the data following, as 
well, GUM recommendations. A total uncertainty is 
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the summation of a repeatability uncertainty and a 
called “various uncertainty”.  

The repeatability uncertainty is the experimental 
standard deviation of the global uncertainty. The 
global uncertainty can calculate an overall standard 
deviation, which takes into account the dispersion of 
the data of all sampling points, according to the 
following equation (1): 

(1) 

where: k is the number of sampling points; n is the 
number of repetitions on each point; xn is the value 
obtained from the repetition n; and xk is the mean 
value for point k. 

The “various uncertainty” is calculated using all 
the panel measurements using this equation (2) 

 (2) 

where: k is the number of points; xk is the mean of the 
reference plate at point k; and ˉx is the mean plate for k 
points 

4.2 Results 

From the seven measurement days, we have two 
completely clear-sky, one day with no clouds but with 
saharian dust intrusion, and the rest with varying 
conditions of clouds presence. During those seven 
days, a total of 74 measurements for each surface were 
recorded. Removing a few acquisitions made it with 
thick clouds standing on the way, 60 of the total were 
acquired with direct sunlight or cirrus clouds, and their 
get into the uncertainty calculations. 

The total uncertainty for bright and dark surfaces 
in single and dual mode are presented in Figure 2. 
Noticing that in single mode the acquisitions of panel 
and target was nearly simultaneously, minor 
differences are found between the two modes, as 
expected. For both surfaces, the uncertainty is about 5 
% in the visible part of spectrum, where the bigger 
impact of solar radiation and atmospheric constituents 
take place. In case of dark surface the uncertainty 
reach 10 % in the NIR part mainly due to adjacency 
effects. The rise to 10 % and above in the SWIR part 
of the spectrum, is mainly due to lower signal to noise 
ratio of the spectroradiometer. 

Figure 2. Total uncertainty for bright and dark 
surfaces in single and dual mode. 

Looking in detail to the reference panel 
measurements for both spectroradiometers, the impact 
on the uncertainty resulting from the solar zenith angle 
variation and different levels of diffuse to global ratio 
were evaluated.  

Figure 3 shows the standard deviation values 
obtained for the Rover and Base measurements over 
the reference panel corresponding to the two days with 
clear-sky conditions. Measuring in both days from 
10:00 to 13:00 (local time), the solar zenith angle 
varies from 0.4 to 1 radians. It can be seen, that into 
this medium solar zenith angle variation range, 
avoiding very low or very angles, only a soft 
correlation is achieved. 

Figure 3. Standard deviation values obtained for the 
Rover and Base spectroradiometers measurements 
over the reference panel plotted against solar zenith 
angle (in radians). Corresponding to the two days with 
clear-sky conditions 
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Figure 4 shows the standard deviation values obtained 
for the Rover and Base measurements over the 
reference panel corresponding to all the measurements 
selected for the calculations: Those measurements 
includes a wide range of illuminations conditions, 
indicated by variation of the diffuse to global ratio 
from 0.05 to 0.25 at 600nm wavelenght. In this case, 
no correlation was found between standard deviation 
and diffuse to global ratio. 

Figure 4. Standard deviation values obtained for the 
Rover and Base spectroradiometers measurements 
over the reference panel plotted against diffuse to 
global radiation, corresponding to all the 
measurements selected for the calculations. 

5 CONCLUSIONS 

The uncertainty values for spectral reflectance 
measurement by field spectroscopy due to variations 
in illumination and atmospheric conditions were 
estimated by Type A procedures. For VNIR region, 
where spectroradiometer performs better, an average 
of 5% of uncertainty were gathered. For SWIR region 
both sources, environmental and instrumental, reach to 
12%. 

Only a small correlation were found between 
standard deviation of reference panel radiance 
measurement and solar zenith angle. No correlation 
was found between standard deviation of reference 
panel radiance measurement and diffuse to global 
ratios. 
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ABSTRACT- VNIR (visible and near infrared) reflectances as well as Land Surface Temperature (LST) 
measurements in the TIR (thermal infrared) domain are both prone to directional anisotropy (DA) effects. 
Simple models are needed to correct remotely-sensed data from these effects. Two candidate parametric models 
first proposed by Roujean (2000), referred to as R2000, in the VNIR and by Lagouarde and Irvine (2008) in the 
TIR, referred to as RL, are first presented. Both required two parameters to be fitted, in particular a k coefficient 
related to canopy structure. Their generalization is made, using a large data base generated with the 
deterministic multilayer model SCOPE developed by Van der Tol et al. (2009) which allows to simulate DA in a 
large range of wavelengths. The canopy is assumed to be ‘spherical’ and the input data -meteorological forcing, 
water availability, LAI, hot spot parameter- are chosen for representing a large range of conditions that can 
practically be met. We show that DA in the red is most related to TIR DA, and we finally propose a simple 
parameterization of the k coefficient against LAI. This is a significant progress, as it now makes R2000 and RL 
models tools requiring only one parameter to be fitted for practical applications. 

1  INTRODUCTION 

VNIR (visible and near infrared) as well as TIR 
(thermal infrared) radiation measurements are both 
prone to directional anisotropy (DA) effects. In the 
VNIR spectral domain, such effects for vegetation 
canopies  are originating from multi-scale variability 
of spectral properties andand . Generally, a canopy 
owns a complex structure that causes a radiation beam 
to follow different trajectories according to the 
illumination properties. As a result, the relative 
proportion of sunflecks and shadows in the field of 
view of a remote sensing instrument are at the root of 
sizeable directional effects.  For the same physical, 
reasons, a TIR signal will be also impacted. However, 
in the TIR domain, energy transfers combine with 
radiative processes to determine the surface 
temperature of the leaves, which makes DA also 
dependent of meteorological forcing and water status 
of the plants (Duffour et al., 2016a). Hitherto, the 
appraisal of this was already widely explored both 
based on experimental efforts and modeling 
approaches (see reviews in Paw U, 1992; Lagouarde et 
al., 2000; Verhoef et al., 2007; Menenti et al., 2008). 
Particularly, the SCOPE model (e.g. Van der Tol, 
2009) is a coupled radiative-energy transfer multi-
layer model aiming at studying the determinism of DA 
(Duffour et al., 2015). The model represents a test-bed 
for examining the response of DA to varying physical 
properties, though limited to the treatment of 

homogeneous canopies. Nevertheless, simpler 
approaches seems mandatory in the lack of detailed 
information on the target with objective to processing 
massive remotely sensed data sets contaminated by 
DA. Nowadays, the context is the forthcoming space 
mission THRISNA devoted to collect TIR 
measurements at high spatio-temporal as a cooperation 
between France and India throughout their respective 
spatial agencies, CNES and ISRO. This paper presents 
the scientific work achieved so far as a candidate to 
fullfill the mission demand. Two simple parametric 
models mimicking DA are presented with possible 
applications in both VNIR and  TIR spectral domains.

 2  THE TWO CANDIDATE MODELS 

2.1 The VNIR Roujean 2000 model

This model (referred hereafter as R2000 below) is based 
on a physically-based development to treat VNIR data 
(e.g. Roujean, 2000): 

(1)

with
(2)

θs and θv solar and viewing angles, φ relative viewing - 
solar azimuth. Roujean (2000) suggested to take k = 
LAI/4, which corresponds to spherical canopies. 
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2.2 The TIR RL model

The RL (RL stands for ‘Roujean Lagouarde’) model 
has been adapted in the TIR from R2000 (Lagouarde 
and Irvine, 2008; Duffour et al., 2016b): 

(3)
The TIR anisotropy ∆T is defined as the difference 
between of-nadir and nadir viewing surface 
temperature. ∆THS is the value when viewing hot spot. 
By replacing ∆T by the reflectance ρ, this model can 
be extended to the VNIR domain (both are referred to 
as RLTIR and RLVNIR below):

 (4)

3 METHODOLOGY 

Directional anisotropy is simulated with SCOPE 
model (see Duffour et al., 2016 for details) for a 
selection of SENTINEL 2 bands (490, 560, 665, 705, 
783, 865 and 1610 nm) and in the TIR. Following 
Duffour et al. (2015, 2016a), SCOPE input data have 
been prescribed to describe a wide range of conditions 
that can practically be met. A spherical canopy 
structure is assumed, which corresponds to a random 
distribution of leaf inclination and orientation. LAI 
values are taken within the range [0.5, 1.0, 1.5, 2.0, 3.0 
5.0]. The hot spot parameter q defined as the ratio 
between leaf size and canopy height takes the values 
[0.01, 0.05, 0.1, 0.50], while the vegetation height is 
taken to 1 meter. For meteorological forcing, we 
consider scenarios for 4 dates above 2 ICOS stations 
that are Auradé (43.56°N, 1.05 °E, DOYs 79 and 174) 
and Avignon (43.91°N, 4.88 °E, DOYs 118 and 147). 
Simulations are performed at 13:00 LST, which is 
today the time of orbit pass envisaged for the future 
satellite mission TRISHNA. Finally, cases of dry/wet 
soil/vegetation have been crossed using 2 values of 
maximum of carboxylation Vcmo, 25 and 125 
μmol∙m−2∙s−1  (for dry and wet vegetation), and 2 
values of soil resistance to vapor transfer rss, 200, 2000 
s∙m−1 (for wet and dry, respectively). Gathering all 
these input data allows to built 384 SCOPE 
simulations per wavelength.  

R2000 and RL models are then fitted on each SCOPE 
simulated data within the principal plane ±3° in 
azimuth. Privileging the principal plane - instead of 
using all azimuthal directions - for the fit is justified 
by the fact that the magnitude is the largest and the hot 
spot effect is the best sampled. The fit is operated in 
two manners:

• ‘1-parameter fit’: ρHS and ∆THS fitted with k
prescribed, k = LAI/4

• ‘2-parameters fit’: ρHS and ∆THS fitted,
simultaneously with k

The overall polar plots of DA in the whole directional 
space can then be reconstructed using the parameters 
retrieved in the principal plane. A illustration is 
provided at the end of the proceedings (see color plate) 
for R2000 and RL models against SCOPE for one case 
study (LAI = 1.5, q = 0.1, Vcmo= 25 μmol∙m−2∙s−1, 
rss= 200 s∙m−1, Auradé for DOY 174). The polar plots 
first reveal the magnitude of anisotropy effects in the 
whole directional space. The discrepancies between 
the models are a narrower and more intense hot spot 
peak with SCOPE. 
The innovative work here is finding new value of k 
determined as the best parameterization with LAI. 

4 GENERALIZATION OF THE R2000 MODEL IN 
THE VNIR 

Figure 1 displays the comparisons on all viewing 
directions (0 ≤  φv < 360, 0 ≤  θv ≤ 60) between 
SCOPE-simulated and R2000 reflectances fitted 
keeping  1- (Fig. 1 c,d) and 2- (Fig. 1 a,b)  parameters 
free, for the 865 nm red (Fig. 1a,c) and 865 nm near 
infrared (Fig. 1 b,d) wavelengths. Fig. 1 shows that 
using k = LAI/4 as initially proposed by Roujean 
(2000) fails for NIR, and that the red band provides 
the highest correlation. This is confirmed by the 
analysis of similar fits made for the other SENTINEL 
channels (not presented here). 

The relationships between k and LAI were then 
investigated for each wavelength. Only relationships 
for red and NIR are presented in Figure 2. For each 
LAI, the k values obtained for the 4 dates and the 4 q 
values are mixed (16 points). Most of the dispersion of 
the points is explained by the variability of hot spot 
parameter q, with only little impact of the date. (i.e. 
k(LAI) curves very close to each other for a given q 
value). As q remains difficult to estimate and as no 
robust way for estimating q from remotely-sensed data 
has been proposed up to now, we looked for a unique 
k(LAI) function for each wavelength A double-
exponential function was tested to explain the 
relationship between k and LAI (Fig. 2). The 
following revealed the more suited:

(5) 

Now combining Eq. (1) and (4) makes R2000 a 1-
parameter model (ρs), provided LAI is known. Its 
performance was evaluated by fitting it on the same 
dataset (Fig. 3). The loss of performance of the new 
R2000 parameterization compared to the direct ‘2-
parameters fit’ is marginal. Performance is optimum in 
the Red and SWIR at 1.61 µm. We also notice that the 
k = LAI/4 parametirzation fails, particularly for 560, 
783 and 865nm wavelengths. 
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Figure 1. Comparison of R2000 fits against SCOPE simulated data for two fitting strategies in red (665 nm) and 
NIR (885 nm) wavelengths. 

Figure 2. Parameterization of the relationship between k and LAI for Red 665 nm (a) and NIR 865 nm (b). 

Figure 3. Performance of the R2000 model with k = LAI/4.0 (white) and  k = β(λ) (1 - eα(λ).LAI) (black) 
compared to SCOPE fitted with k free (grey) for SENTINEL 2 bands (490nm, 560nm, 665nm, 705nm,783nm, 
865nm, and 1610nm) 

(a) (b) 

(a) (b) 
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5 GENERALIZATION OF THE RL MODEL IN 
VNIR AND TIR

Canopy structure is a primary driver of directional 
anisotropy for both TIR and VNIR, and it largely 
governs the k coefficient values. It is therefore 
interesting to evaluate if the k retrieved in the VNIR 
bands could be also suitable in the TIR. For this 
purpose we fitted the RLTIR model in 3 ways: 

• ∆THS and kTIR are let free and fitted together
against SCOPE-simulated data

• ∆THS is let free and kTIR is prescribed to LAI/4
• ∆THS is let free and kTIR is from the value of kVNIR

retrieved from the fit of RLVNIR for each SCOPE
simulation. As they correspond to vegetation
channels most currently available on Earth
Observation satellites, only 2 wavelengths have
been considered in this exercise: red and NIR at
665 and 865 nm respectively.

The results are shown in Fig. 4. A similar good 
agreement is found when ∆THS and kTIR are let free 
(Fig. 4a) and when ∆THS is let free and kTIR is given 
the value of kVNIR retrieved in the red (Fig. 4c). The 
quality of the relationship decreases when kTIR is 
prescribed to LAI/4 (Fig. 4b) or at 865 nm. The kVNIR 
values retrieved from the R2000 model were also tested, 
but they revealed slightly less performant than RLVNIR 
(results not presented here). 

Figure 4. Comparison of fits of RLTIR model against 
SCOPE-simulated directional anisotropy. In all cases, 
the parameter ∆THS is let free. The parameter k is let 
free (a), or prescribed to LAI/4 (b), to its value 
retrieved for red (c) or NIR (d) wavelength.  

It is interesting to compare the values of k retrieved for 
each of the 384 fits in the TIR with RLTIR model 
against those retrieved in the red (665 nm) and NIR 
(865 nm) with the RLVNIR model. Figure 5 clearly 
shows that there exists a rather strong correlation in 
the red contrary to NIR.  

Figure 5. Comparison of k values retrieved with RL 
model in the TIR (kTIR) against values k665 and k865 in 
the red and NIR 

This led us to analyze the relationship between k665 
and LAI (Fig. 6). As previously we note an important 
scatter behavior mainly related to the variations in the 
hot spot parameter q. A simple linear relationship  
k = αLAI + β is estimated in the red. We found α = 
0.41 and β = 0.19. 

Figure 6. Parameterization of the relationship k(LAI) 
in RLVNIR model for red 665 nm. 

Figure 7. Comparison of the generalized RLTIR model 
with SCOPE-simulated directional anisotropy. 
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To check its robustness, the RLTIR model with k = 0.41 
LAI + 0.19 was finally fitted against the 384 SCOPE 
simulations of the dataset. The results is presented in 
Fig. 7. The overall agreement is quite good and 
comparable to the fit obtained when letting both ∆THS 
and kTIR free, as confirmed by R² (0.841 and 0.888) 
and RMSE (0.276 and 0.234) statistics. The 
discrepancy observed for high values of anisotropy 
(surrounded by a dotted circle in Fig. 7) corresponds 
to the particular case of hot spots with low q values. 

6 CONCLUSION

The two parametric R2000 and RL models of directional 
anisotropy in the VNIR and TIR respectively have 
been consolidated and generalized against SCOPE 
simulated data. For both of them, the similarity of 
anisotropy in the red (at 665 nm) and in the TIR has 
been exploited in order to propose simple 

parameterizations of k coefficient against LAI. This is 
a significant progress, as it now makes R2000 and RL 
models tools requiring only one parameter, either ρHS 
or ∆THS, to be fitted. Because LAI is a product easily 
accessible from space, this is likely to facilitate 
practical applications in the future. Nevertheless a 
priori prescribing either ρHS or ∆THS still remains 
difficult as discussed by Duffour et al. (2016b) and 
methodologies have to be developed for this purpose.  

The study has been conducted assuming spherical 
canopies. A generalization to other structures 
(planophile, erectophile) remains to be investigated. 

Finally a validation against field data is also necessary. 
Ongoing UAV experiment at the laboratory based on 
the use of light cameras (GoPro filtered in red and 
NIR, OPTRIS for TIR) should provide robust data 
very soon for that purpose. 

Example of fits of R2000 and RL models against SCOPE simulations 
(LAI = 1.5, q = 0.1, Vcmo = 25, rss = 200, Auradé DOY 174) 
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ABSTRACT - This study proposes an empirical methodology for mapping monthly air temperature (Tair) 
(minimum and maximum) using meteorological data, geographic information and monthly land surface 
temperature (LST) derived from satellite data. Two sources of data for monthly LST estimates during daytime 
and nighttime were considered: 1) MOD11B3 and MYD11B3 products from the Moderate Resolution Imaging 
Spectroradiometer (MODIS), with a pixel size of 5600 m, and 2) the product from the Along Track Scanning 
Radiometer-2 (ATSR-2), or from the Advanced Along Track Scanning Radiometer (AATSR) (both with an spatial 
resolution of about 0.05°). The study period included June and December from 2003 to 2011. The analysis 
considered the spatial interpolation improvements in different land uses (Forests, Agricultural and livestock, and 
Urban areas) and different degrees in the orographic complexity of Catalonia (northeast of the Iberian 
Peninsula). Meteorological stations were weighted, in the calibration step, based on information from the quality 
masks of LST data. The best Tair models were obtained when regression included remote sensing LST and 
geographical variables, especially for minimum Tair and over Forests and Rugged lands. In general, the 
improvement was more important (in terms of reducing uncertainty) for the estimation of monthly minimum Tair, 
than for the estimation of monthly maximum Tair. Minimum Tair was better estimated using nighttime LST (RMS 
differences up to 0.3 K), as well as maximum Tair on winter, while on summer was better estimated with daytime 
LST. A simpler model, which did not include the topographic wetness index and the cost distances, provided 
similar Tair estimates. 

1  INTRODUCTION 
Monitoring and definition of the climate and 
meteorology of a specific geographic region are 
essential for the knowledge of the spatial and temporal 
patterns of the surface air temperature (Tair), defined as 
the temperature measured by a thermometer exposed 
to the air in a place protected from the direct solar 
radiation (WMO, 1992), normally located at about 1.5 
m above the ground. The Tair is a key climatic and 
meteorological variable that makes it possible to 
quantifying processes at surface level. In fact, it is 
involved in many environmental processes such as 
energy flows, actual and potential evapotranspiration, 
water stress, and species distribution (Prihodko and 
Goward, 1997). It can therefore be used, for example, 
as an input parameter in weather and climate models. 

Tair is usually measured at meteorological stations, 
which provide point data, spatially characterized by 
the density and distribution of the network of available 
stations. However, in many cases (especially in large 

and heterogeneous areas) it is necessary to have a 
continuous or quasi-continuous surface of the Tair. 

Remote sensing is the only methodology that 
effectively evaluates the spatial distribution of land 
surface variables on a regional and global scale. 
Thanks to the technological developments in the latest 
generation of spectral band sensors in the thermal 
infrared region (8-14 μm) (e.g., Sentinel-3, Landsat, 
MODIS, ASTER, AATSR, AVHRR) the capacity of 
existing Earth observation programs has improved. 
These sensors incorporate new spectral measurement 
channels of and provide much better spatial and 
spectral resolution than just a few decades ago. 
Likewise, the long historical satellite data series that 
exist today (Landsat, over 40 years, NOAA-AVHRR, 
over 30 years, MODIS, 16 years) make it possible to 
combine climate cartography based on data from 
meteorological stations with satellite information 
(Vicente-Serrano et al., 2004; Sun et al., 2005; 
Cristóbal et al., 2008; Hengl et al., 2012). In this 
sense, there are in the literature a variety of studies 
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that introduce the land surface temperature (LST) 
estimated with remote sensing data (Cristóbal et al., 
2008; Hengl et al., 2012). However, it is not usual to 
find jobs that use extensive time series. 

The present work has the general aim of 
progressing in the understanding and prediction of 
future environmental changes. The main objective is to 
improve the monthly Tair spatial estimates (minimum 
and maximum) currently provided by GIS-based 
models that combine statistical (multiple regression) 
and spatial (interpolation) approximations from 
meteorological data, incorporating LST from satellite 
data as a predictor. In this study, a long and robust 
time series (from 2003 to 2011) is considered, both 
from data from conventional meteorological 
observations and from remote sensing data, also 
integrating geographic factors such as altitude, 
continentality, etc. and that also takes into account 
images from different satellites. As a secondary 
objective, the changes in the estimates of the Tair at the 
spatial and temporal levels are evaluated, considering 
the analysis of data corresponding to the different 
times of the year analyzed, as well as the 
differentiation between land cover and the orographic 
complexity. The area of study is Catalonia, located at 
the northeast of the Iberian Peninsula. 

2 MATERIAL 

The database includes concurrent measurements from 
satellite data (daytime and nighttime LST), field 
measurements of meteorological stations (Tair) and 
geographic data for the summer (June) and winter 
(December) months from 2003 to 2011. 

2.1 Meteorological station data 

The meteorological data were provided by the Spanish 
National Meteorological Agency (AEMET) and the 
Catalan Meteorological Service (SMC). These data 
were previously subjected to a rigorous quality 
control, making a selection according to several 
objective criteria (stability of the time series, cross 
validation test, etc.), together with the expert 
knowledge (quality of the series of the meteorological 
stations, proper location, etc.). 

The Tair has been observed around 5 h - 6 h 
(minimum) and 15 h - 16 h (maximum), although 
there is some variability depending on the location and 
time of the year. It is considered an average of 195 
stations in each image, varying between a minimum of 
180 and a maximum of 212 depending on the time of 
year. The accuracy of the estimates is 0.1 K. 

2.2 Other geographic data 

The model also considers geographic information 
derived from a digital elevation model and other 
geographic variables, such as altitude, latitude, 
continentality (Euclidean distance and cost distance to 
the sea), potential solar radiation and a topographic 
wetness index (Böhner et al., 2002). 

2.3 Satellite data 

As monthly data of daytime and nighttime LST were 
considered 1) the products MOD11B3 and MYD11B3 
of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) of NASA and 2) the 
product hereafter called "ATCDR" corresponding to 
data of the Along Track Scanning Radiometer-2 
(ATSR -2) or the European Space Agency's (ESA) 
Advanced Along Track Scanning Radiometer 
(AATSR).  

The acquisition time of the images on the study 
area is detailed in Table 1. The nominal spatial 
resolution of both products is approximately 6 km 
(5568 km for MODIS and 0.05 degrees for ATSR-2 
and AATSR). However, the images were adapted to 90 
m of spatial resolution by means of bilinear 
interpolation (or the nearest neighbour, in the case of 
quality masks of MODIS products) for inclusion in the 
regression models. 

Table 1. Average local time of acquisition of the 
satellite images, after considering all the images and 
pixels of the study area. 

Product Daytime Nighttime 
ATCDR 10:26 21:24 

MOD11B3 11:11 21:59 
MYD11B3 13:08 2:04 

3 METHODOLOGY 

Although different spatial interpolation techniques 
exist, we opted to apply a methodology based on the 
multiple regression analysis combined with the spatial 
interpolation of the regression residuals by the inverse 
of the weighted distance (Ninyerola et al., 2000, 2005; 
Sun et al., 2005). The multiple regressions provide a 
predictive model of the climatic variable (Tair) from 
the variables that influence the climate of the zone (the 
geographic variables and the LST). The result is a 
potential map obtained from the equation of 
adjustment of the regression that reflects the general 
behaviour of the climate. Once this potential mapping 
is available, it is possible to interpolate the residuals of 
the regression itself to bring the potential surface 
closer to the observed data, and therefore, in general, 
for the entire mapped territory. In other words, the use 
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of the variance not explained by the regression model 
allows, once combined with the potential map, to 
obtain the most realistic maps possible. The residuals 
(difference between the value predicted by the 
regression model and the value observed in the 
meteorological stations) show the local aspects of the 
climate since they quantify how particular is that 
climatology with respect to the general model. 

Several reliability indexes were used to describe 
the thematic quality of each map. For the calculation 
of these indices it is indispensable to reserve a set of 
stations (set of validation or test) that allows 
comparing them with the values estimated from the set 
of adjustment stations. Cross-validation leave-one-out 
was applied in the present study. This process allows 
to preserve to the maximum the predictive capacity of 
the models and to obtain an average reliability index. 

The statistical variables analysed in this study are 
the root mean square error (RMSE) and the coefficient 
of determination (R2). 

The stations included in the model were weighted 
in the calibration, based on the LST quality bands 
information, according to the criteria established in 
Table 2 and Table 3. Further, stations were classified 
according to the land cover (Forests, Agricultural and 
livestock, and Urban areas) and the orographic 
complexity, which are based on the standard deviation 
of the altitude within a radius of 10 km (Flatlands, 
deviation <150 m; Middle ground, between 150 and 
250 m; Rugged lands, > 250 m). Different 
complexities for the model were considered as well, 
by considering all independent variables (hereafter 
called “complex model”) or all variables except the 
topographic wetness index and the cost distances to 
the Mediterranean and the Cantabric sea (hereafter 
called “simple model”). 

Table 2. Weighting of the meteorological stations 
according to the uncertainty (δ) of the LST product 
from ATCDR. 

ATCDR 
δLST (K) Weighting (%) 

≤ 1 100 
>1 y ≤1.2 90 

>1.2 y ≤1.4 80 
>1.4 y ≤1.6 70 
>1.6 y ≤1.8 60 
>1.8 y ≤2.0 50 
>2.0 y ≤2.3 40 
>2.3 y ≤2.6 30 
>2.6 y ≤3.0 20 

>3.0 10 

Table 3. Weighting of the meteorological stations 
according to the quality masks provided by the 
MOD11B3 and MYD11B3 products. QC-LST: 
"QC_Mandatory_QA_flag"; QC-Emis: 
"QC_Emis_error_flag". 

QC-LST QC-Emis Weighting (%) 
1 1,2,3,4 100 
3 1 70 
3 2 50 
3 3 30 
3 4 10 

4 RESULTS 

4.1 General observations for the regression 
coefficients 

For the estimation of the minimum Tair, solar radiation 
was not considered as a dependent variable, since in 
most cases its inclusion was not significant (p>0.05), 
and regression coefficients were even negative, 
inverting the natural relationship of the Tair with the 
solar radiation (since at higher radiation is expected 
higher Tair).  

The regressions obtained for the estimation of the 
maximum Tair during winter presented a general 
tendency to not include the topographic wetness index 
when considering the LST, nor the cost distance to the 
Mediterranean when considering the nighttime LST. 
However, for the estimation of the minimum Tair such 
exclusion only occurred occasionally.  

When the LST implied an improvement in the Tair 
estimation, a larger coefficient was obtained for that 
variable. On the other hand, its value decreased (or 
was practically zero), when the improvement was 
smaller or non-existent. 

4.2. Performance from models with a set of common 
meteorological stations 

The improvements observed in the Tair estimation 
by including the LST an independent variable are 
summarized in Table 4, as well as the difference 
observed by considering a daytime or nighttime LST 
product. As a result, the LST product providing the 
best estimates of Tair (in terms of RMSE) is detailed in 
Table 5. Further, mention that the R2 had a maximum 
value of 0.95 and a mean value of 0.90 and 0.83 for 
the maximum and minimum Tair, respectively. There 
were no large differences in R2 (<0.02) in the models 
that did not include the LST or between the models 
obtained for summer or winter. 

  34

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Table 4. Maximum (mean) difference in the RMSE of 
Tair observed during years 2003-2011 on models with 
80 common meteorological stations. 

RMSEnoLST – 
RMSEwithLST (K) 

RMSELSTd – 
RMSELSTn (K) 

Month Max Min Max Min 
June 0.16 

(0.11) 
0.15 

(0.10) 
-0.15 

(-0.07) 
0.15 

(0.10) 
Dec. 0.12 

(0.04) 
0.3 

(0.2) 
0.13 

(0.02) 
0.3 

(0.17) 

Table 5. Product providing the best estimates of Tair 
(in terms of RMSE). Results from regressions 
considering 80 common meteorological stations for 
years 2003-2011. 

Month Max Min 
June MYDd ATCDRn 
Dec. MYDn ATCDRn 

Table 6. Maximum (mean) difference in the RMSE of Tair observed during years 2003-2011 on models 
considering all meteorological stations in the fitting step but considering only stations included within each class 
in the validation step. 

RMSEnoLST – RMSEwithLST (K) 
N Max 

June / Dec. 
Min 

June / Dec. 

Land cover 
Forests 33-38 0.3 (0.17) / 0.19 (0.08) 0.3 (0.16) / 0.4 (0.3) 
Agric. and livestock 99-110 0.06 (0.04) / 0.03 (0.009) 0.11 (0.07) / 0.13 (0.06) 
Urban areas 44-59 0.07 (0.04) / 0.09 (0.04) 0.10 (0.07) / 0.3 (0.19) 

Orographic 
complexity 

Flatlands 120-131 0.07 (0.04) / 0.04 (0.006) 0.16 (0.10) / 0.2 (0.15) 
Middle ground 33-46 0.16 (0.09) / 0.05 (0.015) 0.08 (0.05) / 0.3 (0.15) 
Rugged lands 26-34 0.16 (0.12) / 0.4 (0.19) 0.17 (0.04) / 0.5 (0.2) 

Table 7. Maximum (mean) differences in statistics obtained with the “simple” and the “complex” model. Model 
results for years 2003-2011 by considering all meteorological stations and LST estimates from the product 
indicated in Table 5. 

RMSEsimple – RMSEcomplex (K) R2simple – R2complex 
Month Max Min Max Min 
June 0.15 (0.08) 0.03 (0.017) -0.04 (-0.07) -0.004 (-0.010) 
Dec. 0.018 (0.04) 0.04 (0.011) -0.001 (-0.03) -0.005 (-0.016) 

Table 8. Maximum (mean) values for Tair observed during years 2003-2011 on models with all meteorological 
stations. 

RMSEnoLST – RMSEwithLST (K) RMSE (K) R2 
Month Max Min Max Min Max Min 
June 0.10 (0.05) 0.08 (0.05) 1.2 (1.1) 1.5 (1.2) 0.945 (0.922) 0.918 (0.852) 
Dec. 0.04 (0.03) 0.2 (0.10) 1.3 (0.09) 1.3 (1.3) 0.947 (0.888) 0.899 (0.822) 

4.3 Performance by considering all meteorological 
stations 

The improvements on the Tair estimates observed 
when introducing the LST in the models, for each land 
cover and orographic complexity class, is summarized 
in Table 6. Table 7 presents the performance 
differences between models of different complexity, 
and Table 8 the overall performance. 

5 DISCUSSION 

The low significance of the solar radiation coefficient 
in the models is attributed to the arrangement of the 
meteorological stations in the geographical space, 
most of them located in flat areas. This causes little 

variability and does not capture the relationship in the 
models. 
Except for the maximum Tair on summer, the nighttime 
LST product provided a higher accuracy than the 
daytime LST product both for maximum and 
minimum Tair. As already shown by Zeng et al. (2015) 
for the estimation of the daily Tair, the ability of the 
nighttime LST to estimate the maximum monthly Tair 
is demonstrated, whereas the majority of the studies do 
not use to explore this possibility (Vancutsem et al., 
2010). 
The usefulness of remote sensing LST data on Tair 
estimation is demonstrated by the improvement 
observed (in terms of RMSE) in relation to the 
performance provided by the classical Tair models. It is 
higher for minimum Tair on winter (being up to 0.3 K), 
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and lower for maximum Tair on summer (being up to 
0.12). 
Further, the improvement is more significant over 
Forests and Rugged lands, which is an encouraging 
result, given the few ground data available in such 
type of surfaces. Furthermore, we also observed that 
the improvement provided by the inclusion of the LST 
is more important than that provided by the inclusion 
of more geographic variables into the model. 

6 CONCLUSIONS 

The incorporation of Tair satellite estimates into the 
monthly Tair predictive models implies a significant 
improvement, especially for minimum and maximum 
Tair estimates on winter time. In conclusion, the LST 
provides additional information regarding the thermal 
inversion phenomenon, not reflected so far by 
geographic variables or terrain measures, probably due 
to the few meteorological stations located on Rugged 
lands. 
As an added value, the present work will be important 
for updating and improving the "Digital Climate Atlas 
of Catalonia" developed by the Universitat Autònoma 
de Barcelona and available online 
(http://www.creaf.uab.cat/miramon/Index_en.htm). 
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ABSTRACT- Surface soil moisture (SSM), as an important surface process parameter, plays a very important 
role in water resources management, crop growth, land degradation, vegetation coverage and global climate 
change research. In this study, the Moderate-resolution Imaging Spectroradiometer (MODIS) products from 
2008 to 2010 over alpine vegetation region of Tibetan Plateau are selected, including MOD11A2 Land surface 
temperature (LST) 8 days synthetic product and MOD13A2 Normalized differential vegetation index (NDVI) 16 
days synthetic product, to construct the LST-NDVI triangle feature space. Then, the linear interpolation and 
nonlinear interpolation methods are both used to estimate the SSM at the regional scale. Finally, the error 
analysis between retrieval SSM and ground measured SSM was carried out to explore the applicability of the two 
methods in the alpine vegetation area of the Tibetan Plateau, and the temporal and spatial variation of soil 
moisture in the study area was also analysed. The results show that the accuracy of the nonlinear interpolation 
method is significantly higher than the linear interpolation method. The Root mean square error (RMSE) 
between the estimated SSM and the ground measured data of the linear interpolation method is 0.1007m3/m3, 
and the correlation coefficient R is 0.5637 compared with the nonlinear interpolation method with RMSE of 
0.0752m3/m3and R of 0.6344. At the same time, there is a consistent regional soil moisture distribution with a 
decreasing trend from west to east of two retrieval methods. 

1  INTRODUCTION 
Surface soil moisture (SSM) plays a fundamental 

role in controlling the exchange of water and heat 
energy between the land surface and the atmosphere. 
The electromagnetic energy emitted and reflected by 
soil surface is measured to study the relationship 
between remote sensing information and SSM, and to 
establish the information model between SSM and 
remote sensing data, so as to retrieve the soil moisture 
information (Chen et al., 2012). 

Bowers and Smith (1972) found that the 
absorption amplitude of water in the absorption band 
was linearly related to soil moisture content. Dalal 
(1986) accurately estimated the soil moisture 
information of a large number of soil samples by using 
the moisture absorption values measured in the near 
infrared band. Kahle (1977) studied the thermal inertia 
model, and proposed different methods to solve one-
dimensional heat conduction equation, and combined 

with remote sensing data to solve the thermal inertia 
inversion of large area. Watson (1982) proposed a 
physical analytical equation for retrieving soil thermal 
inertia using remote sensing data, combined with 
meteorological data and soil moisture profile 
calculation, the soil moisture was successfully 
retrieved. 

While the development of soil moisture is 
retrieved by visible near infrared and thermal infrared 
remote sensing, the methods of combining the two 
were applied. Price (1990) proposed the concept of 
triangular space, and if there were enough pixels in the 
area with the clouds and water being removed, the 
spatial distribution of LST and vegetation index or 
vegetation coverage tends to converge into a triangle 
or trapezoid, which is called the LST- vegetation index 
feature space. Carlson et al. (1995) found that soil 
moisture and LST and vegetation index changes are 
non-linear and established a polynomial model to 
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describe the relationship of the three. Sandholt et al. 
(2002) proposed the Temperature vegetation drought 
index (TVDI) to represent the status of soil moisture 
on the base of LST-NDVI triangle feature space, and 
Goward et al. (2002) established the linear relationship 
between TVDI and soil moisture for the SSM 
retrieval. 

In the LST-NDVI feature space, the slope indicates 
that there is the lowest soil moisture for different 
vegetation types in the situation of the highest 
temperature, and we call this "dry edge". Meanwhile, 
the bottom edge of the triangle indicates that the soil 
moisture is sufficient and will not become a limiting 
factor for vegetation growth at the same temperature, 
which we call "wet edge". SSM can be interpolated 
between the "dry edge" and "wet edge" in the LST-
NDVI feature space, and the interpolation method can 
be divided into linear interpolation and nonlinear 
interpolation. 

Whether SSM is linear or nonlinear in LST-NDVI 
feature space remains to be studied. Since the linear 
interpolation method is simple, most researchers tend 
to use it while the nonlinear interpolation is complex, 
which is seldom used. This study aims to analyse the 
application of linear interpolation and nonlinear 
interpolation in regional SSM retrieval, and to analyse 
the temporal and spatial variation of SSM in the study 
area. 

2  STUDY AREA AND DATA  

2.1 Description of study area 

The source area of the Yellow River (SAYR, 95°50

′E-103°30′E and 32°20′N-36°10′N) is located in the 
northeast of the Tibetan Plateau with an average 
elevation of 4065m., as shown in Figure 1.  

Figure 1. The location of study area 

The landform of the SAYR is complex, and the 
vegetation types are diverse, Most of the area is 
covered with alpine vegetation types, such as alpine 
shrubs, alpine meadows, alpine grasslands, etc. 

Furthermore, the south and southeast of the SAYR is 
characterized by cold and semi-humid climate 
features, while the northern and western regions show 
a cold and arid to semi-arid climate pattern. The mean 
annual average air temperature is about 5℃, and the 
annual precipitation varies between 320 and 750mm 
over the study area. 

2.2 MODIS data 

MODIS is currently equipped on two satellites: 
Terra and Aqua. The two satellites cooperate with each 
other to observe the entire earth surface every 1~2 
days, and obtain the observation values of 36 bands. 
These data are widely used in the dynamic processes 
of the global land, ocean and atmosphere. The MODIS 
standard data products of MOD11A2 known as 8 days 
synthetic products of LST with a spatial resolution of 
1 km and MOD13A2 known as 16 days synthetic 
products of NDVI with a spatial resolution of 1 km are 
selected in this study. 

2.3 Ground measured data 

The Cold and Arid Regions Environmental and 
Engineering Research Institute, Chinese Academy of 
Sciences (CARRERI, CAS) and the Faculty of Geo-
Information Science and Earth Observation of the 
University of Twente (ITC) have installed an extensive 
soil moisture monitoring network in the east of the 
SAYR, as shown with red triangle in Figure 2. The 
network consists of 20 stations to monitor the soil 
moisture (5 cm deep) and can easily validate the 
satellite derived SSM. 

Figure 2. 20 Soil moisture sites operated by CARRERI 
and ITC in SAYR 

3 METHODOLOGIES 

3.1 LST-NDVI triangle feature space 

It is found that the spatial relationship between 
NDVI and LST is triangle when the research area is 
large enough, and the land cover type changes from 
bare soil to complete vegetation cover, and the soil 
moisture changes from drought to moist as shown in 
Figure 3. In the LST-NDVI feature space, point A 
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represents the condition of dry bare soil with a high 
value of LST and low value of NDVI; point B 
represents the condition of wet bare soil with a low 
value of LST and low value of NDVI; point C 
represents that vegetation is completely covered, and 
soil moisture is adequate with a low value of LST and 
high value of NDVI. Moreover, the slope indicates 
that there is the lowest soil moisture for different 
vegetation types in the situation of the highest 
temperature, and we call this "dry edge". Meanwhile, 
the bottom edge of the triangle indicates that the soil 
moisture is sufficient and will not become a limiting 
factor for vegetation growth at the same temperature, 
which we call "wet edge". 

Figure 3. LST-NDVI feature space 

3.2 Linear interpolation method 

Sandholt proposed the Temperature vegetation 
drought index (TVDI) to represent the status of soil 
moisture on the base of LST-NDVI triangle feature 
space as expressed: 

( )
( ) ( )

2 2

1 1 2 2

T a b NDVI
TVDI

a b NDVI a b NDVI
− + ×

=
+ × − + ×

(1) 

Where T represents the LST of any pixel, a1，b1 

and a2，b2 are respectively linear fitting coefficients 
of dry edges and wet edges. The value of TVDI varies 
from 0 to 1, and the larger the TVDI value is, the 
lower the SSM of the pixel is; the smaller the TVDI 
value is, the higher the SSM is. Then, we can know the 
dry and wet distribution of the study area by TVDI, 
but we don't know exactly how much relative water 
content is in the soil so that we need to convert TVDI 
into SSM. 

Goward et al found that the LST-NDVI feature 
space can be regarded as the contours of soil moisture 
in this region. The intersection point of each contour in 
this region is approximately straight line compared to 
the wet edge, so we can describe the slope of the 
straight line and soil moisture with unitary linear 
relationship as expressed: 

( )w w dM M M M TVDI= − − ×
(2) 

Where M is the SSM of one pixel; Mw is the 
maximum SSM of wet edge, and we can regard it as 1; 
Md is the minimum SSM of dry edge, which can be 
calculated by fitting the slope value of dry edge 
equation and the minimum SSM. 

3.2 Polynomial nonlinear interpolation method 

SSM can be interpolated between the wet and dry 
edge conditions in the LST-NDVI feature space. In 
addition, the interpolation method can be divided into 
linear interpolation and nonlinear interpolation. 
Carlson found that soil moisture and LST and 
vegetation index changes are non-linear and 
established a polynomial model to describe the 
relationship of the three as expressed: 

( ) ( )
22

0 0

ji
i j

c ij
i j

a NDVI LSTM
==

= =

=∑∑ (3) 

Where Mc is the SSM, aij are polynomial coefficients. 

4 RESULTS AND ANYLYSIS 

The results show that, as shown in Table 1, the 
retrieval SSM, estimated by both linear and nonlinear 
interpolation method in the LST-NDVI feature space, 
is larger than the ground measured data. At the same 
time, the absolute error and the RMSE between the 
estimated SSM and the ground measured data of the 
nonlinear interpolation method are less than the linear 
interpolation method, which shows that the nonlinear 
interpolation method is more accurate.  

Table 1. Error analysis of two methods 
Method absolute error RMSE R 
Linear 

interpolation 
method 

0.0015 0.1007 0.5637 

Nonlinear 
interpolation 

method 
0.0004 0.0752 0.6344 

The correlation coefficient R obtained by the 
nonlinear interpolation method is 0.6344 greater than 
the linear interpolation method of 0.5637 as shown in 
Figure 4, which shows that the nonlinear interpolation 
method has better fitting effect with the ground 
measured data.  In general, the polynomial model is 
better than the drought index model in terms of 
computational accuracy and fitting results. In general, 
the nonlinear interpolation method is better than the 
linear interpolation method in the calculation accuracy 
and the fitting result in this study. 
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Figure 4. The correlation coefficient analysis between 
the estimated SSM and the ground measured data of 
two methods 

Figure 5. SSM (m3/m3) retrieval by linear(left) and 
Nonlinear interpolation methods (DOY, Day of the 
year) 

As shown in Figure 5, the soil moisture retrieved 
by the two models is basically consistent in the 
regional distribution. Furthermore, from east to west, 
there is a trend of SSM value from high to low, and 
there is higher in the West and southwest, while it's 
lower in the northeast and southeast. Also, soil 
moisture changes slightly over time throughout the 
central region. 

5 SUMMARY AND CONCLUSIONS 

SSM plays a considerable role in various 
hydrological models, meteorological studies and 
ecological applications. This study takes the SAYR 
covered with alpine vegetation in the northeast of 
Tibetan Plateau as the research area, and LST-NDVI 
feature space has been constructed using MODIS LST 
and NDVI products from 2008 to 2010. Then 
combined with the ground measured data from 
CARRERI, the SSM has been retrieved by both linear 
interpolation and polynomial nonlinear interpolation 
methods. Finally, the results show that the trend of 
SSM distribution in the two models is basically 
consistent; in addition, the accuracy of polynomial 
nonlinear interpolation method is higher than that of 
linear interpolation method, which is more appropriate 
for SSM retrieval over alpine vegetation region of 
Tibetan Plateau. 
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ABSTRACT: Grazing intensity (GI) is difficult to measure accurately because of the diversity of grazing livestock, 
mobility of the grazing space and uncertainty of the grazing time. Thus, GI monitoring is often qualitative, and 
few studies have quantitatively monitored GI. In this paper, models of GI and the Normalized Difference 
Vegetation Index (NDVI), GI and the above ground biomass (AGB) were established using a controlled GI 
experiment based on grassland ecology measurements and remote sensing. The accuracy of the model was 
evaluated using GI values estimated based on AGB samples and the principle that AGB is similar for the same GI 
in the same type of grassland. The GI of temperate meadow grassland was quantitatively simulated based on NDVI 
without field measurements. The results show that it is feasible to simulate GI based on NDVI, the simulation 
results were influenced by different climate conditions, especially for precipitation in each year. Most of the study 
area was heavily grazed, except a few pastures with rational utilization (0.23-0.46 Au·ha-1), and in many cases, 
continuous heavy grazing occurred for many years without cultivation. 

1  INTRODUCTION 

The grassland ecosystem in China includes 400 million 
hectares of various grasslands that account for 
approximately 41.7% of the total land area, making it 
the largest terrestrial ecosystem in the country (Ren et 
al., 2008). Additionally, it serves important ecological 
and productive functions (Hoffmann et al., 2016). 
Grazing, which has a long history in China, is one of 
the most important types of grassland utilization 
(Kawamura et al., 2005). However, 90% of the 
available natural grassland is degraded to different 
degrees (Harris, 2010), the monitoring studies of 
grazing intensity (GI) have generally been qualitative, 
and quantitative monitoring remains a challenge (Li et 
al., 2016). GI refers to the number of livestock per unit 
area in a given period, and it is an important index that 
reflects the degree of grazing utilization. The 
conventional method of grassland ecosystem 
monitoring is based on the following characteristics: (1) 
this method requires considerable manpower and 
material resources to investigate livestock populations 
and distributions, which not suitable for a wide range to 
estimate, and (2) grazing experiments have been 
designed according to the GI, plot area and grazing time 
in a large number of scientific studies.  
Remote sensing has recently become one of the main 
technologies for large-scale grassland research and has 

a wide range of applications in the grassland resource 
surveying and mapping. Currently, quantitative GI 
monitoring using remote sensing technology is mainly 
based on establishing models between GI and a selected 
index (Kawamura et al., 2005), such as above ground 
biomass (AGB) (Li et al., 2016), net primary production 
(NPP) (Hunt and Miyake, 2006), vegetation index (VI) 
(Green et al., 2016), etc. This method could be further 
improved; for instance, the GI data that were used for 
modelling were generally obtained via investigation or 
statistical data, and these data were often associated 
with inherent error; how to make full use of previously 
measured and known GI values by scientific studies; the 
error in GI estimates can be magnified because of the 
error associated with the inversion of AGB, NPP, etc. 

2  MATERIALS AND METHODOLOGY 

2.1  Study Area 
The study area is located in Xieertala, Hailar District of 
Hulunber, Inner Mongolia autonomous region, China 
(Fig. 1). The precipitation and temperature in the study 
area are moderate, and the climate is temperate 
continental. The annual precipitation generally 
averages 300-400 mm and is mainly concentrated in 
June to September.  
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Fig. 1. Location of the study area 

The frost-free period is typically 110 d, and the mean 
annual air temperature is -4 to 1°C. The soil is 
chernozem or chestnut soil with a medium fertility 
level. The main types of land cover in the study area are 
grassland, cropland, residential land, roads, water, 
forest, etc. The grassland types include temperate 
meadow steppe, temperate steppe, mountain meadow, 
and lowland meadow, and the main types of grassland 
utilization are grazing, cutting and fencing. 

2.2  Methodology 

2.2.1  Controlled GI Experiment 
The controlled GI experiment was established in 2009 
(Fig. 2). A randomized block design with three 
replications was used. Each replication included six 
grazing gradients: 0 (G0.00), 0.23 (G0.23), 0.34 
(G0.34), 0.46 (G0.46), 0.69 (G0.69), and 0.92 (G0.92) 
AU·ha-1 (where 1 AU = 500 kg of adult cattle). 
Eighteen plots of 5 ha (300 m × 167 m) were fenced, 
and the total area was 90 ha. The six grazing gradients 
included 0, 2, 3, 4, 6, and 8 head of young cattle in each 
plot. Thus, a total of 69 head of cattle were used, and 
each cattle weighed 250-300 kg. The cattle stayed in a 
plot throughout the entire grazing period from June to 
October. 

2.2.2  GI inversion and evaluation 
A total of 10 images from 2010 to 2016 were used in 
this study, including nine images from HJ-1A and HJ-
1B data obtained from the China Centre for Resources 
Satellite Data and Applications (www.cresda.com) and 
one Landsat5 TM image obtained from the United 
States Geological Survey (http://glovis.usgs.gov) 
because there were too many clouds in the HJ-1A and 
HJ-1B images.AGB (fresh weight and dry weight) data 
were collected from 17 July 2016 to 31 July 2016. 

Fig. 2. Controlled grazing intensity experiment 

The fresh weight was determined in 1 m×1 m quadrats, 
and the dry weight was calculated after drying for 48 
hours at 65°C to constant weight in an oven. A total of 
178 samples were collected in the controlled GI 
experiment, and each plot had 9-10 quadrats. 
Additionally, 100 samples were collected outside of the 
controlled GI experiment but in the study area. 
The pure pixels in each plot were selected in the 
controlled GI experiment by visual interpretation. 
Additionally, the variations in NDVI under different 
GIs were compared to determine the best time to 
establish the model between GI and NDVI. The NDVI 
was computed as follows: 

NDVI= RNIR−RRED
RNIR + RRED

         (1) 

where RNIR is the surface reflectance in the near infrared 
region and RRED is the surface reflectance in the red 
region. 
It is difficult to measure the GI accurately because of 
the diversity of grazing livestock, mobility of the 
grazing space and uncertainty of grazing times. The 
model between GI and AGB (fresh weight and dry 
weight) was established based on data from 178 
quadrats in the controlled GI experiment. The model 
was used to calculate the GI based on 100 samples 
collected outside of the controlled GI experiment. The 
GI values calculated by the model of GI and AGB were 
regarded as true values based on the principle that AGB 
is similar for the same GI and in the same type of 
grassland. The GI values calculated by the model 
between GI and NDVI were then evaluated using 
measured values. Finally, the GI in temperate meadow 
steppe was inverted based on the NDVI, which was 
directly derived from remote sensing images.  
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3. RESULTS AND ANALYSIS

3.1  The GI simulation model 
The relationship between GI and NDVI can be 
established in two ways based on the controlled GI 
experiment. The first approach is to use the average 
pixel-based NDVI of each grazing plot 
(Fig. 3; y = -0.241x+0.700, R2=0.954, N=18), and the 
second it to use the NDVI of each pixel at each grazing 
gradient (Fig. 4; y = -0.242x+0.701, R2=0.911, N=40). 
The results indicate that NDVI can be used to evaluate 
GI because both methods yielded R2 values greater than 
0.9; thus, strong correlations exist between GI and 
NDVI. The second linear model was used in this paper 
because the average NDVI eliminated some of the 
differences in the individual NDVI values.  

Fig. 3. Relationship between GI and pixel-averaged 
NDVI of each grazing plot 

Fig. 4. Relationship between GI and NDVI in each pixel 
and at each grazing gradient 

3.2  Accuracy Verification 
The GI values calculated via inversion using the GI and 
AGB model were regarded as the true values. The GI 
values simulated using the GI and NDVI model were 
compared to the true values, and a regression analysis 
was performed. The R2, RMSE and relative error values 
were used as accuracy evaluation indexes. As shown in 
Fig. 5, the simulation results were similar to the true 
values, with R² values of 0.799 and 0.816 for fresh 
weight and dry weight, respectively, and RMSE values 
of 0.178 AU·ha-1 and 0.166 AU·ha-1. Additionally, the 

relative errors were between -20% and 20% and 
accounted for 60% and 66% of the total error. All 
evaluation indexes suggest that the simulation results of 
the GI and NDVI model were accurate based on their 
agreement with true values. 

Fig. 5. Comparisons of simulated GI based on NDVI 
and true values based on AGB sampling (fresh weight 
and dry weight): relationships between simulated GI 
and fresh weight (A) and dry weight (B) NDVI and the 
relative error between simulated GI and fresh weight 
(C) and dry weight (D) NDVI 
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2010 2011 2012 

2013 2014 2015 
Fig. 6. Relationships between GI and NDVI in each pixel and for each grazing gradient from 2010 to 2015 

3.3  Model differences in different climates 
The previous analysis showed that GI could be feasibly 
estimated from NDVI. However, if the climate changes 
annually, the relationship of GI and NDVI will change 
in a corresponding manner? NDVI was negatively 
correlated with GI in July 2010 to 2015 based on the 
previous method (Fig. 6), but R2 differences were 
observed in different years, including relatively small 
differences in 2013 (0.301) and 2014 (0.427) and larger 
differences in 2015 (0.890) and 2012 (0.810). 

3.4  Mapping the grazing intensity 
The map of GI in the study area is shown Fig. 7. Based 
on the linear model between GI and NDVI, the GI 
values were suitable at 0.23 AU·ha-1 to 0.46AU·ha-1 in 
the same controlled GI experiment according to the 
community height, density, coverage, biomass, etc. 
(Yan et al., 2010, 2015). As a result, most grazing areas 
were heavily grazed from 2010 to 2016, and few areas 
were reasonably grazed. The average GIs in the study 
area were 0.97 AU·ha-1, 1.14 AU·ha-1, 0.80 AU·ha-1, 
3.07 AU·ha-1, 3.75 AU·ha-1, 1.15 AU·ha-1, and 1.31 
AU·ha-1 from 2010 to 2016. Additionally, the 
simulation results were not ideal in 2013 and 2014 
based on the low R2 values between GI and NDVI, 
which may have been due to the higher-than-average 
precipitation conditions during the growing seasons in 
those years. 

4. CONCLUSION AND DISCUSSION
Previous studies have successfully identified the signals 
of grazing impacts on grassland using remote sensing 
data (Numata et al., 2007), and some studies suggested 
that no direct relationship could be established between 
the development of vegetation cover and animal-based 
GI at the community level (Röder et al., 2008). 
However, NDVI adequately reflects the interactions 
associated with the climate-plant-animal relationship; 
thus, it can be used to characterize the temporal 
evolution of the green biomass in natural grassland 
(Junges et al., 2016). The simulation results based on 
NDVI inversion were generally good based on accuracy 
verification; however, the values were underestimated 
when the GI exceeded 0.96 AU·ha-1. This problem can 
be solved by increasing the interval of the grazing 
gradient. 
The growth of vegetation was affected by climatic 
conditions. The simulation accuracy decreased as the 
precipitation during the growing season increased 
because vegetation differences were small when high 
precipitation occurred in the arid area. Among the 
climatic variables in arid and semi-arid environments, 
precipitation variability has been found to be the 
primary determinant of vegetation dynamics (Paudel 
and Andersen, 2010), and a previous study found that 
most of the variation in production (75%) was 
explained by growing season precipitation at both 
grazed and un-grazed sites (Yang et al., 2012). This 
finding is consistent with those of this paper.
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2010 2011 2012 2013 

2014 2015 2016 
Fig. 7. Map of the grazing intensity in the study area from 2010 to 2016(A, B, C, D, E, F, and G) 

The average area of reasonable grazing was only 4.89% 
of the total area from 2010 to 2016, and the area of 
heavy grazing was 83.43% of the total area, while the 
lightly grazed area was only 11.68% of the total area. 
The heaviest grazing in the study period was observed 
in 2016, when heavily grazed areas accounted for 
98.84% of the total area. The lightest grazing in the 
study period occurred in 2012, when the heavily grazed 
area accounted for 64.67% of the total area. Most of the 
study area was heavily grazed, except a few pastures 
with rational utilization, and continuous grazing often 
occurred for many years without cultivation. Both the 
GI and grazing management system are key factors that 
affect grassland vegetation (Ren et al., 2015). Grazing 
patterns and the GI must be adjusted to ensure the 
sustainable utilization of grassland, and such 
adjustment methods include rotational grazing, rest 
grazing, etc. 
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Improvement of the TS-NDVI feature space of the TVDI method on 
spatio-temporal variation drought monitoring in karst areas 
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ABSTRACT: The temperature vegetation dryness index (TVDI) is an effective optical remote sensing method 
to monitor regional surface soil moisture status. However, due to the disturbance of multiple factors, the 
correlation coefficient of the dry and wet edge of the Ts-NDVI space of the traditional TVDI method is quite low 
and unstable in karst areas. Thus, this paper tried to improve the accuracy of the TVDI method by adding DEM 
correction to the Ts-NDVI feature space to monitor soil moisture in the karst area of Guangxi, China. After DEM 
correction to the Ts-NDVI feature space of the TVDI method, the change rules of the dry and wet edge 
correlation coefficients with NDVI values were obtained using multiple correlation analysis. The correlation 
coefficient of the dry edge with the increasing of NDVI value presents the two parabola forms of distribution 
while the wet edge correlation coefficient is positively correlated with NDVI, and the accuracy of the Ts-NDVI 
space of the TVDI method was improved obviously in the study area.

KEYWORDS: Remote sensing; DEM correction; Surface soil moisture; Ts-NDVI feature space; TVDI; Karst

1 INTRODUCTION 
Surface soil moisture (SSM) is one of the key 

factors which affect the climate and ecological 
environment in Karst areas. There is a close 
relationship between SSM and energy exchange 
among hydrosphere, atmosphere and biosphere, and 
SSM has a powerful control on the land surface 
evapotranspiration, carbon cycle and water migration. 
What’s more, SSM has great influence on the growth 
of crops, land degradation and vegetation cover, etc. 
Study on SSM of the Karst area is of great importance 
to the drought and flood disaster monitoring, 
evaluation of crop growth and ecological environment 
problems analysis and solving in Karst areas.  

SSM can be measured to some degree by all 
regions of the electromagnetic spectrum, and SSM 
retrieval methods can be divided into 2 big categories: 
optical remote sensing methods and microwave remote 
sensing methods. Each has its own advantages and 
disadvantages. Temperature vegetation drought index 
(TVDI) is one of the most representative optical 
remote sensing methods put forward by Sandholt 
(2002), which considered comprehensively the effect 
of vegetation index (VI) and surface temperature (Ts) 
on soil moisture, using Ts-NDVI feature space to 
retrieval SSM. At present, TVDI is the most widely 
studied and used method for SSM retrieval in optical 
remote sensing (Kimura, 2007; Hosseini, 2011; Zhang, 
2014). Many scholars have carried on research, 
verification, improvement and perfection to the TVDI 

method. For example: Vicente-Serrano et al. (2004) 
used AVHRR and ETM+ data in the north of Spain to 
verify the accuracy and applicability of TVDI. 
Holzman et al. (2014) used MODIS data in four 
agricultural experimental regions of the Argentine 
Pampas to verify the accuracy and applicability of the 
TVDI model. Kimura（2007）improved the fitting 
method of the dry and wet edge equation of TVDI, and 
proposed an improved TVDI index. Hosseini et al. 
(2011) used MODIS data to analyze the soil moisture 
based on EVI-LST and NDVI-LST, and found that the 
SSM retrieval accuracy based on EVI-LST was higher. 
Zhao et al. (2011) improved the TVDI model from 
multiple perspectives by using different methods. 
Considering the situation of water shortage in 
Northwest China, Li et al. (2012) used the modified 
soil adjusted vegetation index (MSAV) to replace the 
normalized difference vegetation index (NDVI) for 
SSM retrieval, and the TVDI method was further 
improved. However, due to the disturbance of multiple 
factors, the traditional TVDI method doesn’t fit karst 
areas, and the correlation coefficient of the dry and 
wet edge of the Ts-NDVI space is quite low and 
unstable according to the researches. Therefore, this 
paper aimed to improve the fitting accuracy of the wet 
and dry edge of the Ts-NDVI space of the TVDI 
method by adding DEM corrections especially for the 
Karst area, in order to improve SSM retrieval accuracy 
in Karst area. 

  47

Recent Advances in Quantitative Remote Sensing - RAQRS 2017

mailto:ffengyang2018@yeah.net


2 MATERIALS AND METHODS 

2.1 The study area 

Guangxi (20°54′ ~ 26°20′N, 104°29′ ~ 
112°04′E), located in the southwest of China's 
coastal areas, covers approximately 236.7 thousand 
square kilometers (see Fig. 1). It is surrounded by 
mountains and plateau, north of Nanling Mountains, 
west of Yunnan Guizhou Plateau and close to south 
Tropical Oceans. The geographical environment of the 
study area is complex, with more mountains and less 
land. Hills and mountains account for 70.8% of the 
area. The geographical distribution is north high and 
south low, from northwest to Southeast tilt, and 
Underground Rivers are developed.  

Fig.1 the study area 

The study area is a typical subtropical monsoon 
climate with warm temperature. The average annual 
precipitation is of 1086 ~ 2755mm but uneven 
distributed. The soil types in Guangxi are mainly 
ferrisol, which is widely distributed in the subtropical 
regions of the world. The study area of Guangxi has a 
typical Karst landform distribution, with karst 
mountain areas of 9.8×104 km2，accounting for 41% 
of the whole region. In the slope soil region of Karst, 
because the soil is shallow and infiltration 
performance is strong, the surface runoff of the slope 
is very little. Thus the SSM distribution is not directly 
proportional to the rainfall. 

2.2 data sets 

(1) MODIS/Terra data products: The 3rd level 
MODIS/Terra LST, NDVI and reflectance data 
products (1-km MOD11A2, 1-km MOD13A2 and 0.5-
km MOD09A1) included in the study are obtained 
from the United States Geological Survey (USGS), 
download from http://glovis.usgs.gov/. The 
MOD11A2 product (global 8-day 1 km surface 
temperature/emissivity data), MOD13A2 product 
(global 1 km 16-day vegetation index data) and 
MOD09A1 product (global 0.5 km 8-day reflectance 
data) include the data from February to April and 
August to October of 2009. To unify the resolution, the 
16-day surface temperature/emissivity data are 
calculated from the mean values of the 8-day data. 

 (2) DEM data: ASTER GDEM -v2 data is selected 
which is the product of the new generation earth 
observation satellite of Terra by NASA. The data 
covers all land areas from latitude of 83°N to 83°S, 
and the elevation accuracy is 30 meters. There are 38 
images in the study area of Guangxi. The data was 
obtained from the website of http://www.gscloud.cn. 

2.3 The method 

2.3.1. The traditional TVDI model 

Land surface temperature (Ts) and vegetation index 
(VI) are significantly negatively correlated, and the 
slope and intercept of the Ts / NDVI diagram differed 
with types of vegetation coverage in the same 
atmospheric and surface moisture conditions, and this 
is the Ts-NDVI feature space (Lambin and Ehrlich., 
1996) (Fig.2). 

Fig.2 The ideal Ts-NDVI triangle space 

On this basis, TVDI was proposed by Sandholt in 
2002 for SSM retrieval, which can be expressed as 
follows: 

   (1) 
In Formula (1),  represents the surface 

temperature of any pixel,  indicates the lowest 
surface temperature in the same NDVI, and 

represents the highest surface temperature in 
the same NDVI. 

(2) 

 (3) 
Formula (2) and (3) are called wet edge equation 

and dry edge equation respectively.  and are 
coefficients of the wet edge equation, and and 

are coefficients of the dry edge equation. According 
to the principle of TVDI, the bigger the TVDI value, 
the closer to the dry edge of the NDVI/Ts feature 
space, and the less SSM, and vice versa. 

2.3.2. Topographic correction to the TVDI model 

SSM retrieval using TVDI method is mainly 
affected by the two factors of surface temperature and 
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vegetation coverage. However, other factors such as 
the topography and atmospheric conditions will cause 
a certain impact on the SSM retrieval accuracy. In this 
paper, the ground elevation were used to correct the 
temperature in order to effectively eliminate the 
impact of solar radiation and atmospheric background 
differences. 
The elevation correction model formula is as follows: 

    
(4) 

In formula (4), T2 represents the modified surface 
temperature, T1 represents the surface temperature 
before correction, m1represents the level affected by 
elevation, usually with the constant of -0.6km/ºC，H 
represents the DN value of the image and the elevation 
of each pixel. 

3. DATA PROCESSING AND ANALYSIS

MODIS data of the study area in the year of 2009 
(12 groups) were processed, using the software 
platforms of ENVI5.1 and MRT (MODIS 
Reprojection Tool). ENVI5.1 and MRT were used to 
preprocess MODIS images, including extraction, 
mosaic, projection and resampling, etc. In the 
preprocessing procedure, bilinear interpolation method 
was used in resampling for 1000m resolution, and the 
Lambert Azimuthal was selected in the projection 
mode. The correlation between NDVI and Ts, noise 
removal and elevation data processing of ASTER 
GDEM V2 were dealt with IDL programming. The 
surface temperature Ts was obtained by the method of 
split window algorithm using band 31 and 32 of the 
MODIS data. 
3.1 The traditional Ts-NDVI space 

The traditional Ts-NDVI space can be obtained 
according to formula (1) to formula (3) in section 2.3, 
and the results are as follows (see table 1, table 2 and 
Fig.3). 

As can be seen from table 2, the relative 
coefficient of the wet edge in quite low, especially in 
August  the correlation coefficient R2 is only 0.34 
(Fig. 3). 
3.2 Topographic correction to the Ts-NDVI space 

The low fitting correlation coefficient of the wet 
edge in the traditional Ts-NDVI feature space of the 
TVDI method has direct relation with Karst landform, 
which makes rain infiltration rate fast, resulting the 
SSM retrieval by TVDI model is not consistent with 
the actual soil moisture after rainfall, and the retrieval 
model distorted. By the addition of topographic 
correction in the TVDI method, the low correlation 
coefficient of the wet edge can be improved 
effectively, and the SSM retrieval accuracy can be 
improved. 

Table1. The dry edge fitting equations of the Ts-
NDVI space 

Time Fitting equation correlation 
coefficient(R2) 

Feb.2009 y=-16.4002x+312.380 0.85 
Mar.2009 y=-21.0066x+315.675 0.90 
Apr.2009 y=-26.6305x+324.940 0.95 
Aug.2009 y=-17.9828x+321.198 0.89 
Sep.2009 y=-24.0018x+321.443 0.89 
Oct.2009 y=-13.6965x+312.947 0.92 

Table2. The wet edge fitting equations of the Ts-
NDVI space 

Time Fitting equation correlation 
coefficient(R2) 

Feb.2009 y=15.8921x+276.582 0.57 
Mar.2009 y=26.7310x+263.809 0.77 
Apr.2009 y=42.4722x+255.526 0.75 
Aug.2009 y=8.60516x+284.003 0.34 
Sep.2009 y=10.8663x+283.655 0.71 
Oct.2009 y=8.33422x+284.514 0.57 

 

Fig. 3 The traditional Ts-NDVI space in Aug. 2009 

According to the formula (1) to (4) in section 2.3, 
DEM topographic correction was added to TS, and the 
fitting coefficients of the dry and wet edge after 
modified were obtained. Take the data in Oct.2009 for 
example (Fig.4 and Fig.5). It is indicated from figure 4 
that the correlation coefficient curve of the dry edge 
after DEM correction showed a parabolic rise with the 
increase of the NDVI values, while that of the wet 
edge showed a significant increase in the low 
vegetation area, and decreased with the increase of the 
vegetation coverage (Fig.5). The correlation 
coefficient is highest in NDVI=0.3 then decreased 
gradually according to Fig.5. It shows a high 
correlation between topographic correction and the 
fitting coefficients of the wet edge in low vegetation 
areas. 
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Fig.4 Fitting coefficients of the dry edge before and 
after DEM correction 
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Fig.5 Fitting coefficients of the wet edge before and 
after DEM correction 

It can be concluded from Fig.4 and Fig.5  that: the 
fitting coefficient of the wet edge can be improved 
obviously by adding DEM correction in the low 
vegetation cover areas, but with the increase of 
vegetation coverage, the applicability decreased. 

4 CONCLUSIONS 

TVDI is an effective index from optical remote 
sensing imagery as retrieval surface soil moisture. 
However, the traditional Ts-NDVI space of the TVDI 
method does not fit karst areas. In order to improve the 
accuracy of SSM retrieval through TVDI in Karst 
areas, the Ts-NDVI feature space of TVDI was 
analyzed and improved by adding DEM correction to 
modify the surface temperature, and good results were 
obtained. The change rules of the dry and wet edge 
correlation coefficients with NDVI values were 
obtained using multiple correlation analysis: The 
correlation coefficient of the dry edge with the 
increasing of NDVI value presents the two parabola 
forms of distribution. The wet edge correlation 
coefficient is positively correlated with NDVI, and the 
accuracy was improved obviously. The 
implementation process of the TVDI method has been 
optimized after DEM correction. 
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ABSTRACT - The relationship between leaf area index and normalized derivative of red-edge reflectance is 
derived and evaluated using simulated reflectance using the FLIGHT radiative transfer model and measurements 
over corn and soybean fields.  The relationship applies within the red-edge between 710nm and 760nm, where 
sensitivity to the ratio of leaf reflectance to albedo is small.  An algorithm for leaf area index retrieval using 
Sentinel 2 is developed using this relationship. The algorithm performs comparably to published empirical 
regression with the measured dataset (i.e. RMSE 0.68) with weak sensitivity to factors such as acquisition 
geometry, clumping, leaf angle distribution and leaf chlorophyll concentration. 

1  INTRODUCTION 

Leaf area index ( ) is defined as half the live foliage 
surface area per unit horizontal ground area.  LAI is an 
essential climate variable and routinely derived using 
both empirical and physically based algorithms applied 
to multispectral satellite imagery.  Measurements 
suggest strong (e.g. standard error 0.58), species and 
chlorophyll independent relationships between  and 
simple transformations of the normalized difference of 
reflectance in the red-edge (i.e. 690nm to 800nm) (Dash 
and Curran, 2004; Gitelson, 2005; Vina et al. 2011). 

This paper develops a theoretical basis for the 
relationship between LAI and the normalized derivative 
of red-edge reflectance ( ) given by 

଴ ଵ
డ௟௡ோሺఒ,ஐబ ,ஐభሻ

ఒ
(1)

where  is canopy bi-directional reflectance for 
directions ଴ ଵ at wavelength .  The basis is then 
used to develop and algorithm for retrieving LAI from 
red-edge bands corresponding to the Sentinel 2 
Multispectral Imager and evaluated using 
measurements over corn and soybean fields. 

2  THEORY 

2.1 Black Soil Canopies 
Assuming black soil and spatially uniform foliage 
single scattering albedo ( ), canopy reflectance is 
given by (omitting angles) (Huang et al. 2007): 

௕௦ ଴ ଵ
ଵି௣మሺఒሻఠሺఒሻ∆ሺఒሻ

ଵି௣మሺఒሻఠሺఒሻ
 (2) 

where ଴ is canopy interceptance, ௞  , ௞  are canopy 
escape and recollision probabilities after kth scattering 
respectively and assuming these probabilities are 
constant for  : 

௣భ
ఘభ

ఘమ
௣మ

௣భ
ఘభ

ଷ ଶ
௣భ
ఘభ

ଷ ଶ
ଶ  (3) 

The wavelength dependence of ଵ is determined solely 
by , the ratio of foliage reflectance to  (Stenberg and 
Manninen, 2015). Figure 1 indicates that between 

710nm and 760nm, 
డ௟௡ఠ

ఒ

డ௟௡఍

ఒ
 so that combining 

Equations 1 and 2 gives: (4) 

௕௦
డ௟௡ఠ

డఒ

ଵ

ଵି௣మఠ

௣మఠ

ଵି∆௣మఠ

డ∆

డఠ
 (4) 

To relate ௕௦  to  from Lewis et al. (2007): 

ଶ ଴ ଵ ஶ (5) 

where ଴, ଵ are constants,  is leaf angle 
distribution ,  is clumping index and (Stenberg, 2007): 

ஶ
׬ ሾଵିୣ୶୮ሺ	ି ஍௅ሻሿ௦௜௡ఏ௖௢௦ఏௗఏ
ഏ
మ
బ

௅
 (6) 

Equations 4, 5, 6  provide a mathematical relationship 
between ௕௦  and  termed the ‘complete’ model. 

2.2 Multispectral Application 
For a contribution ௦  from soil collided fluxes: 

௕௦
ଵି

ങೃೞ
ങഊ

ങೃ

ങഊ
ൗ

ଵିோೞ ோ⁄
(7)

Solving Equations 4,5 and 6 for  requires , ௞  , ௞ for 
, , , ଴, ଵ. These requirements are 
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onerous for multi-spectral data where the number of 
wavelengths where  is observed is limited. 
Simulations from PROSPECT5b (Feret et al., 2008) 
over a wide range of leaf parameters indicates that 
between 710nm and 760nm,  is primarily determined 
by the ‘n;’ parameter related to leaf structure while  is 
primarily determined by leaf chlorophyll and dry matter 
concentrations ( ௔௕ , ௠ ). 

Figure 1.  (∂lnω/∂λ)⁄(∂lnζ/∂λ) based on PROSPECT5b 

Figure 2.  Relationship between  and 
డ∆

డఠ
 and p2 

for . 

For homogenous canopies with horizontal bi-
Lambertian leaves ௞  , ௞  can be expressed as analytic 
functions of  and  . In this case, as Figure 2 indicates, 

given  both  and 
డ∆

డఠ
 can be approximated by 

a single quadratic: 

డ∆

డఠ ଴ + ଵ ଶ

ଶ ଶ
ଶ (8)

Combing Equation 4 and 8 allows the relationship 
௕௦and ଶ  to be parameterzied only by , ௔௕  and ௠  

௕௦
డ௟௡ఠ

డఒ
௞

ଶ
௞ ௞ஶ

௞ୀ଴ (9)

Equation 9 is termed the ‘approximate’ model 

3 VALIDATION 

3.1 Black Soil Theory 
Simulations from the FLIGHT radiative transfer model 
(North, 1996) coupled with PROSPECT5b based on a 
wide range of parameters (Table 1) corresponding to 
homogenous canopies were used to validate the black 
soil theory. For each group of simulations sharing the 
same , ௔௕  and ௠ ,  Equation 4 of the complete model 
was inverted to estimate ଶ  using the FMINCON 
routine in MATLAB.  Additionally, the approximate 
model was used to estimate both ଶ  and  after 
calibrating ଴, ଵ over all simulations in a group. 
Again, the FMINCON routine was used to solve for ଶ  
and ଴, ଵ in Equations 9 and 3 respectively 

Table 1.  FLIGHT/PROSPECT5 parameter indicated 
as start value:step:end value. 

Parameter Units Range 

଴ deg. 10:10:60 

ଵ deg. 0 
- 0.5:0.5:10
cm 1,5,10 
- Planophile, Erectophile,

Spherical 

௔௕ µgcm-2 10:10:100 

௔௥ µgcm-2 0.2*C 

௪ gcm-2 0.01 

ௗ௠ gcm-2 0.002:0.0036:0.02 

௕௣ - 0:0:0
- 1:0.3:2.5

3.2 Measurements 
The multispectral application was validated using 
measurements from the CALMIT dataset reported in 
Gitelson  et al. (2005) and Vina et al. (2011).  The data 
consisted of in-situ measurements of ( ,  ,soil 
reflectance ௦ , ௔௕ , ௟) at 3 fields 
over 3 growing seasons resulting in a total of 190 corn 
and 104 soybean samples. Both  and were estimated 
from studies of similar crops assuming they did not 
change over time (Haboudane et al., 2002; Liu et al. 
2013). ௠ , dry matter, and  were estimated by 
inverting PROSPECT5 to match ௟  given ௔௕and . 
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Figure 3.   FLIGHT/PROSPECT5 (circles) for leaf chlorophyll concentrations from 10 µgcm-2 (blue) to 80 
µgcm-2 (orange) and (lines) fitted approximate models. 

The theory was validated using two different 
approaches for estimating p2 The first approach inverted 
the approximate model (Equation 9) using measured 
values of leaf optical properties to estimate p2 using a 
single red-edge wavelength for all data. In practice leaf 
optical properties and soil reflectance are not known. 
௕௦  was estimated by Equation 7 using: 

௦ ௦ (10) 

with measured values of ,  and ௦ . 
In both cases ଴, ଵ were hold-out calibrated data for 
the same species but with  prior estimates . 
In the second approach the approximate model was 
inverted simultaneously using two wavelengths, closely 
approximated by the normalized difference of Sentinel2 
Multispectral Imager Bands 4 and 5 (for 728nm) and 5 
and 6 (for 748nm), to estimate both leaf optical 
properties and p2 given N. To avoid soil correction, a 
polynomial relationship was fit between p2 and N for 
dense canopies (initial estimate of p2>0.5) and then used 
with hold-out measurements to calibrate a relationship 
between L and N that was then applied for all targets. 

4 RESULTS 

4.1 Black Soil Theory 
Figure 3 shows results for a typical red-edge 
wavelength from which it is observed: 
i)  The relationship between ௕௦  and  is concave

saturating at  .
ii) The relationship between ௕௦  and  shows 

substantial sensitivity to ௔௕ .
iii) The relationship between ௕௦ and p2 is 

approximately quadratic before saturation.
iv) The approximate model provides good agreement

with simulations of ௕௦  and .

4.2 Measurements 
Figure 4 shows results validating the approximate 
theory using multispectral measurements for one 
wavelength (735nm).  For both species,  is retrieved 
with comparable accuracy (root mean square error 
(rmse)  0.31 for corn, 0.10 for soybean). 
Figure 5 shows results validating the multispectral 
application of the approximate theory for Sentinel 2 
MSI bands.  The retrieval of ଶ  follows the relationship 
with  suggested by Equation 4 but shows evidence of 
convergence to a single minimum value of ଶ .  is 
retrieved with an rmse  of 0.31 for corn and 0.10 for 
soybean. 
These results suggest that the theoretical basis of the 
simplified model applies in the red-edge and may be 
useful for developing retrieval algorithms for  

5 CONCLUSIONS 

The normalized derivative of bi-directional reflectance 
measurements in the red-edge was shown to be related 
to both  and leaf chlorophyll concentration using an 
analytical model.  The model first relates the second 
recollision probability, ଶ , to the black soil normalized 
derivative and then relates ଶ  to  .  The model was 
verified with both simulated and measured datasets 
leading to the conclusion that relationship between the 
normalized red-edge derivative and  is, in general, 
sensitive to leaf chlorophyll concentration. 
The analytical model was used to develop a proof-of-
concept inversion algorithm using two red-edge 
normalized derivatives.  The algorithm retrieved  with 
accuracies similar to the uncertainty of in-situ 
measurements but required calibration of the ଶ  versus 

 relationship by species.  Further studies are required 
to determine the sensitivity of this calibration to canopy 
architecture and to verify the end-to-end performance 
of the algorithm. 
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Figure 4. In-situ L versus estimated corn (left) and 
soybean (right) L using approximate model with 

observed ω and ρs. Colours indicate leaf chlorophyll 
from 10 µgcm-2 (blue) to >60 µgcm-2 (orange). 

Figure 4. In-situ  versus estimated corn (left) and 
soybean (right)  using approximate model with 

observed  and ௦. Colours indicate leaf chlorophyll 
from 10 µgcm-2 (blue) to >60 µgcm-2 (orange). 

Figure 5.  In-situ  versus estimated ଶ (left) and  (right) for both corn and soybean canopies based on inverting 

the approximate model using two red-edge bands without knowledge of  or 
ݏ
. 

Figure 6. FLIGHT/PROSPECT5 (circles) for leaf chlorophyll concentrations from 10 µgcm-2 (blue) to 80 µgcm-2 
(orange) and (lines) fitted approximate models. 
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Figure 7.  In-situ  versus estimated ଶ (left) and  (right) for both corn and soybean canopies based on inverting 
the approximate model using two red-edge bands without knowledge of  or ୱ. 
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ABSTRACT Smoothing rough ploughed soils increases their albedo, which results a lower amount of shortwave 
radiation being absorbed by their surface layer. That surface emits less long-wave radiation, leading to a 
reduction in its temperature, which in turn can affect the climate. This paper presents a multistage procedure for 
quantification the annual dynamics of shortwave radiation reflected from air-dried bare soils within arable lands 
of the European Union (EU) and its associated, Norway and Switzerland. The soils, being in conventional tillage, 
were treated as bare, formed by a plough (Pd) and a harrow (Hs), when the major crops were planted there. 
Information about the areas of the soils and periods when they are bare was obtained from vectorised and 
rasterized geostatistical datasets. This procedure takes into account the spatial diversity of the soils characterized 
by thousands of reflectance spectra stored in the European Lucas Top Soil Database. These spectra were used to 
predict the half-diurnal albedo variation of the soils on a given day of the year. The shortwave radiation reaching 
the examined soils was obtained from satellite data of the SEVIRI instrument. It was found that the maximum of 
radiation levels reflected from the soils occur between the beginning of April and the end of May. During these 
periods, the radiation reflected from the soils formed by Pd and Hs can reach about 220 and 250 PJ/d in the 
western part of the EU, 150 and 190 PJ/d in the central part and up to 280 and 330 PJ/d in the southern part. 

1  INTRODUCTION 

The broadband blue-sky albedo of bare soil depends on 
relatively stable features over time (the content of soil 
organic matter, iron oxides and carbonates), as well as 
the states of salinity, moisture and roughness, which 
change dynamically due to agricultural practices on 
arable lands (Cierniewski et al. 2015). Smoothing 
rough ploughed soils increases their albedo, which 
results in a lower amount of shortwave radiation 
absorbed by their surface layer. That surface emits less 
long-wave radiation, leading to a reduction in its 
temperature, which in turn can affect the climate 
(Desjardins 2010, Farmer and Cook 2013).  

This paper presents a multistage procedure that 
aims to quantify the annual dynamics of shortwave 
radiation reflected from bare soils within the European 
Agricultural Region, where its major crops are 
cultivated. It is assumed that these soils, being in 
conventional tillage, are bare when the crops are 
planted until the crops reach the ground cover, which 
can significantly change the bare soil’s reflectance 
features. The soils are in two extreme roughness states 
formed by a plough and a smoothing harrow and are 
air-dried. 

2  METHODS 

The study area is the European Agricultural Region 
(EAR) according to the Major World Crop Areas and 
Climate Profiles (USDA, 1994), limited to the current 
countries of the European Union (EU) along with its 
associated countries (Switzerland and Norway). The 
EAR was analysed as divided into its western (W), 
central (C), and southern (S) sub-regions (Fig. 1).  
In the first stage of the procedure, using digital 
georeferenced datasets with a resolution of 5x5 arc 
minutes (Monfreda et al. 2008), it was determined 
where and in what areas the major crops (barley, 
wheat, maize, potato, rye, sugar beet and rapeseed) are 
cultivated in each sub-region. Using datasets from the 
crop calendar of Sacks et al. (2010), the planting dates 
of the individual crops was ascertained. Then, using 
datasets from the National Center for Atmospheric 
Research (https://ncar.ucar.edu) and the growing 
degree days (a tool measuring heat accumulation to 
predict plant development rates), an evaluation was 
made as to when the selected crops would reach 
approximately 15% ground cover. It was assumed, as 
Baumardner et al. (1986) argued, that spectral 
reflectance from fields with lower crop cover could be 
treated the same as the reflectance from bare soil.  
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Figure 1. Sub-regions – western (W), central (C) and southern (S) – where arable soils covered by the major 

crops can be bare. 
 
 In the second stage of the procedure, to determine 
the soil units that the delineated arable areas belong to, 
a digital soil map (ESDB v2.0 2004), classified as major 
reference groups according to the World Reference 
Base for Soil Resources (WRB), was superimposed on 
the croplands class taken from a land cover map 
(GlobCover 2009).  

 In the third stage, the soil units that occupied more 
than 5% area of the arable soils in a given sub-region 
were characterized by the reflectance spectra of all the 
soil samples that were located in their contours. The 
spectra were obtained from the European Lucas Top 
Soil Database (Tóth et al. 2013). 

 These average spectra of the analysed sub-regions 
were used in the fourth stage to calculate the half-
diurnal albedo α variation of the bare soils within W, C 
and S. Their overall soil α level at a given roughness 
condition under the θs = 45° (α45) was calculated as in 
the paper proposed by Cierniewski et al. (2017): 

∝45= 0.33− 0.1099𝑇𝑇3D − 5795.4x574 −
−510.2𝑥𝑥1087 +7787.2𝑥𝑥1355 + 12161𝑥𝑥1656 +
+ 6932.8𝑥𝑥698       (1) 

where T3D is the roughness index defined as the ratio 
of the real surface area within its basic unit to its flat 
horizontal area (Taconet et al. 2007), and x is the 
reflectance data transformed to its second derivative 
for a specified wavelength: 574, 698, 1087, 1355 and 
1656 nm. Meanwhile, αθs under θs <75° was calculated 
as:  

𝛼𝛼𝜃𝜃𝑠𝑠 = 𝛼𝛼45[1 + s𝛼𝛼(𝜃𝜃𝑠𝑠 − 45)],    (2) 

where sα expresses the slope of the α increases in this 
θs range:  

𝑠𝑠𝛼𝛼 = 0.000000626 + 0.0043𝐻𝐻𝐻𝐻𝐻𝐻−1.418,        (3)  

where HSD is the roughness index expressing the 
standard deviation of a soil surface area within its basic 
unit (Taconet et al. 2007). The half-diurnal α variation 
of the soil units relative to θs, taking into account their 
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roughness, was expressed in the full θs range up to 90° 
by the formula: 

𝛼𝛼𝜃𝜃𝑆𝑆 = 𝑎𝑎+𝑐𝑐𝜃𝜃𝑠𝑠0.5

1+𝑏𝑏𝜃𝜃𝑠𝑠0.5 ,   (4) 

where a, b and c are fitting parameters. This equation 
was individually fitted to the average half-diurnal α 
distributions of the bare soils, using TableCurve 
2Dv5.01software, assuming that each of them was 
shaped by a plough (Pd) and smoothing harrow (Hs) 
within W, C and S. It was assumed that the roughness 
of the soils formed by Pd and Hs was described by 
HSD values of 25 and 5 mm, and T3D values of 1.5 and 
1.05, respectively. 

In the fifth stage, the αθ s distributions of the soils 
representing W, C and S, originally fixed for every 
tenth day of the year in the θs function, were 
transformed to the function of solar local time, which 
allowed the calculation of the average values of the 
diurnal albedo of the soils (αd ). 

In the sixth stage, using 3 channels of the satellite 
SEVIRI instrument (related to 0.6, 0.8 and 1.6 µm), the 
amounts of shortwave radiation (Rid) reaching three 
places characterizing W, C and S every day in 2011 (in 
increments of one hour) in clear and cloudy conditions 
were determined. These amounts were obtained by a 
modified method implemented in the Land-SAF 
project proposed by Gautier et al. (1980) and Frouin et 
al. (1989). To smooth the impact of highly variable 
atmospheric conditions the daily Rid values for W, C 
and S were averaged over the year by a non-linear Erfc 
Peak equation implemented in TableCurve 2D v5 
software as no. 8008 (Systat software Inc., USA). 
Finally, Rid values were converted to TJ/km2. 
Multiplying the bare soil areas within W, C and S by 
the averaged diurnal albedo of soils formed by Pd and 
Hs values, as well as Ri values, the diurnal amount of 
shortwave radiation reflected from the sub-regions 
throughout the year was estimated (Rrd).  

3  RESULTS AND DISCUSION 

It was found that the total soil areas for cultivation of 
the major crops within W, C and S sub-regions is about 
229, 231 and 197 thousands square kilometres, 
respectively (Fig. 1). Taking into account the Eurostat 
data from 2013 (ec.europa.eu/eurostat) that the above 
areas are in the conventional tillage in the proportions: 
56%, 69% and 74%, it was determined that the 
research areas within W, C and S are 128 160, and 146 
thousands km2, respectively. 

The share of the WRB major soil groups covering 
at least 90% of each sub-region is shown in Table 1. 
Cambisols and Luvisols have a dominant share, 66% 
and 56%, in W and C, respectively.  

Table 1. The proportion of the WRB major soil group 
areas within the sub-regions: western (W), central (C) 
and southern (S).  

Figure 2. Averaged spectra of the WRB major soil 
groups within the analysed sub-regions. 

Although the proportion of Cambisols in S is 
larger than in W and C, the proportion of Luvisols is in 
third position behind Chernozems.Laboratory 
reflectance spectra relating to 2,482, 2,373, and 968 
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soil samples taken from W, C and S, respectively, were 
used to characterize the reflectance features of the soil 
major groups within these sub-regions. The greatest 
diversity of the soil spectral reflectance is shown by the 
averaged major soil groups in S, where their lowest 
reflectance refers to Regosols, and the highest to 
Cambisols (Fig. 2). Meanwhile, the smallest difference 
in this reflectance is revealed by the main groups in W. 
The averaged spectra describing all the soils that cover 
the studied sub-regions clearly show the higher 
reflectance of S than W and C (Fig. 3). The average 
diurnal αd  of the soils shaped by Hs is 14-22% higher 
than the same soils formed by Pd throughout the year 
within all the sub-regions (Fig. 4a). Figure 3. Averaged spectra of all the WRB major soil 

groups within the analysed sub-regions. 

Figure 4. Annual variations in: (a) – average diurnal albedo (αd) of the averaged bare soils formed by a plough 
(Pd) and a smoothing harrow (Hs) within the western (W), central (C) and southern (S) sub-regions; (b) – areas of 
the bare soils within the sub-regions; (c) – real (grey line) and averaged (black line) amount of shortwave radiation 
(Rid) reaching the soils within the sub-regions (d) – real amount of diurnal shortwave radiation reflected from one 
square kilometre of the soils within the sub-regions (Rrbd), formed by Pd (black solid line) and Hs (grey dashed 
line).  
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Spring peaks of the bare soil areas, about 85,000 and 
60,000 km2, were found within W and C around the 95th 
day of the year (DOY) (5-April) and the 125th DOY (5-
May), respectively (Fig. 4b). The largest spring peak, 
reaching 95,000 km2, was established within S around 
the 110th DOY (20-April). Significantly smaller autumn 
peaks of the bare soil areas within W, C, and S, reaching 
10,000, 20,000 and less than 5,000 km2, respectively, 
were found around the 280th DOY (7-October). Within 
S in summer around the 210th DOY an additional area 
of bare soils was found measuring 10,000 km2. The 
diurnal amount of shortwave radiation (Rid), reaching 
the sub-regions in 2011 varied from about 2 TJ/km2 

around the beginning of the astronomical winter to 17, 
19, and 21 TJ/km2 for C, W and S, respectively, at the 
beginning of the astronomical summer (Fig. 4c). 

The spring maxima of the radiation that can be reflected 
from the bare soils (Rrd) in W, C and S were predicted 
from the beginning of April to the end of May at 90-
125th DOY, 120-140th DOY and 110-150th DOY, 
respectively (Fig. 4d). During these periods, Rrd related 
to the soils formed by Pd and Hs can reach in these 
periods about 220 and 250 PJ/d in W, 150 and 190 PJ/d 
in C and up to 280 and 330 PJ/d in S. At the turn of 
summer and autumn, between 240th DOY and 280th 
DOY (from the end of August to the beginning of 
October), the radiation amount reflected from bare soils 
formed by Pd and Hs can only reach 20-25 PJ/d in W 
and 25-30 PJ/d in C. The radiation in this period in S 
can be almost imperceptible. In contrast, in summer 
around the end of July, the radiation in S can reach 25 
and 30 PJ/d for Pd and Hs, respectively. 

4  CONCLUDING REMARKS 

The results presented in this paper show a clear annual 
variation of the amount of shortwave radiation reflected 
from bare soils within arable lands in the European 
Union (EU).  

It was found that the greatest amount of radiation 
could be reflected from the soils from the beginning of 
April to the end of May. This instantaneous radiation 
amount relating to soil shaped by a smoothing harrow 
and plough was estimated at 250 and 220 PJ/d, 
respectively, for the western part of the European 
Union, 190 and 150 PJ/d for the central part and 330 
and 280 PJ/d for the southern part.  
This study indicates that the quantitative relationship 
between the reflectance of soils and their blue-sky 
albedo variation requires further research on arable 
lands in larger areas to evaluate the impact of bare soil 
reflection on a global scale. 
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ABSTRACT- The water cycle and energy budget at the Earth surface tightly interact with the climate change 
processes. Their monitoring as well as a number of practical applications (agriculture, soil and water quality 
assessment, irrigation and water resource management, etc…) require surface temperature measurements to be 
available at local scale. Such is the goal of the Indo-French high spatio-temporal TRISHNA mission (Thermal 
infraRed Imaging Satellite for High-resolution Natural resource Assessment). The scientific objectives of the 
mission are first presented. The definition of the mission specifications is supported by research work aiming at 
a better understanding of the surface temperature signal. Recent advances in this field are briefly reviewed, in 
particular original results dealing with the impact of directional anisotropy and of atmospheric turbulence on 
surface temperature measurements. Progress in modelling of surface fluxes is also discussed. The main 
specifications of the mission are then described and the trade-offs made for defining the revisit, the spatial 
resolution, the overpass time, the spectral bands and the orbit justified. The baseline of the mission is finally 
given. 

1  INTRODUCTION 

It is now widely recognized that humans interact 
strongly and rapidly with the environment at all spatial 
and temporal scales through agricultural practices, 
landscape organisation, urbanization, emissions of 
pollutants and greenhouse gases (IPCC 2014). These 
interactions affect the water and carbon cycles and 
climate processes. Exchanges of water, CO2 and 
energy between the surface and the atmosphere largely 
drive a number of processes such as vegetation 
growth, soil moisture dynamics, ocean circulation, 
biogeochemical cycles, etc... which, in turn, exert a 
strong feedback on climate. Many of the processes 
involved are primarily governed by water and energy 
budgets where the land and sea surface temperatures 
(LST and SST) appear as key signatures. As they are 
largely uncorrelated to the other observable surface 
variables, the surface temperatures provide new 
information to describe the processes and to drive 
models. The spatial variability of the surface requires 
that the complexity of both physical and biological 
processes involved must be assessed at small scale 
which corresponds to the scale at which decisions 
concerning water management or implementation of 
policies devoted to the mitigation of climate change 
effects are effective. In addition, surface fluxes show 
short-time scale variability, which requires frequent 
observations. Spatial systems combining both high 
spatial resolution and revisit capacities, which do not 
exist today, are therefore needed in thermal infrared 
(TIR), especially as SENTINEL-2 and 

RESOURCESAT missions now provide high quality 
complementary data in the optical domain. 
After several advanced studies (MISTIGRI, Lagouarde 
et al., 2013; THIRSTY, Crebassol et al., 2014) in 
partnership with other agencies, the French CNES and 
Indian Space Research Organization (ISRO) are in the 
process of defining a new satellite mission, TRISHNA 
(for Thermal infraRed Imaging Satellite for High-
resolution Natural resource Assessment) combining a 
high spatial resolution (about 50 m) and high revisit 
capacities (3 days) in the TIR with global coverage. 
The scientific objectives of the mission are first 
presented. Research work has been conducted to 
consolidate the mission specifications and recent 
results are briefly illustrated. The base line of the 
mission is finally summarized. 

2  SCIENTIFIC OBJECTIVES 

Two primary scientific objectives drive the mission, (i) 
ecosystem stress and water use and (ii) coastal and 
continental waters, with four complementary goals: 
(iii) urban, (iv) solid earth/geology, (v) cryosphere and 
(vi) atmosphere. 

2.1 Ecosystem stress and water use (design driver) 
LST provides a key information on actual 
evapotranspiration (AET) of vegetation (agricultural 
crops as well as natural surfaces), a critical term of the 
water cycle. Water used by agriculture represents 
about 70% of the water consumption at global scale. 
Many countries face drought problems, making water 
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stress detection and irrigation optimization techniques 
necessary for a better management of water resources. 
Important applications are therefore expected in crop 
production monitoring for assessment of food security 
for example. As CO2 and water transfer processes in 
plants are intimately related, and as water is the vector 
of many dissolved nutrients and/or pollutants within 
the soil, LST can help to monitor biogeochemical 
cycles with applications to water quality and soil 
pollution. Improved estimation of AET should 
facilitate the closure of watershed water budgets 
(infiltration, runoff, river flow, etc.) Other application 
can be found in ecology (e.g. mapping of 
microclimates, permafrost melting etc.).

2.2 Coastal and inland waters (design driver) 
High spatio-temporal resolution SST is expected to 
better assess the sub-mesoscale activity in coastal 
areas in relation with the variability of ecosystem 
productivity. As for continental biosphere, it will 
improve the estimation of gas fluxes (CO2, CH4) at the 
air-sea interfaces. Applications for coastal zone 
monitoring and management deal with water quality, 
algae blooms, fish resource, fresh water resurgences 
and water discharges (e.g. pollutants, thermal plumes 
etc.) among others. Additionally to similar 
applications for inland waters, the surface temperature 
of lakes has been defined as an essential climate 
variable by GCOS (Global Climate Observing 
System). The study of sea ice (extent, growth/decay of 
ice, feedback with climate) will also benefit from 
TRISHNA data. 

2.3 Urban 
In the context of an increase of urban world population 
and of an increase of heat waves as a consequence of 
climate change, more and more efforts are devoted to 
the characterization of urban heat islands (UHI) and to 
their possible mitigation or heat action plans for 
comfort of inhabitants (by ’greening’ of the city, urban 
planning or control of air conditioning energy 
consumption for instance). Improved flux estimations 
should also provide better inputs for urban and peri-
urban hydrology studies. 

2.4 Solid Earth 
TRISHNA should contribute to the monitoring of 
volcanic activity (prediction of eruptions, lava flows). 
The detection of thermal anomalies should find 
applications for detection of peat or coal fires, 
geothermal exploration or possibly as earthquakes 
precursors, among others. 

2.5 Cryosphere 
Apart from polar regions, the monitoring of snow and 
ice and the monitoring of glacial high altitude lakes in 

mountainous regions is particularly important as the 
snow and glacier melt runoff represents a perennial 
source of water for river basins. This is crucial for 
India which is partly dependent on Himalayan 
cryosphere.  

2.6 Atmosphere 
Different information on atmosphere (water vapour or 
precipitable water content) and clouds (type, height) 
can be derived from thermal infrared for improving 
surface  radiative budgets. 

3  RECENT RESEARCH RESULTS 

3.1. Impact of atmospheric turbulence on LST 
The atmospheric turbulence near the surface generates 
LST temporal fluctuations. Using high frequency TIR 
imagery over different surfaces (pine stands, corn, 
bare soil), it has been shown that their intensity and 
frequency depend on the characteristics of the 
turbulent flow and that their impact on LST depends 
on the spatial resolution of sensors (Lagouarde et al., 
2015). High frequency structures in the surface 
boundary layer correspond to typical scales of a few 
meters linked to the size of the surface roughness 
elements. Fluctuations in LST associated with these 
structures are similar in the mechanical domain to the 
“waves” or “honamis”, which propagate over wheat 
fields under the influence of wind, and are smoothed 
out for decametric pixels (50-100 m). Low frequency 
structures within the planetary boundary layer, 
conversely, have typical scales of several hundred 
meters and can trigger significant fluctuations both in 
time and in amplitude on pixels of smaller size. 
The departure from the mean of a LST time series 
illustrates the possible error made on an instantaneous 
satellite measurement (Figure 1) at the 50 m 
resolution. Provided an assumption of ergodicity of 
the LST signal is done, simulations performed at the 
laboratory with the Large Eddy Simulation (LES) 
model ARPS have confirmed the experimental results 
and provide a simulation of the expected errors 
depending on the spatial resolution at which a satellite 
measurement is performed (Figure 2). 

Figure 1. Time trace of the LST acquired at 10 Hz over a 
corn field (Bilos, SW France) at a resolution of 50 m. The 
departure of LST from the average (doted line) illustrates the 
possible uncertainty on satellite measurements. 
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Figure 2. Cumulative uncertainty histograms (in absolute 
value) at various resolutions for a maritime pine cover from 
Large Eddy Simulations. The measurement error decreases 
inversely with spatial resolution (for example, the error is less 
than ±0.4°C for 98 % of measurements at a resolution of 203 
m, but for only 80 % and 60 % of them at resolutions of 56 
and 21 m). 

3.2 TIR directional anisotropy
LST measurements are prone to significant directional 
anisotropy effects. We define  anisotropy as the 
difference between temperatures observed in oblique 
and nadir viewing angles. Experimental work based on 
airborne thermal imaging camera measurements 
allowed us to illustrate directional effects in the TIR 
domain for all azimuth viewing directions and on a 
range of zenith viewing angles up to 60° on forest and 
urban canopies (Lagouarde et al., 2000, 2008). 
Significant hotspot effects have been characterized. 
They are explained by the fact that when the surface is 
viewed exactly in the direction of the Sun, the sensor 
only sees sunlit elements, leading to a undesired or 
spurious peak in temperature.  

Modeling efforts are conducted to simulate directional 
anisotropy through various approaches (a review can 
be found in Verhoef et al., 2007). Combining 3D 
canopy models with radiative and energy transfer 
allows to simulate anisotropy for complex surfaces 
such as urban areas or row crops (Krayenhoff and 
Voogt, 2007). Multilayer radiative and energy transfer 
coupled models, such as SCOPE (Van der Tol, 2009) 
are more adapted to continuous and homogeneous 
canopies (Duffour et al., 2015). But their complexity 
makes none of these approaches well suited to an 
operational processing of satellite data. For this 
purpose attempts are made to develop simpler 
parametric models (Vinnikov et al., 2012; Duffour et 
al. 2016). All the above-mentioned models can help to 
provide guidelines in the phase of mission 
specifications definition (Figure 3). Nevertheless, a 
better assessment of TIR directional anisotropy is 
needed because it still remains a concern for delivering 
robust operational products. 

3.3 Surface fluxes modelling 
Important research is conducted on surface flux 
models for estimation of evapotranspiration. Different 
approaches are developed, either based on surface 
energy budget using one- or multi-source models and 
referred to as ‘residual methods’, or on scaling AET in 
a two-dimension LST-vegetation parameter space 
referred to as ‘contextual methods’ (a review can be 
found in Lagouarde and Boulet,  2016). The numerous 
examples of satellite-derived AET maps given in 
literature demonstrate the potential of these methods 
(Mallick et al., 2009; Bhattacharya et al., 2010; 
Anderson et al., 2012). The EVASPA platform 
(EVapotranspiration Assessment from SPAce) brings 
several algorithms all together to provide an ensemble 
simulation, which allows not only computing AET but 
also deriving its uncertainty (Gallego-Elvira et al., 
2013). As LST measurements from space are available 
only once a day at satellite overpass and for cloud-free 
conditions, monitoring of seasonal water budgets 
requires extrapolation (reconstitution of the diurnal 
cycle) and interpolation (gap-filling between two 
successive images) steps (Delogu et al., 2012). The 
evaporative fraction (the ratio between latent heat flux 
and available energy) or stress index (the ratio 
between latent heat flux and potential evaporation) are 
the supports currently used for the temporal 
interpolation. Research is currently made to propose 
alternative more efficient supports such as surface 
humidity or meteorological models outputs for 
instance. 

Figure 3. Qualitative modelled anisotropy for May, 21st using 
the Duffour parametric approach. The hot spot peak appears 
in white. It depends on location and time: Bordeaux 10:00 
and 13:00 solar time (a and b), idem for Bangalore (c and d). 
The white dotted line indicates a scan line. 
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4. MAIN MISSION SPECIFICATIONS

4.1 Revisit 
A daily revisit would be the optimum (i) to minimize 
the impact of uncertainty of LST due to atmospheric 
turbulence on the accuracy of AET retrievals and (ii) 
to cope with the high probability of clouds in many 
parts of the world. However, for a single satellite 
mission, the revisit is also severely constrained by the 
swath angle required for the global coverage of Earth. 
Orbit studies show that a reasonable scan angle lower 
than 35° can only be obtained with 3 day-revisit.  

4.2 Spatial resolution 
A high spatial resolution is required to access small 
size fields. Several papers in literature argue for a 
resolution lower than 100 m. An analysis of the size of 
fields in a typical agricultural landscape in the South 
West of France led us to recommend a 50 m resolution 
at nadir, corresponding to about a hundred meters at 
the swath edges. In many places of India, the very 
fragmented landscape makes 50m at least mandatory 
(Eswar et al., 2013). However, at lower resolution, the 
atmospheric turbulence induced uncertainty may 
increase significantly (see section 3.1). Technical 
constraints are also to be considered, in particular the 
size of existing detectors with respect to the swath to 
be covered. The final trade-off is a 50m spatial 
resolution at nadir. 

4.3 Overpass time 
The specification of overpass time results from a 
trade-off of 4 constraints :   
• Models show that the best accuracy of AET

retrievals is obtained for a LST acquisition
around 1 pm (Delogu et al., 2012).

• The sensitivity of time d(LST)/dt is minimum
(close to 0 °C/hour) when LST reaches its
maximum around solar noon. This makes more
robust the comparison of instantaneous satellite-
retrieved AET against integrated values derived
from surface or meteorological models at time
steps of around half an hour. For comparison,
around 10:00 (solar time), the variation of LST is
about 4 °C/hour.

• Surface temperature measurements over water
bodies should ideally be performed late enough in
the night, to remove inertia effects of a thin
surface layer heated by solar radiation the
previous day. The night overpass time being
delayed by 12 hours, a daytime 1 pm overpass is
preferred whereas an earlier overpass (~10:00 as
for Landsat) would be less adapted for summer
months for instance.

• For mid latitudes, the hot spot being situated in a
plane perpendicular to the scan line (provided the

orbit inclination at Equator adequately chosen, 
see figure 3) the impact of TIR directional 
anisotropy is limited. This is not true for the inter-
tropical zone.   

An overpass around 1 pm is finally recommended. 

4.4 Orbit 
For the 3 day orbit first selected for TRISHNA (666 
km) a point at ground is always observed in the same 
viewing geometry. A consequence is that, in inter-
tropical zone, the hot spot may affect some regions 
during several months per year. The lack of any robust 
model of hot spot makes difficult using LST data and 
derived fluxes obtained in such conditions. An 
alternative orbit with a 8 day-revisit (761 km) is 
considered which sub-cycles 3/2/3 could provide at 
least 2 hot spot free data out of 3 in the inter-tropical 
zone. 

4.5 Sensitivity 
Because of the intrinsic atmospheric turbulence 
induced uncertainty on LST, a NeDT better than 0.3 K 
@ 300 K is useless for continental surfaces. This value 
has still to be confirmed for water bodies.  

4.6 Spectral bands 
In the TIR domain, two bands centered on 10.3 and 
11.5 µm (with about 1 µm banwidth) have been 
chosen in the atmospheric window above 10 µm to 
apply the split-window method. Two additional bands 
in the 8-9.4 µm window have been selected to perform 
the temperature - emissivity separation using the TES 
method (after Gillespie et al., 1998): they are centered 
at 8.6 and 9.1 µm (~0.35 µm banwidth). A end-to-end 
simulator is used to determine the exact shape of TIR 
spectral filters. 
Moreover, in response to scenarios considering the 
possibility of flying a thermal instrument along with 
VNIR data provided by other systems (such as 
Sentinel, Landsat, etc…), a study (not detailed here) 
has been conducted to demonstrate that it is mandatory 
to embark both TIR and VNIR/SWIR instruments on 
the same platform. 
In the VNIR domain, the classical red and near-
infrared vegetation bands at 0.650 and 0.860 µm are 
mandatory. A green band (0.555 µm) will be used for 
coastal applications and snow discrimination (through 
NDSI). A blue band at 0.485 µm will allow cloud 
discrimination. A band at 1.38 µm to detect cirrus and 
high thin clouds is highly desirable. These last two 
bands will be acquired at a degraded resolution (100 or 
even 200 m) to limit the downward data volume. 
Finally a SWIR band is needed to address aerosol 
characterization and related incident shortwave 
radiative forcing, snow discrimination and albedo 
estimation. 1.650 and 2.130 µm are still debated. 
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5. CONCLUSION

The summary of  the baseline is as follows: 
Resolution : 50 m (nadir (<100 edges of swath) 
Revisit : 3 observations for any ground location per 8 
days period (using the 3 sub-cycles of a 8 day-orbit at 
761 km) 
Coverage : global  
NeDT : 0.3 K 
TIR bands : 8.6 and 9.1 µm (with ∆λ ~0.35 µm),   10.3 
and 11.5 µm (with ∆λ ~1.0  µm) 
VNIR bands : 0.485, 0.555, 0.650 and 0.860 µm 
mandatory, 1.38 µm highly desirable. Possible 
degradation of the spatial resolution for blue (0.485) 
and cirrus (1.38) bands. 
SWIR band : 1.650 or 2.130 µm (being studied) 
Two preliminary studies of TIR instrumental concepts 
are currently being conducted. They are based on two 
different concepts, a classical scanner and a step and 
stare instrument.  
TRISHNA is currenty in a A phase till end 2019. It 
will be followed by a one-year B phase. The launch 
could be foreseen at the 2023-2025 horizon.  
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ABSTRACT- The thermal radiation of water is polarized and the study of the thermal infrared polarized 
characteristics of water is the foundation of the detection of thermal infrared polarized remote sensing, and also 
significant theoretical support for water remote sensing interpretation. In this paper, quantitative analysis of the 
influence of the detection angle, the azimuth angle, the wave band, the temperature and their interactions in 
different polarized conditions on the thermal infrared polarized characteristics of water has been made by the 
orthogonal experimental design and spectrum analysis. The results show that, the polarized brightness 
temperature of water decreases with the increase of the detection angle and increases with the temperature rises. 
There is a parabolic distribution between the polarized brightness temperature and the azimuth angle, and the 
peak of the parabola is located near the azimuth angle of 180 °. The polarized brightness temperature in the four 
wave bands is different and presents distinct characteristics in different detection conditions. The interaction 
between the temperature and the detection angle has an extremely significant effect on the thermal infrared 
polarized characteristic of water. It provides new ideas and methods for remote sensing technology to monitor 
the water, having crucial theoretical significance and practical value for making full use of the polarized 
information and promoting the development of quantitative remote sensing. 

1  INTRODUCTION 

Water is one of the most important research objects 
in Geosciences (R.-F. Zhao, 2005). In recent years, 
many achievements have been made in the study of 
the reflection polarization of water (Y.-F. Lv, 2012). 
However, the thermal infrared polarized detection of 
water still belongs to a new research direction in 
remote sensing, which has great potential of 
application and development. 

Scientists in this field at home and abroad have 
carried out some tentative research work and achieved 
plenty of considerable results. It is found that water is 
the only one in the natural background which has more 
obvious thermal radiation polarized characteristic than 
others (B.Ben Dor, 1992). Analysis of the influence of 
the detection angle and the state of water on the 
thermal radiation polarized characteristic of water has 
been made (Shaw 2001, 2007) to point out that it can 
provide more effective information for the application 
of thermal radiation polarized remote sensing with the 
observation of a larger detection angle. X.-B. Sun 
(2010) has pointed out the great theoretical 
significance of research on the thermal infrared 
polarized detection of water. 

But there are still a lot of problems in the spectrum 
database construction and quantitative research on the 
influencing factors and their interactions of thermal 
radiation polarization of water. The study of polarized  

spectrum is the foundation of the study of thermal 
radiation polarized image of water. This study can 
accumulate basic scientific data for thermal radiation 
polarized remote sensing and provide references for 
the design and development of the platform and sensor 
of polarized remote sensing. 

2 THEORETICAL BASIS AND EXPERIMENTAL 
CONDITIONS 

2.1 Theoretical basis 

Malus first discovered the polarization of light. 
Maxwell had established the electromagnetic theory of 
light, which is essentially proved to be polarized (Y.-B. 
Liao, 2003). Fresnel had found that in the process of 
reflection and refraction, the light would produce 
polarization (H.-F. Zeng,2012). By the Fresnel formula 
of thermal radiation, as the two orthogonal polarized 
components of the thermal radiation of the reflection 
on the surface of the two kinds of media have 
polarization, the degree of absorption of the two is 
different according to the principle of energy 
conservation. So the absorption will also change the 
polarized characteristics of light. Combined with 
Kirchhoff's law, good at absorbing is also good at 
thermal radiation, so the thermal radiation will also 
have polarization characteristics, which is the physical 
basis of thermal radiation polarized detection. 
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2.2 Experimental Conditions 

    The platform is BPDF measuring platform (as 
shown in Figure 1), which refers to the Bidirectional 
Polarized-reflectance Distribution Function. The 
measuring instruments are: CE312-1b thermal infrared 
radiometer (as shown in Figure 2), and thermal 
infrared polarizer (3-18μm). The BPDF platform, the 
thermal infrared radiometer and the thermal infrared 
polarizer are combined into a thermal radiation multi-
angle polarized detector. Others in the temperature 
measurement are using three thermometers, they are 
the first-class standard thermometer, the second-class 
standard thermometer and the weather thermometer 
respectively. 

Figure 1.  BPDF measuring platform 

Figure 2. The thermal infrared radiometer 

3 INFLUENCING FACTORS ANALYSIS OF 
POLARIZATION OF WATER 

It is discussed from four aspects of the detection 
angle, azimuth angle, wave band and temperature in 
the analysis of the factors affecting the thermal 
radiation polarization of water. 

3.1 The effect of detection angle 

It can be seen from Figure 3 that the detection 
angle has a certain influence on the polarized 
brightness temperature of water. It shows that the 
polarized brightness temperature decreases with the 
increase of the detection angle, and the larger the 
detection angle is, the faster the rate of descent is. 

Figure 3. The polarized brightness temperature of water varies with detection angle 

3.2 The effect of azimuth angle 

It can be seen from the Figure 4 that the polarized 

brightness temperature of water in the four bands with 
azimuth angle is very similar, which is basically 
parabolic and the peak of the parabola is near the 
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azimuth angle of 180 degrees. 

Figure 4. The polarized brightness temperature of water varies with azimuth angle 

3.3 The effect of wave band 

It can be seen from the Figure 5 that the polarized 
brightness temperature of water varies with different  

wave bands and combined bands and presents distinct 
characteristics in different detection conditions. 

Figure 5. The polarized brightness temperature of water varies in different wave bands

3.4 The effect of temperature 

It can be seen from the Figure 6 that the polarized 
brightness temperature of water is monotonically 

increasing with the temperature rises. The curve is 
smooth and the polarized spectrum in the four wave 
bands is almost completely coincident. 
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Figure 6. The polarized brightness temperature of water varies with temperature 

4 INTERACTIONS ANALYSIS OF 
POLARIZATION OF WATER 

In order to make study of the effect of interactions, 

an orthogonal experiment has been designed in this 
paper.  

Table 1. The factor-level orthogonal experimental design of water

In the orthogonal experiment design of water (as 
shown in Table 1), there are four factors and each 
factor has two levels. The arrangement of factors and 
interactions is shown in the orthogonal experimental 
design L16（215）header design of water (as shown in 
Table 2). 

In the experiment, each factor and interaction is 
occupying one column and only the first, the second, 
the fourth, and the eighth columns of factor A, B, C, 
and D are arranged in the experiment. The interactions 
do not schedule any experiments. 

Table 2. The orthogonal experimental design L16（215）header design of water

     According to the experimental design scheme, the 
thermal radiation polarized data of water under 
different combination of factors and levels is obtained. 
With the polarized brightness temperature as the 
evaluation index, we have got the difference between 
the factors and the interactions of these factors.  

The primary and secondary relationship between 
the factors and the interactions is obtained by means of 
range analysis. The influence of the factors and the 
interactions on the thermal radiation polarized 
characteristics of water is determined by variance 
analysis and significance test. 
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According to N.-Z. Zhao (2008), if the F value of a 
factor (or interaction) is greater than 1% of F on the 
table, the impact of this factor is extremely significant, 
which is recorded as “**”.  If it is between 5% and 1% 
of F, the impact of this factor is significant, which is 
recorded as “*”.  If it is between the values of 20% 

and 5% of F, it has a certain effect, which is recorded 
as “(*)”. If it is less than 20% of F on the table, it can 
be considered that the factor does not have much 
impact. The results of variance analysis in different 
polarization conditions are shown in Table 3 to Table 5. 

Table 3. The result of variance analysis in 0° polarization angle 

Table 4. The result of variance analysis in 45° polarization angle

Table 5. The result of variance analysis in 90° polarization angle 

The results of variance analysis show that the 
influencing factors and interactions on the polarized 
characteristics of water are basically the same in the 
conditions of 0 ° , 45 ° and  90° polarization angle. 
Both of the temperature, the detection angle and their 

interaction have extremely significant impact on the 
polarized brightness temperature. But there are still 
differences on the interactions of different factors. The 
interaction between the detection angle and the 
azimuth angle has some influence on the polarized 
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brightness temperature in the 0 ° and 90 ° polarization 
angle and the interaction between the temperature and 
the azimuth angle has some influence on the polarized 
brightness temperature in the 0 ° polarized conditions. 
Other interactions have no significant impact. 

5 CONCLUSION 

In this paper, the polarized characteristics of water 
have been discussed from the influencing factors and 
their interactions. From the study above, we can draw 
some general conclusions on this problem. 

(1) The polarized brightness temperature of water 
decreases with the increase of detection angle, and the 
larger the detection angle is, the faster the rate of 
descent is.  

(2) There is a parabolic distribution between the 
polarized brightness temperature and the azimuth 
angle, and the peak of the parabola is located near the 
azimuth angle of 180 °. 

(3) The polarized brightness temperature varies in 
the four wave bands and presents distinct 
characteristics in different detection conditions. 

(4) The polarized brightness temperature increases 
monotonically with the temperature rises. 

(5) The interactions among these factors do exist 
and the influence varies in different polarized 
conditions. The interaction between the temperature 
and the detection angle has an extremely significant 
effect on the thermal infrared polarized characteristics 
of water. 
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ABSTRACT - Aerial Platforms for Research (PAI) is a unique infrastructure conceived as a comprehensive 
measurement capability. It provides support to the requests and needs of the atmospheric, remote sensing and 
R&D scientific instrumentation communities. From 2008 to 2011, 12 organizations members of EUFAR worked 
together on the COPAL project (COmmunity heavy PAyload Long endurance instrumented aircraft for 
tropospheric research and geosciences), with the objective to provide the scientific community with a high 
payload and long endurance aircraft (HPLE). From 2016-2020 the Strategic Plan of the infrastructure identified 
as one of its key weaknesses the obsolescence of the C212, core of the ICTS. With the objective of avoid this 
obsolescence and guarantee the future of the Spanish airborne research, the Spanish Ministry of Economy, 
Industry and Competitiveness has approved the funds required for the acquisition and modification of a new 
heavy payload long endurance instrumented aircraft: FENYX.  

1 INTRODUCTION 

An Aerial Research Platform (PAI, initials in Spanish) 
is an aircraft modified for the installation and 
operation of scientific instrumentation, able to perform 
flight campaigns to carry out scientific experiments 
and testing equipment and systems within the Earth's 
atmosphere.  

INTA (National Institute for Aerospace 
Technology) has three PAI: two C-212-200 aircraft, 
manufactured by CASA, and a motorglider Stemme 
S15, modified and adapted for scientific use. These 
aircraft provide support for the needs of the 
community Flight Test trials, atmospheric research, 
data collection from remote sensing/observation of the 
Earth and tests for the development and qualification 
of new scientific instrumentation, among others. 

The Spanish Ministry of Economy has recognized 
the PAI of INTA as ICTS (Singular Scientific and 
Technological Infrastructure). It is an infrastructure 
conceived so as to acquire data from aerial platform 
for scientific applications. 

The ICTS consists of an air segment, which 
includes these three aerial platforms, the onboard 
scientific instrumentation and auxiliary systems 
necessary to perform data acquisition campaigns. The 
ground segment of the ICTS, is composed of the 
airfield, home-base of the ICTS, with the aeronautical 
infrastructure for the safe operation of the aircraft: 
control centre for operations, runway, taxiway, 
platforms, hangars, guidance for navigation, etc. Also, 
includes, a computer network, workshops, 
warehouses, laboratories, offices, etc. The ground 
segment also includes all the necessary 
instrumentation to acquire complementary field data of 
the data taken from the air, weather station, 

instrumentation calibration and maintenance of 
sensors, modules for the analysis and validation of 
data, etc. 

The data obtained by the instrumentation of PAI 
can be on occasion complex and unique due to their 
format, variable measurements, measurement 
technique, etc. The PAI team offers to its users the 
necessary support to interpret the generated data and to 
extract the useful information.  

The complete system is offered to the national and 
international scientific community through 
partnerships, as a commercial transaction, within the 
framework of projects Horizon 2020, etc. 

2 THE ORIGIN OF PROJECT FENYX: COPAL 

The leading European countries in research with 
airborne facilities, each have different types of aerial 
research platforms. These countries are integrated 
through the EUFAR program (www.eufar.net); this 
enables the European scientific community access to 
the most suitable aerial platform for their experiment, 
regardless of the country to which it belongs.  

EUFAR is an Infrastructure Integration Initiative 
(I3), which began during the 6th framework program, 
and currently comprises 24 European institutions that 
operate over 30 instrumented aircraft. Spain 
participates with the PAI of INTA. 

The EUFAR instrumented aircraft fleet is 
composed of more than 30 aircraft with operating 
speeds from 30 to 200 m/s, payloads of between 80 
and 4500 kg and a ceiling of operation that reaches up 
to 21 km. All of them with a flight range not 
exceeding that of five hours. 

Due to the limiting factor of space and weight on 
the current European research aircraft fleet, the 
integration of new instrumentation is always difficult 
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and sometimes even impossible.  A new aircraft with a 
large capacity and autonomy, allows for the 
development of new technologies, as well as the 
expansion of the operational capabilities of the current 
European research aircraft fleet. 

For the construction and commissioning of this 
new platform called COPAL (COmmunity heavy-
PAyload Long endurance Instrumented Aircraft for 
Tropospheric Research in Environmental and Geo-
Sciences), which aims to provide the scientific 
community with an aerial platform for research of 
troposphere loads and autonomy, unique in Europe, 
able to reach and operate anywhere in the world such 
as remote oceanic or continental and polar 
regions. This will provide an unprecedented 
opportunity to countries which, do not operate these 
types of platforms but have the scientific potential to 
develop research papers by making use of the 
observations and measurements from the instrumented 
aircraft, allowing for the development of new 
multidisciplinary international experiments. 

The participants in this program were universities 
and research centres devoted to the study of the 
atmosphere, some aircraft operators, most of them 
members of EUFAR. 

Spain actively participated in COPAL, being in 
charge of the technical part of the project: definition of 
the aircraft, study of costs, selection of the operator of 
the aircraft and the data operator. 

Selection of aircraft: three aircraft were selected 
(A-400M, C-130 and the C-295), the option preferred 
by the majority of the members of the project was the 
C-130, similar to the American aircraft. 

After the feasibility study, which took place 
between 2007 and 2011, and which was financed 
through ESFRI, insufficient funding was found for the 
implementation of this new aircraft. 

3 FENYX: PROJECT DESCRIPTION 

As previously indicated, the European scientific 
community does not currently have an aerial platform 
of great autonomy and load for testing in the 
troposphere, this type of platform vital in flight 
campaigns associated with specific research projects 
related to climatic, chemical and large scale 
meteorological studies. 
FENYX aims to develop a new aircraft that will have 
capacity to carry more than 6 tons of instrumentation 
for a maximum of 8 hours. The choice of the payload, 
is associated with the operation of least cost and 
greatest benefit to research. In this way, the wide 
ranging capabilities of FENYX increase the likelihood 
of obtaining adequate scientific demand 
(approximately) that of close to 10 hours of autonomy 
with more than 5 tons of maximum payload. 

FENYX will in addition include significant 
advantages, such as the existence of a rear doorway, 
this greatly facilitates the loading and unloading of 
bulky and heavy equipment for operations of STOL 
(Short Take Off and Landing) characteristics, which 
make it possible to operate in remote areas. On the 
other hand, the turboprop, the velocity range of the 
aircraft is less than that of a turbo fan, which is of 
great benefit when it comes to the collecting of 
samples, data or images in flight 
Various initiatives at the European level 
GMES (Global Monitoring for Environment and 
Security) and around the world have launched a plan 
to establish a system for observation of the Earth 
(GEOSS, Global Earth Observation System of 
Systems), agreed to by more than sixty Nations, which 
together with the initiatives of the European 
Commission, are proof of the importance which these 
observation initiatives have acquired. 
To install the scientific equipment, the aircraft must 
undergo several modifications, such as: 

 Capacity to install scientific instrumentation:
a. Pods under the wings
b. Holes on the fuselage
c. Capacity for equipment 

installation on the windows
d. LIDAR holes
e. Remote sense holes.

 New avionic system
 Electrical power for scientific equipment
 Tube for air data probe
 Cabin configuration for 8 different scientific

experiments
 FTI
 Pressure taps throughout the cabin, available

for the 8 possible scientific groups
 Button camera types.
 Ice core  sampling

With these observation systems, aerial platforms play 
a fundamental role as a unique tool in the fields of 
remote sensing and atmospheric research for the 
realization of in situ measurements as well as a 
privileged place of observation of the Earth. This new 
platform creates the possibility of investigations in 
remote areas of the continent or ocean areas away 
from the coast and specifically, in the polar areas 
The phases referred to in the project are: 

3.1 Specification.  

To launch this new ICTS research platform, the 
documentation generated during the COPAL project 
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would be used as a reference. As well as data collected 
from current users. This lays out the technical 
characteristics which a research platform should have, 
as well as: an analysis of costs of acquisition, 
modification, operation and maintenance, scientific 
equipment and the aircraft operator requirements and, 
where appropriate operator of data, updating said 
study with updated information provided by the 
manufacturer and by the scientific community.  From 
there, proceed to write the specifications of the aircraft 
and technical documentation that determines the 
characteristics that must be met to fulfil the 
requirements of the scientific community 

3.2. The modifications that are necessary for the 
insertion of the scientific instrumentation.  

The aircraft will be a platform for research and for this 
purpose must be installed with the scientific 
equipment needed for the campaigns. It will be 
necessary to design and implement the modifications 
to the aircraft (structural, electrical, 
communications...) that will allow for the housing of 
the instrumentation on board. 

3. Certification of modifications.

All aircraft must have a certificate of airworthiness, 
which ensures that it is safe for flight. This certificate 
should take into account both the aircraft and the 
modifications.

4 EXPANSION OF CAPACITY FOR SCIENTIFIC 
APPLICATIONS 

We plan to base the aircraft in Galicia, in particular at 
the CIAR (Rozas Airborne Research Center). 

Infrastructure with these capabilities, ready to be 
deployed and operated anywhere in the world, will 
allow the scientific community, local, national and 
international, to make atmospheric studies in situ, of 
meteorological variables, pollution, climate change, 
remote sensing or observation of the Earth, 
microbiology, or development of new instrumentation. 
The existence and availability of the PAI infrastructure 
allows us to react and respond to certain catastrophic 
events that occur with relative frequency, and thus 
mitigate their effects on the society and its economy. A 
good example was the international reaction to the 
eruption in April 2010 of the Icelandic volcano 
Eyjafjallajökull. The combined effect of the ash cloud 
and winds dragged the particles onto the continent and 
resulted in the immediate closure of airspace to 
commercial flights, which, in turn, triggered a crisis 
for the transportation of people and goods, creating a 
situation of chaos without precedent in the recent 
history of the continent. Researchers in the field 

grouped together to discuss and agree on coordinated 
actions to the dramatic situation created by the ash. In 
particular, centres and institutes of the European 
Consortium EUFAR - European Facility for Airborne 
Research in Environmental and Geo-sciences, reacted 
by planning and coordinating flights to collect data 
within the critical areas, established protocols of 
interpretation, procedures concerning the sharing of 
data and the results of its analysis. One of the most 
important conclusions was the determination that the 
concentration of ash in the atmosphere was 1000 times 
lower than that predicted by the British numerical 
model. Once established the upper limit of the 
concentration of particles was compatible with the safe 
operation of the aircraft, it was possible to finally re-
open the air space to commercial operations. 

Another example are the flights carried out to integrate 
manned and unmanned aircrafts into the same 
airspace, within the framework of the SESAR project.  

Apart from the value of having the appropriate means 
to react to crises associated with disasters natural or 
those caused by human activity, a new platform with 
features such as those already described, expand the 
capacity for data collection, in both quantitative and 
qualitative terms, being able to perform the flight 
paths most appropriate and cover larger areas, as well 
as acquire more parameters for longer and with less 
uncertainty, thereby increasing productivity and 
efficiency, in scientific terms, of the infrastructure. 

In addition, the commissioning of a platform so 
complex and costly, will facilitate the creation and 
development in its environment of technology based 
companies, highly specialized in servicing the needs of 
onboard instrumentation, companies which in turn will 
benefit from access to the facilities of the Centre 
(CIAR) to carry out their tests, test instrumentation or 
debug their hardware or software solutions. A 
paradigm of this model is the complex of companies 
of scientific instrumentation development that 
emerged on the outskirts of Boulder, Colo., when the 
enclave was chosen as a base of operations for large 
U.S atmospheric research aircraft, and today, are the 
world reference within the sector. 

The new platform will also allow new aeronautical 
equipment and prototypes to be tested in flight before 
being accepted and implemented in commercial 
aircraft.  

The policy of the major aircraft manufacturers is not to 
use any equipment which has not previously 
demonstrated and been qualified for aeronautical use, 
thus hampering the entry of new suppliers to the 
market, so this aircraft may be used as a test bench for 
those entrepreneurs with the aim of developing 
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equipment, eliminating barriers, improving 
competition and densifying the industrial fabric of the 
aeronautical sector. 

5 CONCLUSIONS 

The Aerial Research Platforms, ICTS-PAI, are 
important tools for the realization of a large part of the 
projects within certain scientific fields, in particular 
those related to environment (both from the aspect of 
atmospheric and Earth observation), being an essential 
element in many scientific branches for obtaining data 
from land or air. 

This new aircraft will not only ensure the permanence 
in the long term of the ICTS, but will also broaden the 
already existing capabilities (autonomy, payload, 
range, ceiling...), both at the national level and in 
Europe. 

With this new aircraft, studies can be performed in any 
part of the Earth's atmosphere below its flight ceiling 
(25,000 ft), reaching remote areas such as polar or 
desert regions, areas unreachable with aircraft 
available today. 

This increased research capacity will increase our 
knowledge of the characteristics and operation of the 
atmosphere that surrounds us, and those characteristics 
and phenomena that occur on the Earth's surface, 
providing data that will be applicable to many fields of 
study, many of them in close relationship with the 
environment, enabling us to better understand the 
current situation , its evolution, what are the threats 
that cause degradation, etc.; that will enable us to react 
actively to promote its preservation and eventually, 
will lead to an improvement in the quality of life of the 
society. 

Other areas to benefit will be companies from within 
the private sector that are undertaking research 
projects in collaboration with bodies of research to 

expand knowledge of aircrafts, for example 
aerodynamic studies, noise or icing. For example, the 
European Commission recently approved a grant for 
the PHOBIC2ICE project, which involved Airbus 
Defence and Space, INTA and the CSIC, in 
collaboration with agencies from other countries, to 
study new materials, coatings and treatments that may 
reduce the formation of ice on aircraft, thus increasing 
their safety. The new aircraft will expand our currently 
existing capabilities to carry out these types of 
projects. 

In addition, the FENYS aircraft would have 
capacity to integrate up to 8 different groups of 
researchers, which would encourage collaboration 
between national or international groups, as well as the 
transfer of knowledge. Due to the coexistence on 
board of several scientific groups, this encourages a 
multidisciplinary research (for example, performing 
microbiological studies whilst simultaneously taking 
weather or atmosphere physics data) and international 
cooperation, and can carry out flights with different 
groups from different countries 
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ABSTRACT 

This paper aims to evaluate the potential of newly developed indices for retrieving leaf water content (LWC) 
from GF-5 satellite simulation data. In this study, PROSPECT model was selected to calculate leaf reflectance 
from 400nm-2500nm, and the range of the parameters in the model was set based on LOPEX93. 6 band 
reflectance was calculated from the GF-5 spectral response function (SRF) and simulated reflectance in 
PROSPECT. In order to find LWC sensitive band, the standard deviation was introduced to analyse the degree of 
dispersion of the reflectance along with the change of LWC. Simulation analysis shows that bands 5 and 6 are 
sensitive bands of leaf water content. To further analyse the influence of different combination of bands, new 
indices are extracted from Normalized difference vegetation index (NDVI), difference vegetation index (DVI), 
ratio vegetation index (RVI) under 11 band combinations. Polynomial regression was used to establish the 
relationship between the vegetation index and the leaf water content. Coefficient of determination (R2) was used 
to evaluate the strength of the relationship. In the end, data in LOPEX93 was used to evaluate the accuracy of 
the predicted LWC from the index. RMSE was employed to do the accuracy assessment. We find that DVI (4, 5) is 
the best index to retrieve leaf water content from GF-5 data. The results show that the retrieval accuracy can be 
as high as 0.0007g/cm2. 

1 INTRODUCTION 

Leaf water content is one of the main controlling 
factors of the photo synthesis, respiration and biomass 
in plant leaves, Spatial and temporal variability of leaf 
water content is critical for monitoring drought risk, 
diagnosing plant diseases and insect pests, predicting 
wildfires and estimating crop yields (M. E. Bauer, 
1986; B.Datt 1999; H. G. Jones 1998; Yanosky, T. M 
2005). Traditional measurement of water content of 
vegetation, which compares the difference in weight 
between fresh and dry leaves to address leaf water 
content, can only be carried out manually at field 
scale. (F. M. Danson 2004). Remote sensing, on the 
other hand, provides a means to monitor water content 
of vegetation at large scale with flexible spatial and 
temporal resolution (H. Erjr 1989). Leaf water content 
has been widely retrieved using spectral data collected 
in the visible, near infrared and shortwave infrared 
(VNIR and SWIR) Thomas et al. studied the 
relationship between water content and spectral 

reflectance of vegetation leaves by obtaining the 
reflectance spectra of different leaf water 
content(Thomas 1971). They found that the 
reflectance of vegetation leaves increased with the 
decrease of leaf water content. And reflectance at 
1450nm and 1930nm are significantly correlated with 
leaf water content. Carter  found that reflectance at 
1450 nm, 1950 nm, and 2500 nm was most sensitive 
to leaf water content changes(Carter 1991);Sims found 
that the reflectance at the 950 ~ 970 nm and 1150 ~ 
1260 nm was related strongly to the leaf water 
content(Sims 2003). Zhang found that the solar 
spectral reflectance indicated a leaf water absorption 
zone near 970nm, 1200nm, 1450nm, 1930nm and 
2500nm, at which reflectance can be used for the 
estimation of leaf water content (Zhang 2006). Based 
on this water sensitive wavebands, combined with the 
absorption and scattering characteristics of visible 
light, near infrared and shortwave infrared reflectance, 
the vegetation moisture index model of different types 
such as moisture stress index (MSI), water index (WI), 
normalized difference water index (NDWI), global 
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water moisture index(GWMI)are put forward. Based 
on the above research, in order to extract the water 
content index of LWC, we should first carry out the 
analysis of leaf water content sensitive index to find 
out which band is suitable for LWC retrieval. 

GF-5 satellite is launched for the main use of Chinese 
Ministry of Environmental Protection .The satellite 
also carries the most sensors, has the highest spectral 
resolution in National Science and Technology Major 
Project. The satellite data can be used to monitor 
aerosols, terrestrial vegetation, urban heat islands and 
other environmental factors. In this paper, we use the 
radiative transfer model of vegetation leaves to 
simulate reflectance under different LWC, Analyse the 
sensitive band of LWC. Based on the classical 
vegetation index and the GF-5 SRF, the remote 
sensing LWC vegetation index based on GF-5 data is 
established.  

2.1 Use of model 

Leaf reflectance was first simulated by the 
PROSPECT model. PROSPECT model is a radiative 
transfer model obtained by simulating the upwards and 
downwards radiation flux of the leaf. With a few 
parameters as input, it is able to simulate the 
reflectance and transmittance of the blade from 0.4µm 
to 2.5µm. The parameters such as chlorophyll content, 
carotene content, leaf structure parameters, brown 
pigment content and dry matter content were kept 
constant. The leaf water content was changed in steps 
to simulate the change of leaf reflectance under 
different leaf water content.  

2.2 Parameter range  

In the data simulation process, the first step is to set 
the value of the parameters. In order to make the value 
of the parameters closer to the true leaf content of the 
biochemical substance, the parameter values in the 
PROSPECT model in this paper are derived from the 
average measured values for the 1993 LOPEX93 
experiment. In which, different types of leafy plant 
species were collected at two different times.The 
values of each input parameters were determined 
according to the biochemical content of 70 leaves in 
the experiment. In order to carry out the sensitive band 
analysis of LWC, the most frequent value was selected 
as the fixed value of other non-essential parameters. It 
is noteworthy that, for example, the dry matter content 
of different leaves is very different, the most frequent 
value of this parameter is around 0.004 g / cm2, but the 
maximum value reaches 0.014 g / cm2, so the most 
frequent value is chosen as the representation to 
simulate the reflectance. (Table 1). 

Table 1. The values of parameters according to 
LOPEX 93’ 

leaf structure parameter 1.5 
chlorophyll a+b content  40 µg/cm2 

carotenoids content  13 µg/cm2 
brown pigments 

concentration  0 
Leaf water content 0.011-0.05g/cm2 

(0.001g/cm2 as step) 
dry matter content 0.004 g/cm2 

At the same time, we used the reflectance measured in 
the LOPEX93 experiment as the validation dataset. 
The simulation results and accuracy of the calibration 
group were evaluated by 330 sets of measurement data 
in this experiment. For the calibration group, a 
standard deviation of the reflectance of the sample 
with 40 different water contents was used to find the 
band suitable for retrieval. The simulated 
hyperspectral reflectivity and calculated band 
reflectance under 40 different LWC are also displayed 
in Figure 1. 

 
Figure 1. The simulated hyperspectral reflectivity and 
calculated wide band reflectance under 40 different 
LWC. 

2.4 GF-5 band reflectance 

In order to obtain the wide band reflectance of the 
satellite based sensor, we used the spectral response 
function of GF-5 to convolve the simulated 
hyperspectral reflectance. The GF-5 satellite sensor 
has a visible short-wave infrared region with band1 
(400 to 520 nm), band 2 (520 to 600 nm), band 3 (620 
to 680 nm), band 4 (760 to 860 nm), band 5 (1550 nm 
to 1750 nm), band 6 (2080 ~ 2350nm). The spectral 
response function of band 4, for example, can be seen 
in Figure 2. 
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Figure 2. 4th band spectral response function of the 
sensor on GF-5 satellite 

2.5 Data analysis 

In order to find a sensitive band, the standard deviation 
was introduced to analyse the degree of dispersion of 
the reflectance along with the change of LWC. The 
greater the degree of dispersion, the more sensitive it 
is. Band reflectance in both sensitive bands and 
insensitive bands were used as the input of the new 
vegetation index to calculate the vegetation index.  

In the field of remote sensing applications, the 
vegetation index has been widely used to qualitatively 
and quantitatively assess vegetation cover and its 
growth vigor. Because the spectral index can 
effectively reduce the scattering effect of vegetation 
leaves on single spectral band reflectivity. Therefore, 
the vegetation LWC index is established by using the 
combination of absorption and scattering 
characteristics of different leaf segments. In this paper, 
we use the three vegetation index types, namely, the 
ratio vegetation index model, the difference vegetation 
index model and the normalized difference vegetation 
index model. According to the results of band 
sensitivity analysis, a total of 11 combinations of the 
following can be obtained. (Table 2) 

Polynomial regression was used to establish the 
relationship between the vegetation index and the leaf 
water content. Coefficient of determination (R2) was 
used to evaluate the strength of the relationship. In the 
end, data in LOPEX93 was used to evaluate the 
accuracy of the predicted LWC from the index. RMSE 
was employed to do the accuracy assessment 

3 RESULT 

The standard deviation of the simulated reflectivity 
does not change much in band 1 to band 4. Indicating 
that in these bands, changes in water content cannot 
cause a large change in reflectivity, so these bands are 

leaf water content insensitive bands. In band 5 and 
band 6, however, the standard deviation of the 
reflectance is large, indicating that the two bands are 
the sensitive band. 

Table 2. Three vegetation index under different band 
combinations 

BAND NDVI DVI RVI 

1+5 NDVI(1，5) DVI(1，5) RVI(1，5) 

2+5 NDVI(2，5) DVI(2，5) RVI(2，5) 

3+5 NDVI(3，5) DVI(3，5) RVI(3，5) 

4+5 NDVI(4，5) DVI(4，5) RVI(4，5) 

1+6 NDVI(1，6) DVI(1，6) RVI(1，6) 

2+6 NDVI(2，6) DVI(2，6) RVI(2，6) 

3+6 NDVI(3，6) DVI(3，6) RVI(3，6) 

4+6 NDVI(4，6) DVI(4，6) RVI(4，6) 

5+6 NDVI(5，6) DVI(5，6) RVI(5，6) 

Figure 3. The standard deviation curve of reflectance 
in different band 

Three classic vegetation index models NDVI, 
DVI, RVI, were introduced to calculate the 
corresponding new vegetation index. As mentioned 
above, band 1 to band 4 are not sensitive to leaf water 
content changes, so here band 1 to band 4 are 
combined with band 5 and band 6, respectively, there 
are 11 ways to combine the wide band reflectance in 
total. According to 11 band combinations, the 
correlation coefficients between simulated water 
content and simulated wide-band reflectance are 
shown in the following table. At the same time, 
according to the LOPEX93 experiment, the regression 
results were verified using the water content and 
spectral measurements of 330 samples in the 
experiment. RMSEs are also shown in the table below 
and in Figure 4-6. The result shows that NDVI (4, 5), 
DVI (2, 6), RVI (4, 5) are the best to retrieve leaf 
water content. 
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Table 3. R2 between vegetation index and leaf water 
content, RMSE between real LWC and predicted LWC 
in LOPEX93 regressed by index. 

INDEX NDVI RVI DVI 

BAND R2 RMSE R2 RMSE R2 RMSE 

1+5 0.758 0.248 0.758 1.185 0.992 0.639 

2+5 0.999 0.021 0.997 0.154 0.993 0.06 

3+5 0.981 0.104 0.981 0.542 0.992 0.275 

4+5 0.998 0.012 0.993 0.089 0.993 0.007 

1+6 0.935 0.109 0.932 0.358 0.974 0.191 

2+6 0.999 0.014 0.989 0.046 0.976 0.021 

3+6 0.994 0.042 0.988 0.142 0.975 0.076 

4+6 0.99 0.013 0.975 0.066 0.974 0.006 

5+6 0.996 0.012 0.989 0.086 0.368 0.011 

Figure 4. RMSE of DVI at the band combination of 4 
and 5. 

 
Figure 5. RMSE of NDVI at the band combination of 4 
and 5. 

Figure 6. RMSE of RVI at the band combination of 2 
and 6. 

4 CONCLUSION 

In this paper, new vegetation index using the 
combination of 11 band reflectance simulated from 
GF-5 sensor has been proposed to retrieve LWC. The 
vegetation leaf model PROSPECT model have been 
used to simulate the hyperspectral reflectance. LOPEX 
93 dataset was used for accuracy validation.  

To analyse the sensitive of the spectral 
reflectance to the change of LWC, change of standard 
deviation of the reflectance with LWC respect to 
wavelength has been calculated. The results show that 
the spectral reflectance at band 5 and band 6 are 
sensitive to the variation of LWC.  

Three vegetation indices, normalized difference 
vegetation index (NDVI), ratio vegetation index (RVI) 
and difference vegetation index (DVI), have been used 
to retrieve the LWC. Comparisons of the retrieval 
LWC showed that the DVI combined by band 4 and 
band 5 is the best with RMSE of 0.007 g/cm2. 
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Abstract Land surface temperature and emissivity separation (TES) is a key problem in thermal infrared (TIR) remote 
sensing. Many TES algorithms have been proposed and have been validated on natural surface materials. However, 
when applied on low emissivity materials, the retrieval accuracy still needs to be improved. Aiming at the problem of 
stronger coupling between land surface and atmosphere in the retrieval of low emissivity materials, a method for 
quickly estimating relative accurate initial LST are proposed on the basis of atmospheric absorption. And through 
exploring the offset characteristic of atmospheric downward radiance, a temperature/emissivity retrieval algorithm 
based on atmospheric offset characteristic are proposed from hyperspectral thermal infrared data. The results show 
that the accuracy of first guess temperature estimated with new method is well improved compared with the 
traditional method for low emissivity materials. By using the estimated first guess temperature, a comparison 
between the proposed TES algorithm and iterative spectrally smooth temperature and emissivity separation (ISSTES) 
is further carried out in this paper. The accuracy of proposed TES algorithm is about 0.4K better than ISSTES for low 
emissivity materials, which means the proposed algorithm can weaken the influence of the error of atmospheric 
downward radiance. In addition, the proposed algorithm just involves several groups of channels, which make the 
computation efficiency be higher than ISSTES. In conclusion, the proposed algorithm can provide an accurate and 
fast TES for low emissivity materials. 

Index Terms--Land surface temperature and emissivity, hyperspectral thermal infrared, low emissivity 

1. INTRODUCTION
Land surface temperature (LST) and Land surface 
emissivity (LSE) are important physical 
parameters for characterization of surface state. 
LST is vital in the physical processes of surface 
energy and water balance at local through global 
scales(Li, Z. L,2013, Friedl, M. A,2002, Anderson, 
M. C.,2008, Hashimoto, H.,2008) and also widely 
used in a variety of fields include 
evaporation(Salvucci, G. D,1997, Kalma, J,2008), 
urban heat island[7]climate modelization(Gillespie, 
A,1998). LSE is important for studies of soil 

development and erosion, bedrock mapping, 
resource exploration and so on(Gillespie, A,1998, 
Li, Z. L,2013, Vaughan, R. G.,2003). The most 
efficient method to investigate the LST and LSE 
over a local/global region is utilizing the remotely 
sensed hyperspectral thermal infrared (TIR) data. 
While the retrieval of LST and LSE is carried out 
from the at-surface radiance, since N observed 
equations need to calculate N emissivity with one 
temperature, the core issue is how to solve the ill-
posed problem in temperature-emissivity 
separation (TES). Up to now, many TES methods 
have been proposed for solving the problem, such 
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as iterative spectrally smooth temperature and 
emissivity separation (ISSTES)(C. C. Borel,1998), 
the automatic retrieval of temperature and 
emissivity using spectral smoothness method 
(ARTEMISS)(C. C. Borel,1998), downward 
radiance residual index (DRRI) method(Xinghong 
Wang,2008), stepwise refining algorithm of 
temperature and emissivity separation(Cheng 
Jie,2008), linear spectral emissivity constraint 
temperature and emissivity separation(Ning 
Wang,2011). For natural surface materials (such as 
water, vegetation and soil) which have high 
emissivity in the thermal infrared band, various 
kinds of uncertainty have small impact on retrieval 
results [16]. The existing hyperspectral thermal 
infrared surface temperature/emissivity retrieval 
algorithm has achieved good accuracy(Wan, 
Z,1997, Sobrino, J. A,2001).  

However, except for natural surface 
materials, ground targets also includes metal 
materials (such as steel), artificial materials 
(aluminum foil, ceramic tiles, glass, etc.), low 
emissivity coatings, which are made up of 
relatively low emissivity materials, those objects 
are closely linked with human activities and have a 
wide range of applications. Some research also 
pointed out that retrieval algorithm could not 
recover LST with the nominal accuracy, especially 
for the surfaces with lower emissivity(Boonmee, 
M,2007).The possible reasons are as follows: (1) 
For low emissivity materials, because of the land-
atmosphere coupling problem, the accuracy of 
retrieval results could reduce with the influence of 
the instrument noise and the uncertainties in 
atmospheric downward radiance. From Qian yg’ 
work(Qian, Y.,2016), the uncertainty in 
atmospheric downward radiance dominate the 
large retrieval error of low emissivity materials. 
(2) The existed ways of estimation of initial 
temperature like brightness temperature method 
are not suitable for low-emissivity materials. In 
term of a nonlinear problem, an initial temperature 
has a large difference with actual LST will lead to 
efficiency decrease or failure to search the result. 
In this paper, by exploring the absorption 
characteristics of atmospheric downward radiance, 

an algorithm is proposed from hyperspectral 
thermal infrared data to retrieve the temperature 
and emissivity for low emissivity materials. In this 
paper, the low emissivity is defined as the value of 
emissivity is low on whole spectra, since when 
high value band exists, the band can be used for 
retrieving a high accuracy result.  

2. METHODOLOGY

2.1 Radiative transfer equation 

In TIR domain (8~14μm), ignoring the scattering 
effect of atmosphere and assuming a local 
thermodynamic equilibrium, the at-sensor radiance 
measured by an instrument can be described by 
atmospheric radiative transfer equation 
(RTE)( Zhao-Liang Li,1999). 

( ) ( ) ( ) ( )

( ) ( ) ( , ) (1 ( )) ( )
g

g s

L L L
L B T L
λ λ τ λ λ

λ ε λ λ ε λ λ
↑

↓
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= + −
 (1) 

Where ( )L λ  and ( )gL λ is the radiance 
measured at sensor and at ground in wavelength 
λ , ( )ε λ  is the land surface emissivity, ( , )B Tλ  is 
the Planck’s function at land surface temperature 
T , ( )L λ↑  and ( )L λ↓  is upward and downward 
atmospheric radiance. 

According to the radiative transfer equation, 
the land surface emissivity can be estimated as: 
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2.2 A temperature and emissivity retrieval algorithm 
based on atmospheric absorption feature 

Experiments found the atmospheric downward 
radiance spectrum’s integral offset phenomenon 
when water vapor profile and temperature profile 
have estimation error (Figure 1), on the basis of 
the assumption that downward radiance’s offset at 
atmospheric absorption peak/valley channels is 
approximately invariant, this paper attempts to 
weaken the influence of uncertainty of 
atmospheric downward radiance through the 
adjacent atmospheric absorption peak/valley 
channel’s difference, then achieve an rather 
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accurate initial temperature, finally the LST and 
LSE will be extracted. The specific process is as 
follows. 

According to the equation (1), calculate the 
difference of at-ground radiance at atmospheric 
absorption peak/valley channels: 

peak valley peak peak valley valley

peak peak valley valley

( ) ( ) [ ( ) ( , ) ( ) ( , )]

+[(1 ( )) ( ) (1 ( )) ( )]
g g s sL L B T B T

L L
λ λ ε λ λ ε λ λ

ε λ λ ε λ λ↓ ↓

− = −

− − −

       (3) 
Where peak( )gL λ  and valley( )gL λ  are the at-

ground radiance at atmospheric absorption 
peak/valley channel, peak( )L λ↓  and valley( )L λ↓  are 
the atmospheric downward radiance, peak( )ε λ  and 

valley( )ε λ  are the emissivity. 
Additional constraints are required for 

extracting the LST and LSE from equation (2). For 
hyperspectral thermal infrared data, assuming that 
surface emissivity in adjacent channels are 
approximately equal, and the self-radiance in the 
adjacent channels due to the small wavelength 
variation are also assumed approximately equal. 

peak valley

peak peak valley valley
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By the above assumptions, according to the 
equation (2), the average emissivity between 
peak/valley channels can be calculated as: 
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The initial temperature can be estimated as: 
-1 ( ) [1 ( )] ( )
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Based on the acquired initial temperature, the 
process of the retrieval of LST and LSE is as 
follows:  

According to the radiative transfer equation, 
the land surface emissivity can be estimated as: 
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An approach is that the emissivity at adjacent 
channels are approximately invariant, the 

equivalent emissivity at two adjacent channels can 
be presented as: 

p k, ea( 2, ) ( , )i opt i op vallet i y optT Tε ε λ ε λ+ =      (9) 
An index is defined to find the best-fitting 

temperature optT  by computing the difference of 
the measured minus the simulated radiance at two 
adjacent channels: 
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(10) 
Where 

, peak( )
i mgL λ  and 

,
( )

i m vg alleyL λ  are the 
measured at-ground radiance at atmospheric 
absorption peak/valley channels, 

, p ,eak ,( , )
i fit

i optg optL T ελ  and 
,

,( , ),
gi fit valley i optoptL T ελ  

are the simulated at-ground radiance at 
atmospheric absorption peak/valley channels, 

,i optε  are the equivalent emissivity at adjacent 
channels. 

The above formula can be expanded as: 
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Obviously, when atmospheric downward 
radiance has error (Figure 1), by separating the 
offset error from correct downward radiance, 
above equation can be written as: 
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 (12) 
Where peak( )L λ↓∆  and ( )valleyL λ↓∆  are the 

downward radiance’s offset at atmospheric 
absorption peak/valley channels. 

Since the downward radiance’s offset is 
approximately the same at adjacent channels, i.e.: 

 peak( ( )) valleyL Lλ λ↓ ↓∆ ≈ ∆                 (13) 
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Obviously, the equation (11) is equivalent to 
equation (12), which means this method can 
weaken the error of atmospheric downward 
radiance, thereby increasing the accuracy of the 
retrieval results. The criterion (cost function) is 
defined as the square root of the sum of square of 
index at several adjacent channel groups. 
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Figure 1.  The atmospheric downward radiances 

Table 1 The selected channel groups for retrieval 

# 
1

valley ( )cmλ − 1
peak ( )cmλ −

# 
1

valley ( )cmλ −
1

peak ( )cmλ −  

1 1134.06 1135.99 9 1209.28 1211.21 
2 1139.85 1135.99 10 1215.06 1211.21 
3 1162.99 1164.92 11 1216.99 1218.92 
4 1166.85 1164.92 12 1222.78 1224.71 
5 1172.63 1174.56 13 1226.64 1224.71 
6 1176.49 1174.56 14 1234.35 1236.28 
7 1195.78 1197.71 15 1242.07 1243.99 
8 1199.64 1197.71 16 1247.85 1243.99 

3. DATA
In this paper, to simulate hyperspectral thermal 

infrared data corresponding to various atmospheric 
situations and land surface types. Several 
atmospheric profiles are chosen from TIGR 
(Thermodynamic Initial Guess Retrieval) 
constructed by the Laboratoire de Meteorologie 
Dynamique (LMD) (Chedin, A,1985, Achard, 

V.1991, Chevallier, F,1998). The TIGR database 
contains 2311 typical atmospheric profiles which 
define a 40-layer atmosphere and contain the 
following data for each layer: altitude, pressure, 
temperature, water vapor density. The profiles 
with relative humidity at any layer greater than 
90% or at two consecutive layers greater than 85% 
were considered to be cloudy (Galve J M, 2008). 
Firstly, we select 1413 cloudless atmospheric 
profiles; secondly, taking into account the 
principle of uniform distribution of water vapor, 
195 atmospheric profiles are chosen from 
cloudless atmospheric profiles for simulation. The 
bottom temperature of the selected profiles varies 
from 250K to 309K, atmospheric total precipitable 
water (TPW) nearly equally distributes between 
0.10~5.56 g/cm2. 

Subsequently, the corresponding atmospheric 
transmittance, atmospheric downward radiance 
and atmospheric upward radiance are calculated 
with the MODTRAN 5.0, which is developed by 
AFRL/VSBT（Air Force Research Lab, Space 
Vehicles Directorate）and Spectral Sciences, lnc.. 
Since MODRAN 5.0 can provide high spectral 
resolution as fine as 0.1 cm-1 and well suited for 
simulating hyper-spectral TIR radiances. It is used 
to simulate the atmospheric parameters located in 
atmospheric windows from 800 cm-1 to 1250 cm-
1(8-12.5μm). To better cover the real situation, 
the spectral resolution is set as 4 cm-1 (FWHM) 
and a spectral sampling interval is 2 cm-1 
according to the parameter settings of ABB 
Bomem MR304. 

10 types of representative high/low emissivity 
materials are chosen to generate the simulated 
hyperspectral TIR data for analysis. The emissivity 
spectra of these materials are downloaded from 
University of California, Santa Barbara (UCSB) 
spectral library and Johns Hopkins University 
(JHU) spectral library are shown in Figure 4. For 
each surface material at each atmospheric 
condition, the reasonable ranges of LSTs in the 
simulation were set according to the bottom 
temperature (Ta) of the selected profiles, and LST 
varied from Ta-10K to Ta +15K in steps of 5K. 
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Figure 2.  Emissivity spectrum of ten materials 

Table 2 Emissivity characteristics of ten materials 

Material 
name Abb. 

Mean of the 
spectral 

emissivity at 
chosen 

channels 

Difference of 
the spectral 
emissivity at 

chosen 
channels 

Water WA 0.98675 0.00029 
Vegetation VE 0.98310 0.00003 

Soil SO 0.89189 0.00534 
Sandstone AS 0.82190 0.00329 
Ivory Tile IT 0.94064 0.00223 

Slate Stone 
Shingle SSS 0.80413 0.00330 

Oxidized 
Galvanized 
Steel Metal 

OGSM 0.67795 0.00395 

Galvanized 
Steel Metal GSM 0.56384 0.00584 

Metallic 
Silver Paint MSP 0.42317 0.00037 

Gold Paint 
Sandpaper GPS 0.33766 0.00020 

4. RESULTS
The accuracy of algorithm is characterized by 

root-mean-square error (RMSE) of temperature 
and RMSE of relative emissivity errors: 

2
,

1
( )

M

ret i true
i

LST

LST LST
RMSE

M
=

−
=
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   (8) 
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LSE
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M N

 (9) 

Where LSTret and LSTtrue are the retrieved and true 
temperature, respectively. N is band number. M is 
total number of measurements. 

4.1 Modeling accuracy 

To analyze the effect of the difference of 
emissivity at adjacent channels, the retrieval is 
carried out on data without error. As shown in 
Figure 3, all materials’ retrieval errors are less than 
0.05K for temperature and 0.64% for emissivity 
and the accuracy of materials with rather high 
emissivity is higher than rest materials’. The 
largest error and the smallest error for temperature 
is shown in AS with 0.05K and in VE also WA 
with 0.03K, respectively. The largest and the 
smallest error for emissivity is shown in GSM 
with 0.64% and SSS with 0.44%, respectively. The 
reason is that more dramatic spectral changes at 
adjacent channels cause larger modeling error. 
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Figure 3.  The effect of assumption on LST/LSE separate 

4.2 Sensitivity analysis 

4.2.1 Instrument noise 
To investigate the influences of instrument 

noise on the accuracy of retrieval results, different 
levels of noise equivalent differential temperature 
(NEΔT) of 0.05, 0.10, 0.15, and 0.20K are added 
to the land surface brightness temperature of 
simulated ground-leaving radiance. For each level 
of NE△T, the random noise is simulated 1000 
times as an array of Gaussian distributed random 
numbers with mean of 0 and standard deviation of 
the value of NE△T. As shown in Figure 4, natural 
surface materials have better retrieval accuracy 
than the rest materials, which means the influence 
of instrument noise is lager on relative low 
emissivity materials. With increase of NEΔT, the 
errors of LST and LSE will also increase. 
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Compared to the high emissivity materials, the 
increase of retrieval error for low emissivity 
materials is larger. With NEΔT varying from 
0.05K to 0.2K, the error of LST increases about 
0.24K and the error of LSE increases 0.63% for 
VE and WA, the error of LST increases 0.5K and 
the error of LSE increases 1.4% for GPS. 
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Figure 4.  Influence of NEΔT on LST/LSE 

4.2.2 Atmospheric downward radiance 
Generally, in the process of TES, the 

atmospheric downward radiance is the input 
parameter. However, there is no effective way to 
estimate the actual downward radiance. When it is 
calculated by using atmospheric radiative transfer 
model with atmospheric sounding data, the 
miscalculation of the water vapor and temperature 
will result in offset error. Compared with high 
emissivity materials, low emissivity materials’ 
TES are easy to be influenced by the error. To 
analyze the sensitivity of the atmospheric 
downward radiance error, the temperature and 
moisture profiles of the selected 195 atmospheric 
profiles from TIGR database are shifted by 1 K 
and 10% (△T=1K, △q=10%) and -1 K and -10% 
(△T=-1K, △q=-10%), respectively. The shifted 
profiles are used for generated the downward 
radiance containing error with MODTRA 5. Then 
the error-free ground-leaving radiance and the 
error-added downward radiance are used as input 
parameters for TES.  

As shown in Figure 5, for high emissivity 
materials (such as IS, WA and VE), the retrieved 
LSTs are similar between the error-free and error-
added downward radiances. The reason is that the 
atmospheric downward radiance takes a little part 
in at-surface radiance for high emissivity materials, 
there is a slightly effect of atmospheric downward 
radiance error on LST compared to low emissivity 
materials. However, the error-added downward 

radiance is used in the calculation of LSE which 
leads to a slightly increase of retrieval emissivity 
error. Meanwhile, with the decrease of emissivity, 
the retrieval error will increase and the retrieval 
accuracy of high emissivity materials is much 
higher than low emissivity materials. The lower 
spectral emissivity and larger difference of spectral 
emissivity make the errors of SO and AS are larger 
than other high emissivity materials. The largest 
error is shown in GPS with 3.6K and 13.07%. It is 
obvious that the atmospheric downward radiance 
error has a larger influence on low emissivity 
materials. 
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Figure 5.  Influence of atmospheric downward radiance error 
on LST/LSE 

4.3 Comparison with ISSTES 

In this section, experiment is carried out to 
estimate the performance of the proposed method 
and the maximum brightness temperature method 
on estimating initial temperature. The maximum 
brightness temperature is calculated with the 
follow formula with setting maximum emissivity 
as 0.95.  

1max( ( ( ),0.95))initial gT B Lλ λ−=  
Both instrument noise and downward 

radiance error are taken into consideration. The 
NEΔT of 0.2K is added to observed data and the 
downward radiance is simulated with the shifted 
atmospheric profiles (△T=1K, △q=10% and △
T=-1K, △q=-10%). As shown in figure 6, the new 
method for estimating initial temperature can 
achieve much better accuracy when applied on low 
emissivity materials. 
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Figure 6.  Comparison of the RMSE of initial temperature 
calculated by two methods on different materials 

The accuracy comparison of the proposed 
algorithm and ISSTES is carried out and the 
retrieval of both two methods begins with initial 
LST calculated by the proposed method. In this 
section, both instrument noise and downward 
radiance error are taken into consideration. The 
NEΔT of 0.2K is added to observed data and the 
downward radiance is simulated with the shifted 
atmospheric profiles (△T=1K, △q=10% and △
T=-1K, △q=-10%). As shown in Figure 6, for 
high emissivity materials, the accuracy of two 
algorithms is basically similar; for low emissivity 
materials, the proposed algorithm is better and the 
accuracy is about 0.4K better for GPS. This is 
because the incorrect downward radiance has 
larger influence on low emissivity materials and 
the proposed algorithm can weaken this influence. 
In addition, the proposed algorithm takes 40.5h 
and the ISSTES takes about 407.1h which means 
the proposed method has higher computing 
efficiency.  
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Figure 7.  The accuracy of our method and ISSTES method 

5. CONCLUSIONS
In this study, a temperature and emissivity 
retrieval algorithm based on atmospheric 
absorption feature is proposed. On basis of the 
assumption that the downward radiance’s offsets 
at atmospheric absorption peak/valley channels are 
approximately invariant, the algorithm can weaken 
the influence of the atmospheric downward 
radiance error and separates the LST and LSE. The 
result shows: (1) the new method for estimating 
initial temperature can achieve much better 
accuracy when applied on low emissivity materials. 
(2) The proposed method shows certain 
improvement in the retrieval of low emissivity 
materials and great improvement in computing 
efficiency.  
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ABSTRACT - The main areas of interest for remote sensing research, had always been concerned with 
environmental studies. Significant technological developments of remote sensing techniques have greatly 
enhanced the quality of data acquired to determine the state of vegetation and predicting crop yields. One of the 
most significant technological advances of remote sensing had been the invention and popularisation of 
hyperspectral technologies. Such sensors make it possible to acquire continuous data about a phenomenon, 
generating accurate spectral characteristics. The data, obtained from hyperspectral measurements can be used 
to describe the growth and biochemical state of a plant and determine the source of vegetation stress. For this 
purpose, the spectral reflectance coefficients and vegetation indices are used. Vegetation indices allow not only 
to assess the overall state of vegetation but also to estimate the presence of particular minerals present in the 
plants or soil. The paper includes a thorough review of hyperspectral vegetation indices as well as some example 
measurements and results conducted by the Authors. The presented research aims to determine the possibility of 
using chosen hyperspectral indices to identify spectral variability within the plants due to changes to its 
biochemical state.  

1  INTRODUCTION 

Remote sensing is a rapidly growing area of science. 
Research carried out by scientists lead to the discovery 
of new applications and modernisation of many areas 
of life. One of the areas in which remote sensing was 
applied is a system for assessing the state of vegetation 
and predicting crop yields. 

In the 70’s remote sensing started to be actively 
used for agriculture and since then many researchers 
around the world have been applying remote sensing 
techniques for different purposes (Brenchley, 1968; 
Huete, 1988; Sivakumar & Hinsman, 2003; Zarco-
Tejada et al., 2005). In recent years, scientific and 
technical improvements have increased the potential 
use of remote sensing data for precision agriculture, 
mainly to support the quantification of spatial and 
temporal changes of vegetation (Fitzgerald et al., 
2006; Ahamed et al., 2011; Heim et al., 2015; 
Lehmann et al., 2015).   

The application of remote sensing in precision 
agriculture is based on the interaction of the 
electromagnetic radiation with vegetation and soil-  
usually, the reflected radiation is measured 
(Jenerowicz & Woroszkiewicz, 2016). All methods 
used in remote sensing for vegetation identification, 
crop- prediction, biomass monitoring are based on the 
assumption that vegetation stress, crop production are 
influenced by measurable biophysical parameters such 

as chlorophyll, water content and content of different 
microelements, e.g. nitrogen, phosphorus, etc., and its 
variations, in which can be identified in remotely-
sensed images through the use of spectral reflectance 
characteristics and spectral indices (vegetation indices) 
(Zurita-Milla et al., 2009; Rembold et al., 2013; 
Muramatsu et al., 2015).  

Traditionally spectral reflectance coefficients are 
measured with spectroradiometers which allow for 
discrete measurements. A high accuracy characterises 
spectral reflectance coefficients obtained with such 
devices, but they can be obtained only from one point 
of the investigated object at any given time, which is 
extremely problematic when the structure of the 
investigated object is not homogenous or is changing 
in time. Methods based on spectrometric 
measurements can be very time-consuming. Therefore 
image-based methods are used more and more often, 
especially the hyperspectral technology 
(Walczykowski et al., 2016a). Hyperspectral 
technology allows acquiring continuous data about the 
phenomenon so that we get a very accurate spectral 
reflectance characteristics. Hyperspectral vegetation 
indices allow not only to overall assess the state of 
vegetation but also to estimate the presence of a 
particular mineral in plants or soil. Such remote 
sensing capability is applied in precision agriculture 
and lead to the modernisation of examination of the 
biochemical plants status. 
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The presented research aims to determine the 
possibility of using chosen hyperspectral indices to 
identify spectral variability within the plants due to 
changes to its biochemical state.  

2  METHODOLOGY  

2.1 Sensor used, and experiment set up 

The sensor used for this research is a Headwall 
MicroHyperspec A-series VNIR 327-band pushbroom 
sensor. The sensor acquires hyperspectral imagery 
continuously line by line with a 1.9 nm spectral 
bandwidth in the 380- 1000 nm range. The camera can 
be easily mounted on an Unmanned Aerial Vehicle 
(Walczykowski et al., 2016b)- Fig.1.  

Fig. 1. Headwall MicroHyperspec A-series VNIR 327-
band pushbroom sensor 

Imagery is acquired using moving the camera over 
the test field using a slider system mounted on an 
especially designed measuring station (Walczykowski 
et al., 2013). The station consists of a mobile frame, 
which can be moved in the vertical plane and a sensor 
arm which can be moved in three directions (X, Y, and 
Z). Therefore it is possible to carry out experiments in 
constant, repeatable conditions. Throughout the 
experiment, the sensor was located 1.5m above the 
imaged scene, and the entire scene was illuminated 
using well-dispersed lighting.  

To ensure proper exposition and so a high quality 
of the acquired images, a radiometric calibration of the 
sensor was conducted using a Zenith Lite 95% 
reference panel. 

The experiment was conducted in two series:  
(I) 28.08.2016- 26.09.2016  
(II) 26.09.2016-26.10.2016. 

In order to complete the task plant samples, i.e. 
bean- Fig.2, were grown and treated with various 
fertilizers, i.e. pure water, biohumus, nitro- chalk,
ammonium nitrate, potassium chloride, lime, 
magnesium sulphate, agricultural lime, LUBOFOS (is 
a complex, granulated fertilizer, it contains: ammonia 
nitrogen mineral acid-soluble phosphorus pentoxide, 
potassium oxide, total sulphur trioxide, a variety of 
micronutrients, such as: boron, copper, manganese, 
and zinc), and FOSTAR (it contains: nitrogen and 
phosphorus pentoxide)  - Table 1.  
Then, at regular intervals, hyperspectral imaging was 
obtained. 

Table 1. Doses of fertilisers used in the experiment 

All fertilisers were regularly applied (every seven 
days) in the form of aqueous solution in order to 
accelerate the process. 

2.2 Data processing 

Plant samples were grown using various fertilisers, 
which were administered at regular intervals 
throughout the growth process. 

Fig. 2. Plants used in the second series of experiment 
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The hyperspectral imagery was obtained 
systematically creating a large dataset for performing 
multitemporal analyses. 

All hyperspectral images were pre-processed with 
radiometric correction, i.e. Empirical Line Calibration 
(Smith & Milton, 1999), to obtain correct spectral 
reflectance coefficients for all acquired spectral bands. 

Next, all hyperspectral images were filtered with 
Minimum Noise Fraction Transform (MNF) (Green et 
al., 1988)-first 37 components of MNF transform were 
used, the rest was considered as noise.  

After radiometric calibration and noise reduction, 
the spectral reflectance characteristics of every plant in 
each data set were obtained. Moreover, the 
hyperspectral vegetation indices, i.e. hyperspectral 
Red Edge Normalized Difference Vegetation Index (1) 
(Gitelson & Merzlyak, 1994), and indices for nitrogen 
(2), phosphorus (3), and potassium (4) content 
(Özyiğit & Bilgen, 2013) were calculated.  
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−
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As a result, eight measurements in two-time series 
were performed. Then all hyperspectral data were 
processed (spectral reflectance characteristics of 
investigated samples were obtained, and hyperspectral 
vegetation indices were calculated) and analysed.  

  3 RESULTS 

In order to determine the influence of selected 
fertilisers on the condition of bean, first spectral 
reflectance characteristics from the hyperspectral data 
were obtained and analysed. Preliminary analysis was 
made by spectral curves, which allowed to examine 
individual spectral ranges regarding changes caused by 
applied fertilisers- Fig. 3. 

The analysis of spectral reflectance characteristics 
had shown the downward trend of the chlorophyll 
content in the bean as it grows. The tested samples 
show that the use of biohumus and phosphorus has an 
adverse effect on chlorophyll content, while the use of 
lime and ammonium nitrate significantly minimises 
the decrease of chlorophyll along with the plant's 
growth. 

Next, the hyperspectral vegetation indices were 
calculated. First, the hyperspectral NDVI was 
calculated- Fig. 4. Obtained results show similar 
tendency as when analysing spectral reflectance 
curves. The measurement showed that the highest 
value of NDVI was obtained for ammonium nitrate 
and the lowest for biohumus. The reference sample 
(the plant fertilised only with pure water) was 
significantly reduced - its value decreased from 0.34 to 
0.12, which confirms the legitimacy of the fertiliser 
application- Fig. 5. The chart below shows that not 
every fertiliser has a good effect on the beans tested. 

Fig. 3. Spectral reflectance characteristic of plant fertilised with water, and FOSTAR 
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Fig. 4. Results of NDVI for some plant samples 
 

 
Fig. 5. Temporal NDVI changes: 26.09.2016, 

and 26.10.2016 
Next, the hyperspectral indices for nitrogen, 

phosphorus- Fig. 6, and potassium content were 
calculated.  

Based on the analysis of the results can be 
observed an increase in the content of tested minerals 
for all plant samples. However, the last measurement 
shows the significant decrease in values due to death 
of plants.  

 
Fig. 6. Temporal phosphorus concentration changes 

for some plant samples 

4 SUMMARY AND CONCLUSIONS 

The research was conducted using a Headwall 
hyperspectral pushbroom A-Series VNIR sensor in 
controlled laboratory conditions. Plant samples were 
grown using various fertilisers, which were 
administered at regular intervals throughout the 
growth process. The hyperspectral imagery was 
obtained systematically creating a large dataset for 
performing multitemporal analyses.  

The performed analyses made it possible to 
identify the relationship between the value range of 
selected indices and plant health.  

Only some fertiliser have the positive effect on 
plants health, i.e. lime, nitro- chalk, LUBOFOS, 
ammonium nitrate, and potassium chloride. 

Vegetation indices allow not only to overall assess 
the state of vegetation but also to estimate the presence 
of a particular mineral in plants or soil. Therefore, the 
future work should include more spectral indices and 
very accurate analyses of plant state. 

The obtained data made it possible to obtain 
spectral reflectance curves of all of the measures 
plants as well as to calculate chosen hyperspectral 
vegetation indices. The performed analyses made it 
possible to identify the relationship between the value 
range of selected indices and plan health. Such remote 
sensing capabilities are extremely useful in precision 
agriculture and can lead to advances in the 
examination of the biochemical properties of plants. 
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ABSTRACT- Hyperspectral data, which have fine continuous spectrum, have been recognized to be more 
suitable for the detailed identification and classification of land surface, especially for minerals. However, the 
mineral identification and classification often use spectral data just within 0.4-2.5um from VNIR to SWIR at 
present, which may limit accuracies and capabilities in a certain extent particularly for silicate and carbonate. 
To improve mineral identification and classification accuracy and realize fine mapping, this paper tries to make 
full use of the different spectrum of complementary remote sensing information by combining hyperspectral 
VNIR-SWIR reflectance and multispectral TIR emissivity together. Firstly, the reflectance and emissivity 
spectrum for several typical minerals, such as kaolinite, alunite, calcite, quartz and ilmenite, are well analyzed 
to find the optimum diagnosed characteristics. Four algorithms, i.e. spectral angle mapping (SAM), spectral 
feature fitting (SFF), orthogonal subspace projection (OSP) and adaptive Coherence/cosine Estimator (ACE), 
are selected in the experiment. Compared with the results using hyperspectral data alone, the introducing of 
multispectral TIR data in identification and classification has improved accuracies for both the simulated and 
real data. The overall accuracies are improved about 4-13% for the simulated data and about 1-5% for the real 
data by using different algorithms. Those improvements prove that the spectral diagnosed characteristics in TIR 
region helps to identify and classify minerals. The combining use of those data has a great potential application 
value for minerals identification and classification in the near future. 

1  INTRODUCTION 

In the early 1980s, the emergence of hyperspectral 
remote sensing data enabled the acquisition of data 
with increased number of spectral bands and higher 
spectral resolution has certainly given significant 
impacts on objects’ classification (Goetz, 1985). 
Hyperspectral data’s narrow bandwidth and 
contiguous spectral facilitate to distinguish and 
classify minerals more accurately (Ramesh et al., 
2017). 

At present, minerals and rocks’ indentation is 
mainly based on the spectral features in the visible 
near-infrared (VNIR) region range 400-2500um, and 
these features are related to certain chemical 
composition and lattice structure of minerals and rocks 
(Cloutis, 1996). 

The alteration minerals contain a large number of 
Fe2+, Fe3+, OH-, CO32- and other ions or groups of ions, 
it is the electronic transition, vibration and rotation of 
these ions makes minerals display special spectral 
absorption and reflection features in VNIR and short-
wave infrared (SWIR) spectrum (Zhang, 2012). Rocks 
are composed of different minerals and their spectral 

characteristics are much more complex, essentially the 
mixture of minerals’ spectrum (Gila 2016). 

Hyperspectral data can’t detect the vibration 
intensity of the minerals and rocks across the VNIR-
SWIR region, which limited the ability of mineral 
indentation and classification. For example, most 
abundant minerals have special spectral feature in 
thermal infrared (TIR) region range 8-
14 mµ (Charlotte, 2011). The silicon-oxygen bond (Si-
O) stretching vibrations in feldspars and quartz, as
well as in other silicates, exhibit spectral features in 
the TIR region. And TIR remote sensing data can also 
provide some distinction amongst Al-OH-, Mg-OH- 
bearing minerals, carbonates and so on (Gila, 2014). In 
TIR region, the radiance of the object is mainly from 
itself, so basis of mineral identification and 
classification is its emissivity (Li, 2013).  

The reflectance spectra of rocks are nonlinearly 
mixed with the reflectance spectra of their inner 
minerals, while the emissivity spectra have the 
characteristics of linearly mixing. Under the condition 
of good spatial resolution, linearly spectral unmixing 
method can be used to unmix targets and identify 
minerals (Gillespie, 1992; Thomson 1993). 
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TIR remote sensing, combined with VNIR–SWIR 
hyperspectral remote sensing, is becoming a promising 
method for environmental studies. This paper realizes 
the minerals identification and classification by 
combining hyperspectral VNIR-SWIR and 
multispectral TIR data, and the accuracy comparison 
of four classification methods are summarized. 

2  METHODOLOGY  

2.1 Classification methods based on spectral feature  

The identification and classification of mineral in 
visible/ near-infrared region based on reflectivity of 
the objects, while in thermal infrared region is the 
emissivity. Temperature emissivity separation method 
(TES) was used to acquire the mineral emissivity from 
thermal infrared data (Gillespie et al., 1998). In order 
to verify whether the thermal infrared data can help 
improve mineral identification and classification 
accuracy, four algorithms, i.e. spectral angle mapping 
(SAM), spectral feature fitting (SFF), orthogonal 
subspace projection (OSP) and adaptive 
Coherence/cosine Estimator (ACE), are selected in the 
experiment.  

The SAM is a classification method that determines 
spectral similarity between the test spectra and 
reference spectra by treating them as vectors in an N-
dimensional space (Kruse et al., 1993). The similarity 
of the two spectra is determined by calculating the 
angle between the two vectors in the image. The 
smaller the angle, the more similar the two spectra. 
SFF is one of the algorithms nowadays used for 
satellite spectral analysis about recognition and 
classification, which is based on spectral absorption 
feature (Clark et al., 1990). The envelope line of the 
test spectra and the reference spectra should be 
removed before spectra matching, and then least 
squares method is used to fit curve. Root mean square 
error is used to evaluate the matching degree between 
two spectra. OSP algorithm is based on the mixed 
linear model, which divides the mixed pixels into 
interest endmember (target) and non-interest 
endmember (background). The mineral is identified by 
enhancing the characteristics of the target and 
suppressing the background features (Harsanyi and 
Chang, 1994). ACE algorithm takes both the statistical 
model and subspace projection model into account. It 
assumes that the background’s covariance structure is 
the same regardless of target existence. While the 
variance is different, which directly affects the area 
proportion of the target in background (Kraut et al., 
2005). The similarity between the test spectra and the 
reference spectra is determined by calculating the 
cosine square of the angle between two spectra in 
whitening space. 

2.2 Simulated data introduction 

Eight minerals and rocks were selected from the 
United States Geological Survey (USGS) Spectral 
Library and the Johns Hopkins University (JHU) 
Spectral Library as the targets to be classified. It 
consists of five minerals and three rocks (Table 1). 
 
Table 1 Eight targets of simulated data  

Category Name Description 

1 Alunite NaAl3(SO4)2(OH)6, 
Sulfate minerals 

2 Calcite CaCO3, Carbonate 
minerals 

3 Kaolinite Al2Si2O5(OH)4, 
Silicate minerals 

4 Montmo- 
rillonite 

(Na Ca)0.33(Al 
Mg)2Si4O10(OH)20, 
Silicate minerals 

5 White mica 
 

KAl2(Si3Al)O10(OH F)2, 
Silicate minerals 

6 Gneiss Feldspar, quartz, mica 
7 Marble Calcite, dolomite 
8 Qurtz Quartz 

 
Table 2 The proportion of mixed endmember in seven 
tests  

Dataset Soil Category1 Category2 
1 - - - 
2 0-5% - - 
3 0-5% 0-5% 0-5% 
4 0-10% 0-10% 0-10% 
5 0-10% 0-15% 0-15% 
6 0-20% 0-20% 0-20% 
7 0-20% 0-25% 0-25% 

 
Considering the spectral response function of 

Hyperion hyperspectral data and ASTER multispectral 
data, the spectral curves of eight targets were 
respectively processed. Hyperion data collects spectra 
in 242 continuous spectral channels covering the 
wavelength range 356-2578nm, and 155 channels 
were considered according to actual situation. ASTER 
thermal infrared data has a high spatial resolution, and 
cover the wavelength range 8125-1165nm in thermal 
infrared bands. Figure 1 shows the reflectivity of eight 
targets in the Hyperion band and the emissivity in 
ASTER thermal infrared band, respectively. 

Considering the existence of mixed endmember in 
remote sensing image, especially the images with low 
spatial resolution, the linear spectral mixture model 
was used to mix targets. 
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Figure 1 The reflectivity and emissivity of eight targets
(1- alunite,2- calcite,3- kaolinite,4- montmorillonite,5- white mica,6- gneiss,7- marble,8- quartz 

a                                                                                     b 
Figure 2 a: The comparison results between Hyperion data (dashed) and combination data (solid) 

b: The comparison results between thermal infrared data（dashed）and combination data（solid） 

Here, soil endmember, Alunite endmember 
(category 1) and calcite endmember (category 2) were 
mixed into seven datasets. Table 2 shows the 
proportion of each endmember in seven datasets, and 
the distribution of them is uniform. What’s more, each 
test was also processed by considering spectra 
response function of Hyperion data and ASTER 
thermal infrared data. 
3  RESULTS 
3.1 The comparison and analysis of classification 
accuracy of simulated data 
Four classification methods are used to classify the 
seven sets of simulated data respectively, each set of 
data included hyperspectral Hyperion data, ASTER 
thermal infrared data and combination data of both. 
Figure 2 (a) and Figure 2 (b) show the comparison 
results between Hyperion data and combination data, 
thermal infrared data and combination data, 
respectively. For the overall accuracy of the four 
methods, the accuracy of ACE is higher, and the other 
three methods are equal. Compared with using 

hyperspectral data solely, the accuracies are improved 
of different level for four classification methods in the 
use of combination of data classification. While SFF 
increase the most, SAM and OSP take second place, 
and ACE was not significantly improved. 

The accuracies of different classification methods 
are all improved under the condition of different 
mixing degree, the same classification and evaluation 
system, which effectively prove the contribution of 
thermal infrared data, also prove that the combining 
use of the VNIR-SWIR hyperspectral data and TIR 
multispectral data improve the accuracy of mineral 
identification and classification effectively.  
3.2 The comparison and analysis of classification 
results of simulated data 
The confusion matrix precision classification and 
ROC curve evaluation are used to analyze 
classification results of the seven set of simulated data. 
Table 3 shows the overall classification accuracy of 
the four classification methods and the detailed 
classification accuracy of each category. The 
identification accuracy of rocks is lower than that of 
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minerals, especially marble and quartzite, for the 
reason that the rocks contain a variety of minerals. The 
introduction of thermal infrared data is helpful to 
improve the classification accuracy of SFF method, 
especially the accuracy of calcite, white mica, marble 
and quartzite. ROC curve is a method to evaluate the 
result of classification besides confusion matrix 
calculation. The more the ROC curve bends in the 
upper left direction, the better the classification 
performance of the model. Fig 3 show the ROC curve 
of hyperspectral data and hyperspectral classification 
combined with thermal infrared data with four 
classification methods, all of the ROC curve method is 
to be near the top left corner after combing the thermal 
infrared data, which means the better classification 
result. 

The simulation experiments prove that the TIR data 
is still an effective supplement for VNIR and SWIR 
data in mineral identification and classification, which 
can be improved on accuracy by both complementary 
on the spectrum. OSP and ACE methods based on 
spatial projection transform are relatively good for 
identification and classification because of the 
effective suppression of background spectra and noise. 
Though not better than OSP and ACE, traditional 
SAM and SFF classification method have their own 
advantages, SFF method is suitable for minerals with 
obvious absorption characteristics, while SAM can 
effectively distinguish minerals with spectral shape 
differences. 

Table 3 classification accuracy of simulated data using four classification methods 
SAM SFF OSP ACE 

Hyperion Combined Hyperion Combined Hyperion Combined Hyperion Combined 
OA 74.00 78.75 77.83 91.59 86.70 93.43 99.57 99.50 

classes Prod. User Prod. User Prod. User Prod. User Prod. User Prod. User Prod. User Prod. User 
1-alunite 77.38 100.00 80.71 100.00 87.69 100.00 82.71 100.00 99.22 94.31 100.00 85.58 99.78 100.00 99.56 100.00 
2-calcite 69.36 93.21 71.28 86.82 15.98 100.00 89.38 96.93 98.69 94.85 99.19 96.56 99.80 99.90 99.49 99.90 

3-kaolinite 89.13 86.01 89.22 87.55 88.08 98.98 89.35 98.80 96.83 99.44 95.02 100.00 99.95 99.10 99.86 99.10 
4-montmorillonite 93.73 36.11 94.06 42.88 90.19 63.09 91.10 84.03 99.92 82.67 86.56 100.00 99.59 99.75 99.59 99.92 

5-white mica 88.99 88.16 90.63 89.05 40.22 100.00 86.41 97.40 75.82 100.00 97.69 99.58 97.28 100.00 98.10 100.00 
6-gneiss 89.55 89.48 89.96 89.09 81.62 100.00 96.60 98.84 100.00 56.78 100.00 72.60 99.51 99.84 99.43 100.00 
7-marble 40.45 100.00 56.89 100.00 99.39 60.90 100.00 81.66 57.38 100.00 85.98 100.00 100.00 99.31 100.00 98.87 
8-quartz 58.99 100.00 59.71 100.00 24.10 100.00 65.83 100.00 92.45 93.80 93.88 99.62 97.48 100.00 95.68 100.00 

Fig 3a   ROC curve of hyperspectral data(left) and hyperspectral classification 
combined with thermal infrared data(right) with four classification methods 
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Fig 3b  ROC curve of hyperspectral data(left) and hyperspectral classification 
combined with thermal infrared data(right) with four classification methods 

4  CONCLUSION 

This paper analyzes the spectral characteristics of the 
reflectance spectrum in VNIR-SWIR and the 
emissivity spectrum in TIR of minerals, and then point 
four methods being used to realize the minerals 
identification and classification by combining 
hyperspectral VNIR-SWIR and multispectral TIR 
data. Seven groups of experiments with different 
degree of mixing simulation of the mineral effectively 
prove that TIR multispectral data complemented with 
VNIR-SWIR hyperspectral data in the observed 
spectrum can improve identification accuracy. In 
addition, the four identification and classification 
methods used in the experiment are compared, and the 
accuracy comparison and application of each 
classification method are summarized. 
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ABSTRACT - Spatial resolution is one of the most important parameters in determining the quality of electro-
optical remote sensing sensors. The spatial quality of a sensor can be described by one of two values - the GRD 
(Ground Resolved Distance) and GSD (Ground Sampling Distance). The GSD is a purely theoretical value, an 
approximate value of ground resolution, which determines the size of a pixel on the ground. GRD is described as 
the smallest detail possible to determine in the image. For single band remote sensing sensors this value will be 
constant for a given sensor-imaged object distance, with the GRD value directly proportional to this distance. 
This however is not always the same for hyperspectral sensors, which acquire data simultaneously in many 
narrow bands of the electromagnetic spectrum. The purpose of this paper was to determine the spectral quality 
of imagery acquired in different bands, and to define in which spectral band we can accomplish the best spatial 
resolution and in which spectral bands the worst. The spatial resolution variability in different spectral bands 
was examined. A selection of different calibration targets were used to obtain the required data. The best values 
of spatial resolution were obtained for imagery from the red spectral bands. The worst values of spatial 
resolution were obtained for imagery from the blue spectral range. 

1  INTRODUCTION 

Non-satellite remote sensing sensors are becoming a 
very popular tool for acquiring high quality remote 
sensing data for many applications. With the rapid 
developments in sensors, their miniaturisation and 
drops in production costs, data acquired using low-
cost UAV systems and light-weight sensors is 
becoming more and more popular for many 
applications (Dabrowski et al., 2014, Fryskowska et 
a;., 2016), such as forestry (Feng et al., 2015), 
precision agriculture (Grenzdörffer, et al., 2008), 
monitoring cultural heritage (Kedzierski et al., 2014), 
environmental studies, and pollution monitoring 
(Orych et al., 2014). There had also been similar 
developments with more complex and advanced 
sensors, such as hyperspectral pushbroom scanners. 
Such sensors can be mounted on aerial platforms (both 
traditional and unmanned aerial vehicles) or, using 
specialized terrestrial transport systems, operated in 
field or laboratory conditions. They are usually  
characterized by very high spectral and spatial 
resolutions, which makes the acquired data a very 
valuable source of information about the investigated 
objects. The way in which hyperspectral sensors are 
designed and constructed, usually means that all 
spectral bands are obtained by optically splitting the 
radiation incident on the sensor lens, registering very 
fine spectral information on the detector array (Cocks 
et al., 1998). The optical properties of the radiation 
incident on the array are not constant between 
different wavelengths. This can lead to slightly blurred 

and noisy images being obtained in different bands, 
which is especially visible when acquiring data in 
laboratory conditions (Walczykowski et al., 2016). The 
aim of this paper was to develop a methodology for 
determining the spatial resolution variability between 
different spectral bands of a pushbroom hyperspectral 
sensor. 

Fig. 1. Headwall MicroHyperspec A-series VNIR 327-
band pushbroom sensor 

2  METHODOLOGY 

2.1 Sensor Used 

The sensor used for this research is a Headwall 
MicroHyperspec A-series VNIR 327-band pushbroom 
sensor, that acquires hyperspectral imagery 
continuously line by line. This hyperspectral scanner 
acquired imagery data in 327 spectral channels with a 
1.9 nm spectral bandwidth in the 380- 1000 nm range. 
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The camera can be easily mounted on an Unmanned 
Aerial Vehicle due  to it's relatively small dimension 
and small weight - 0,68kg (Walczykowski et al., 
2016)- Fig.1.  

2.2 Experiment set up 

Imagery is acquired by means of moving the camera 
over the test field using a slider system mounted on an 
especially designed measuring station (Walczykowski 
et al., 2013). The station consists of a mobile frame, 
which can be moved in the vertical plane and a sensor 
arm which can be moved in the X, Y and Z directions. 
Such a design allows for smooth and safe operation of 
all measuring devices and more importantly allows 
precise positioning of sensors and light at the same 
distance from the test object during all subsequent 
measurements.  

By being able to position the measuring 
instrument with such precision, it is possible to carry 
out experiments in constant, repeatable conditions. 
Throughout the experiment, the sensor was located 
1.5m above the imaged scene, with movement 
occurring only in one direction - along the central axis 
of the imaged targets. The entire scene was illuminated 
using well dispersed lighting. To ensure good 
exposition and so a high quality of the acquired 
images, a radiometric calibration of the sensor was 
conducted using a Zenith Lite SG3151 95% reference 
panel. 

2.3 Measurement method 

The methodology is based on acquiring a series of 
scans of an especially designed calibration field, 
consisting of a number of different spatial resolution 
calibration targets such as a Siemens Star, bar targets 
and slanted edges (Fig. 2).   

These targets were selected to give the possibility 
of determining resolutions using different methods: 

• manually - visual analysis of the bar targets,

• semi-automatically - using the Siemen's Star

• automatically - using MTF on the Slanted

Edge (Orych, 2015).

Additionally, the use of these targets made it 
possible to examine the variations in resolutions 
relative to the location on the focal plane. 

The impact of the acquisition parameters of the 
camera on the spatial resolution variations had also 
been investigated. 

Fig. 2. Especially designed calibration field: slanted 
edge test, Siemen’s star test and two bar targets  

  102

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



 
Fig. 3. Spatial resolution determined in bands of chosen wavelength using the hyperspectral pushbroom sensor 
 
3  RESULTS 

Spatial resolution was determined using all four of the 
above targets. The obtained data made it possible to 
determine the scale of differences in spatial resolution 
between all of the 327 spectral bands. 

As seen in the figure below- Fig. 3 the best spatial 
resolution was recorded for the  red spectral bands. 
The worst values of spatial resolution were obtained in 
the blue spectral range. 

This information could be used to determine the 
optimal methodology for obtaining future datasets for 
different applications.  
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ABSTRACT - Cloud presence and residual atmospheric contamination introduce artefacts in available NDVI 
time series. Numerous methods are available in the scientific literature to reconstruct such time series, although 
the validation of these methods has been problematic. Here, we used more than 30 years of daily global data 
from NOAA-AVHRR satellite series to simulate test and reference time series for time series reconstruction 
method validation. We tested various models (Gaussian, Cauchy, Log-normal, and Gamma) to retrieve cloud-
free and cloud-contaminated NDVI daily statistics, as well as cloud presence probability, at daily resolution and 
global scale. We then synthesized 15 years of daily global cloud-free and cloud-contaminated NDVI, and termed 
this validation dataset TISSBERT (Time Series Simulation for Benchmarking of Reconstruction Techniques). We 
finally applied widely used approaches (IDR, HANTS, Savitsky-Golay, asymmetric Gaussian, double logistic) to 
reconstruct the TISSBERT cloud contaminated NDVI time series, which we compared with the TISSBERT cloud-
free NDVI time series. This comparison shows that, despite geographical differences, all methods tend to fail 
where they are most needed, that is in polar, tropical and subtropical areas. The TISSBERT dataset is freely 
available to the scientific community upon demand. 

1 INTRODUCTION 

When working with remotely sensed vegetation 
indices time series, one would hope working with 
clean time series, such as the red curve in figure 1, 
although available data usually show a noisier yearly 
distribution such as the blue and orange crosses (fig. 
1). Therefore, one has first to reconstruct the time 
series before any application. However, existing 
reconstruction methods (among many others: Julien 
and Sobrino, 2010; Roerink et al., 2000; Jönsson and 
Eklundh, 2004) have been poorly validated, due to the 
lack of all-year cloud-free data. 
We present here the TISSBERT (Time Series 
Simulation for Benchmarking of Reconstruction 
Techniques) dataset, built for such validation, as well 
as a preliminary comparison of 5 different NDVI time 
series  reconstruction   methods    (IDR   [Julien    and 
Sobrino, 2010]; HANTS [Roerink et al., 2000], 
Savitsky-Golay, asymmetric Gaussian, and double 
logistic [Jönsson and Eklundh, 2004]). 

2 DATA AND METHODS 

The Long-Term Data Record Version 4 (LTDR-V4) 
dataset (Pedelty et al., 2007) consists of daily 
observations from the NOAA-AVHRR instruments 
during the period 1981-2013, with a spatial resolution 
of 0.05º. We used reflectances in red and near-infrared 
bands to estimate NDVI, and QA (Quality 
Assessment) data to retrieve cloud and land/sea mask 
information. A few dates (22) with obvious 
georeferenciation errors were removed from the 
analysis. 

 Figure 1. Yearly distribution and statistics of NDVI 
for a given LTDR-V4 vegetated pixel. 

In a first step, we selected randomly 10 000 pixels to 
assess the validity of the approach. We tested different 
models for data distribution (Gaussian, Cauchy, Log-
normal, and Gamma) for 10 000 randomly selected 
pixels. The best model (Gaussian) was chosen for 
pixel by pixel retrieval of cloud presence probability, 
cloud-free NDVI and cloud-contaminated average and 
standard deviation values. Statistics were then 
summarized through a 8th harmonic model fit into 
HDF files. 

We then synthesized 15 years of daily global 
TISSBERT cloud-free (reference) and cloud-
contaminated (test) for validation purposes. 

 We finally applied 5 different NDVI time series 
reconstruction (IDR [Julien and Sobrino, 2010]; 
HANTS [Roerink et al., 2000], Savitsky-Golay, 
asymmetric Gaussian, and double logistic [Jönsson 
and Eklundh, 2004]) to the TISSBERT test time series, 
and assessed their performance through RMSE. 
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3 TISSBERT DATASET 

The Gaussian distribution was the best model for 
cloud-contaminated data, although a discrete Gaussian 
distribution was chosen for cloud-free data, to 
decrease the influence of mislabelled observations 
(Fig. 2). 

Figure 2. Histogram of Kolmogorov-Smirnov test 
values for different statistical distribution of NDVI 
values. 

In most cases, the 8th order harmonic fit led to a 
reliable summary of TISSBERT parameter yearly 
behaviour (Fig. 3). High correlations (> 0.90) were 
obtained in most places, except for the case of cloud-
free standard deviations, for which correlations are of 
the order of 0.60. 

Figure 3. Pearson's correlation coefficient for 
TISSBERT parameters fit with 8th order Fourier 
formulation. 

Figure 4 shows samples of TISSBERT parameters 
for given DOYs throughout the year. Cloud-free 
average maps show the expected seasonal variations, 
mirroring cloud contaminated maps, the latter with 
noticeably lower NDVI values. 

4 COMPARISON 

All methods present high errors (RMSE > 0.02) in 
the tropics and in temperate to boreal areas, where 
cloud presence is higher (Fig. 5). 

Figure 4. TISSBERT parameter values for DOYs 1 (1st of January), 91 (1st of April), 182 (1st of July), 274 (1st 
of October) in NDVI units, except for cloudProba parameter, in percentage. 
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Figure 5. RMSE for (from left to right, top to bottom) IDR, HANTS, Savitsky-Golay, asymmetric Gaussian, and 
double logistic reconstruction methods. 

In other words, all methods fail where their presence is 
most needed, and therefore there is room for 
improvement of the reconstructing methods. HANTS 
method shows the lowest RMSE when using either 
summarized or raw TISSBERT data for test and 
reference time series synthesis (Fig. 5), especially in 
highly vegetated areas, although the observed RMSE 
is higher than the acceptability limit of 0.02 NDVI 
units. 

5 DISCUSSION AND CONCLUSIONS 

The TISSBERT validation dataset is built on several 
assumptions: 

 accuracy of LTDR-V4 cloud masking: fig. 1
shows that some errors exist, which may
lead to an overestimation of the retrieved
standard deviations,

 stability of the land cover over more than 30
years: for most places, this assumption
holds at this coarse spatial resolution,

 low influence of phenology: when taking it
into account, the approach led to the same
results, due to the higher influence of the
atmosphere on the observations variability

Although these assumptions are strong, the LTDR-V4 
dataset is by far the longest daily NDVI record 
available, and was therefore used for building the 
TISSBERT validation data, which shows a good 
reliability for most of the globe. The preliminary 

validations shown above indicate HANTS as the best 
choice for time series reconstruction, although only the 
RMSE statistic was considered here, while assessing 
reconstruction methods accuracy in timing and 
amplitude of events may lead to different conclusions. 
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ABSTRACT - Accurate estimation and numerical simulation of human-induced ET are difficult to parameterize 
in hydrologic models, usually attributed to the lack of data and understanding of their physical mechanisms and 
impacts. As most land surface models (LSMs) can only simulate ET under natural climate conditions, here we 
hypothesize instead of that discrepancies in ET estimates should be expected in some cases and can be applied to 
measure the effect of anthropogenic influences in developed river basins. ET output from four LSMs, Noah, 
MOSAIC, VIC and CLM in GLDAS-1, and GRACE-inferred ET from a water budget with the same precipitation 
from GLDAS-1 meteorological forcing, monitored runoff, and total water storage change (TWSC), combined 
with two remote sensing based ET products (MODIS and AVHRR) as the observed ET (Obs-ET) were utilized to 
detect human-induced ET changes over the Songhua River basin (SRB) of China. Comparison between monthly 
mean Obs-ET estimates (2003-2013) and GLDAS-modelled ET indicated that human-induced ET has shown the 
negative effect due to wetland degradation from April to June and the positive effect due to groundwater 
irrigation in summer months. And Obs-ET (443.6±15.4 mm/yr), considerably lower than GLDAS-modelled ET 
(489.3±51.4 mm/yr), suggested that human activities contribute to about 10% decrease in ET over the SRB. And 
human-induced ET has shown a larger proportion in the wet period (e.g., 2013, about 31%) and a lower 
proportion in the dry period (e.g., 2008, about 7%). The uncertainty of the estimated and the Obs-ET were also 
examined. 

1  INTRODUCTION 

As a critical component of the terrestrial hydrological 
cycle, evapotranspiration (ET), plays an important role 
in water exchanges and energy flow across the land-
biosphere-atmosphere interactions at global, regional 
and basin scales. ET is not only influenced by natural 
variability, but also by human activities such as 
irrigation or reservoir impoundment (Lo and 
Famiglietti et al., 2013; Pokhrel et al., 2015). However, 
accurate estimation and numerical simulation of 
human-induced ET are difficult to parameterize in 
hydrologic models, usually attributed to the lack of 
data and understanding of their physical mechanisms 
and impacts (Hanasaki et al., 2008; Tang et al., 2008; 
Rodell et al., 2011).  

Many kinds of ET estimation methods have been 
proposed, for examples: (1) remote sensing (RS)-
based ET estimations, such estimations mainly based 
on Priestley-Taylor, Penman-Monteith algorithm or 
residual of surface energy budget models for 
monitoring spatiotemporal variability of ET by using 
vegetation index-based data: Leaf Area Index (LAI) or 
Normalized Difference Vegetation Index (NDVI) or 
land surface temperature (LST), i.e., MODIS and 
AVHRR ET products (Mu et al., 2007;  Zhang et al., 
2010), (2) LSMs ET products followed energy/water 
balance and calculated how vegetation canopy and soil 
moisture impact ET respectively, e.g., Noah (Ek et al., 

2003), Mosaic (Koster and Suare, 1994), Variable 
Infiltration Capacity (VIC) (Liang et al., 1994) and 
Common Land Model (CLM) (Dai et al., 2003), (3) 
networks of ET monitoring stations, e.g., eddy 
covariance (EC) towers, and (4) the Global Climate 
Model (GCM)-based ET products, generated by 
coupling atmospheric model with the land and ocean 
surface models. And another estimation technique is a 
terrestrial water budget. i.e., total precipitation minus 
the sum of ET and net runoff equals the change in 
water storage (Ramillien et al., 2006). Since 2002, 
Satellite gravity measurements from Gravity Recovery 
and Climate Experiment (GRACE) have provided 
quantitative measurement of terrestrial water storage 
changes with unprecedented accuracy, which track 
water movement at regional scale rather than point-
scale observation and are now enabling closure of this 
equation (Long et al., 2014).  

In this study, as most land surface models (LSMs) 
can only simulate ET under natural climate conditions, 
here we hypothesize instead of that discrepancies in 
ET estimates should be expected in some cases and 
can be applied to measure the effect of anthropogenic 
influences in developed river basins (Castle et al., 
2016; Pan et al., 2017). ET output from four LSMs, 
Noah, Mosaic, VIC and CLM in GLDAS-1, and 
GRACE-inferred ET from a water budget with the 
same precipitation from GLDAS-1 meteorological 
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forcing, monitored runoff, and total water storage 
change (TWSC), combined with two remote sensing 
based ET products (MODIS and AVHRR) as the 
Observed ET (Obs-ET) to detect human-induced ET 
changes over the Songhua River basin (SRB) of China. 

The reminder of this paper was organized as 
follows: Section 2 presents the study region, 
methodologies and data sets used (e.g., GRACE data, 
LSMs estimations, and other RS-based ET products). 
The results and discussions were given in Section 3 
and followed the concluding remarks of the study in 
the final section 4. 

2  MATERIALS AND METHODS  

2.1 Study Region  

 
Fig.1 Location map of the SRB, showing DEM, river 
networks, and the outlet of the SRB-Jiamusi 
hydrometric station utilized in this study. 

The SRB, one of the seven major river catchments in 
China with the area of 557,000 km2, located in the far 
northeast of China, is extremely sensitive to climatic 
change because of its mid- and high- latitude location, 
which stretches from 41º42’ to 51º38’N and 119º52’ to 
132º31’E (see Figure 1), across the provinces of 
Heilongjiang, Jilin, Liaoning and Inner Mongolia. It is 
surrounded by three mountains, and the Songnen Plain 
is in the central and southwest part of the basin (Meng 
et al., 2012). The predominant climate of the SRB 
belongs to the typical north temperate monsoon 
climate with cold & long winters and hot & rainy 
summers. The long-term annual average rainfall is 
approximately 500 mm, ranges from 400 mm in the 
southern plains to 700-900 mm in southeast mountains 
(Li et al., 2014) and about 60-80% of which falls 
during four months (June - September) (Mu et al., 
2012). In addition, numbers of wetlands and 
permafrost zones are widely distributed over the basin. 

2.2 GRACE-derived ET by a water budget approach 

A water budget approach with the observed 
precipitation, net streamflow and GRACE-derived 
TWS changes was employed to simulate ET as 
described in equation (1), and the TWS changes for a 
certain period of a time (e.g., 1 month) can be 
computed as the backwards difference of TWSA, in 
this study, the double difference derivative in equation 
(2) was utilized to derived ΔS/Δt (Long et al., 2014). 

                   ET=P - Q - ΔS/Δt                         (1) 

       ΔS/Δt≈ (TWSA(t+1)-TWSA(t-1))/2∆t      (2) 

where P is precipitation, Q is catchment discharge and 
ΔS is catchment water storage change over a certain 
time interval (Δt). 

2.3 Human-induced ET estimations 

The ensemble of ET outputs from four LSMs, Noah, 
Mosaic, VIC and CLM in GLDAS-1 were used as 
modelled ET (Mod-ET), which was supposed to not 
include the impacts of anthropogenic activities on ET. 
The GRACE-inferred ET from a water budget with the 
same precipitation from GLDAS-1 meteorological 
forcing, monitored streamflow of Jiamusi Station, and 
TWS changes, combined with two remote sensing 
based ET products (MODIS and AVHRR) are 
integrated as the Obs-ET, which were considered 
resulting from the combined natural and anthropogenic 
impacts. Comparison between the Mod-ET and Obs-
ET were conducted to detect human-induced ET 
changes (2003-2013) over the Songhua River Basin of 
China. 

2.3 Materials 

In this study, three different GRACE-derived TWSA 
solutions over the SRB from 2003 to 2013, namely the 
gridded GRACE SH solutions from three sources: (1) 
Center for Space Research (CSR), (2) 
GeoForschungsZentrum Potsdam (GFZ), (3) Jet 
Propulsion Laboratory (JPL), were used to estimate 
TWS changes. These datasets were open to public as 
1°×1° data anomalies relative to a mean time baseline 
from 2004 through 2009. Scale factors were provided 
separately to account for signal loss during processing 
related to truncation to degree and order 60 and 
application of a 300 km Gaussian smoothing filter. 
The TWSA solutions have some missing data (e.g., 
January 2011, May 2012), a simple linear interpolation 
was adopted for interpolation. 

For the LSMs based ET productions, here, four 
LSMs (VIC, Noah, CLM, MOSAIC) of GLDAS-1 
(Koster and Suarez, 1992; Liang et al., 1994; Ek et al., 
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2003; Rodell et al., 2004) outputs in 1°×1° grids from 
NASA were utilized. Two ET productions obtained 
from remotely sensed products based on the MODIS 
and AVHRR spanning from 2003 through 2013 were 
also used. 

 The precipitation data mentioned above was 
obtained from the forcing dataset of the GLDAS-1 in 
1°×1° format. And the observed streamflow data of the 
Jiamusi hydrometric station, obtained from the 
Heilongjiang Province Hydrological Bureau for the 
long-term study period, were used in estimating net 
flow of the study region. 

3 RESULT AND DISCUSSION  

3.1 GRACE-derived TWS changes and variations 

Fig. 2 Monthly TWSA solutions of the SRB from 2003 
to 2013. 

Fig. 3 Monthly TWSC time series over the SRB 
derived from GRACE TWSA for the period of 2003-
2013. 

Comparisons of monthly time-series of TWSA 
(spatially averaged over the SRB) derived from the 
three different data processing centres with different 
approaches indicated a high consistency (Fig. 2) with 
correlation coefficients ranging from 0.91 to 0.93 
under the significant level of P<0.001. These 
consistencies gave us confidence in the use of the 
average GRACE TWSA time series for further 
estimations. As for the TWSA time series, here the 
averaged result of the various solutions was used to 
quantitatively assess the TWS variations, the variation 

rate was estimated to be 1.22 ± 2.22 mm/yr from 2003 
to 2013. In general, the GRACE-derived TWS 
changes for the SRB went through a dry period from 
2004 to 2008 with the estimated change rate of TWS 
about -15.90 ± 4.23 mm/yr and a wet period from 
2009 to 2013 about 6.91 ± 7.49 mm/yr. However, none 
evident trend can be recognized in the TWS variations 
over the region for the study period since the TWS 
remained comparatively stable for the whole 
watershed within such a short period.  

Fig. 3 shows the TWS changes derived from 
TWSA time series by using a double difference 
derivative approach, their average values were used 
for GRACE-derived ET estimations further. 

3.2 Human-induced ET over the SRB 

Under the hypothesize instead of that 
discrepancies in ET estimates should be expected in 
some cases and can be applied to measure the effect of 
anthropogenic influences in developed river basins, 
the monthly ET can be estimated with difference data 
sources. 

Fig. 4 Monthly ET estimations from LSMs of the SRB 
from 2003 to 2013. 

Fig. 5 Monthly ET estimations from the MODIS, 
AVHRR and GRACE satellites of the SRB from 2003 
to 2013. 
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Fig. 6 Monthly Mod-ET and Obs-ET time series of the 
SRB from 2003 to 2013. 

Fig. 4 and 5 presented the monthly ET estimations 
from four LSMs products and three satellite remote 
sensing-based simulations over the SRB for the study 
period 2003-2013, respectively. Fig. 6 showed the 
averaged Mod-ET and Obs-ET for deriving human-
induced ET. Firstly, results demonstrated the validity 
of GRACE satellites to track the amplitude and phase 
of ET over the SRB (Fig. 5). Satellite-based ET were 
generally consistent (R = 0.86-0.91) with each other 
for the period of Feb 2003-Nov 2013. And for the 
LSMs ET estimations, also showed good consistency 
both in phase and amplitude. The discrepancies 
between Mod-ET and Obs-ET were estimated as 
human-induced ET. Obs-ET (443.6±15.4 mm/yr), 
considerably lower than Mod-ET (489.3±51.4 mm/yr), 
indicated that human activities contribute to about 
10% decrease in ET over the SRB. Result also showed 
that the human-induced ET has shown a larger 
proportion in the wet period (e.g., 2012-2013, about 
31%) and a lower proportion in the dry period (e.g., 
2007-2008, about 7%). The proportions were 
calculated with the yearly Mod- and Obs-ET 
estimations (which was not presented in the paper), 
however, the large difference of proportion of human-
induced ET between the wet and dry period may be 
attributed to rainfall in the region. 

Fig. 7 Monthly mean Mod-ET, Obs-ET estimations 
and precipitation of the SRB from 2003 to 2013. 

Fig. 7 presented the monthly mean Mod-ET, Obs-
ET and precipitation of the SRB. Comparison between 

Obs-based monthly mean ET estimates and Mod-ET 
indicated that human-induced ET has shown the 
negative effect which may be attributed to wetland 
degradation (i.e., large-area transformation from 
wetlands to croplands (Mao et al., 2014)) from April to 
June and the positive effect due to groundwater 
irrigation in summer months (Zhang et al., 2007), 
which can be detected by GRACE, but not by LSMs. 
However, the human-induced ET variations under 
multiple driving factors are complicated, which is 
worthwhile for further exploration in the future. 

3.3 Uncertainty 

The estimated Human-induced ET proportions were 
affected by a series of uncertainties inherited from 
both data processing schemes and propagation of 
model errors. Theoretically, the uncertainty of the 
estimated human-induced ET changes can be 
estimated as follows: first of all, the uncertainty in the 
simulations of ET changes with different LSMs were 
manifested but to what levels kept unknown. In terms 
of the RS-based ET estimations, each solution has 
their accuracy assessment, for instance, the AVHRR 
ET products agree well (root mean square error 
(RMSE) = 13.0-15.3 mm month-1; R²= 0.80-0.84) with 
observed tower fluxes from globally representative 
land cover types (Zhang et al., 2010). Additionally, 
high uncertainty in GRACE-derived TWS changes 
caused by the coarse spatial resolution of GRACE 
measurements and different post-processing 
approaches being adopted may also be a source of an 
ET estimation uncertainty (Long et al., 2014) in this 
study, however, as a preliminary attempt, we do 
believe the results with good enough reliability. 

4 CONCLUSION 

This study addresses the potential of GRACE-based 
TWS changes data in water budget calculations, 
combining with LSMs ET estimations to detect 
human-induced ET changes over the SRB of China. 
Firstly, GRACE offers an important measure in 
monitoring water storage changes due to both climatic 
and human factors at regional scales. However, many 
problems are yet to be resolved for improvements. 
Secondly, this approach may provide a new way for 
isolating and quantifying human impacts on 
components of water cycles, e.g., ET, groundwater 
storage changes, and the LSMs may also benefit from 
this study for improving model simulations. 
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ABSTRACT – The water consumption of green land in a large region was difficult to attain through traditional 
methods and a practical method was developed using different sources of remote sensing data. Four major 
procedures were included as follows: (1) The green land area was derived from the high spatial resolution 
RapidEye imagine using Stratified Classification method. (2) The primary vegetation types of green land were 
identified using Object-oriented Classification method. (3) Regional green land ET was inversed based on multi-
temporal Landsat8 imagines using the Surface Energy Balance Algorithm for Land (SEBAL) model. (4) Water 
consumption patterns for different vegetation were analysed, and regional water consumption was estimated. The 
case study was performed in the northwestern region of Beijing City with an area of 147.5 km2. The green land 
area was 56.87 km2, and the deciduous broadleaf forest area was the largest among 6 vegetation types. The total 
quantity of water consumption for green land in study region in the growing period was 41.52 Mm3. The 
quantity of water consumed for different vegetation types from high to low were deciduous broadleaf forest, 
mixed green space, grassland, evergreen needleleaf forest, golf course, and aquatic vegetation, and the values 
were 17.43 Mm3, 13.52 Mm3, 4.74 Mm3, 3.81 Mm3, 1.24 Mm3, 0.79 Mm3, respectively. 

1 INTRODUCTION 

Urban green land is an important component for an 
ecological and livable civic environment and 
accurately estimating regional water consumption is 
meaningful for water management and irrigation 
scheduling. Traditional methods such as Lysimeter 
measurements, sap flow measurements, as well as 
water balance measurements were accurate, but when 
they were applied to estimate regional water 
consumption, uncertainties were raised by spatial 
interpolation. Many kinds of Evapotranspiration (ET) 
estimation models were developed to estimate regional 
ET based on remote sensing products, such as the 
Surface Energy Balance Algorithm for Land (SEBAL, 
Bastiaanseen et al., 1998), the Surface Energy Balance 
System (SEBS, Su, 2002), the Surface Temperature – 
Vegetation Index space (Jiang and Islam, 2001, Tang 
et al.,2010), Penman-Monteith hybrid models (Mu, et 
al., 2011, Di et al., 2015) and Temporal Variations 
models (Lu et al., 2013). The managers could 
dynamically monitor regional water consumption with 

lower cost on nearly real-time using these models, 
however, there were two major limitations(Li et al., 
2009): (1) up scaling errors based instantaneous ET; 
(2) no thermal-infrared data under cloudy conditions. 
This works aimed to develop a new method to 
estimate water consumption for different kinds of 
green land based on the land cover classification 
methods and SEBAL model. Accordingly, the new 
method was applied in the northwest part of Beijing 
City, the vegetation types were identified and the 
water consumption quantity was estimated by regional 
ET results on typical days and interpolating method. 

2. STUDY AREA AND DATA

The study area focused within the northwest part of 
central urban area in Beijing City and the total area 
was about 147.5 km2 (Fig.1). The main land covers 
included buildings, roads, water body, green land, bare 
soil. The green land vegetation types included 
deciduous broadleaf forest (DBF), evergreen 
needleleaf forest (ENF), mixed green space (MGS), 
golf course (GC), grassland (GL), aquatic vegetation 
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(AV). The regions where green land were widely 
distributed included National Olympic Forest Park, 
Summer Palace, Yuanmingyuan Park, Bajia Park, 
Haidian Park, Betucheng Park. Besides, green lands 
were also widely distributed along the main roads and 
in the residential regions. 

The two types of multiple–spectral imagines used 
in the study included the RapidEye imagine and 
Landsat8 imagines. The RapidEye imagine was used 
to classify land covers and to identify green land 
vegetation types for the high spatial resolution (5 m).
The RapidEye imagine was generated on Jun. 10th, 
2009. Landsat8 imagines were used for inversing the 
regional ET. The multi-spectral datasets were acquired 
by both the Operational Land Imager (OLI) and by the 
Thermal Infrared Sensor (TIRS). Landsat8 images in 
four periods were used and they were generated on 
May 12th, Jun.13th, Sep.1st and Oct. 3rd in 2013. 

Fig.1 Location of the studying region 

3. METHODOLOGY

3.1 Technology roadmap 

Firstly, remote sensing imagines were pre-processed 
and these procedures were included such as: radiance 
correction, geometric correction, calculating key 
parameters such as NDVI and surface temperature. 
Secondly, the main research content might be divided 
into two parts: one was concerning land cover 
classification and vegetation identification and the 
other was regarding the multi-temporal regional ET 
reversion. The total regional water consumption 
quantity was attained based on these above results. 

3.2 Green land classification and vegetation type 
identification 

The stratified classification method was used in the 
study and a decision tree was built, as shown in Fig. 3. 
Water area and no water area could be partitioned 
according to NIR reflectance values. Vegetation area 
and no vegetation area could be partitioned by NDVI. 
For the similar spectral feature of bare soil and built-
up (including roads), they were hard to be 

distinguished only accounting for the spectral 
reflectance value and the spatial feature should be 
taken into account. 
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Fig. 2 Flow chart of green land water consumption 
estimation in the study 

Fig. 3 Decision tree for stratified classification 

Fig. 4. Vegetation identification by Object-oriented 
classification method 
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The green land vegetation types included 
deciduous broadleaf forest, evergreen needleleaf 
forest, mixed green space, golf course, grassland, 
aquatic vegetation. The spectral features of these 
vegetation types are similar and they would not be 
identified using only spectral information. 

The object-oriented classification method was 
used and it would integrate the spectral information, 
the structural information as well as the morphological 
information in classification. Firstly, these imagines 
were segmented into lots of units with similar features. 
Secondly, these units were classified using supervised 
classification method and training samples. 

3.3 Regional ET reversing method 

The Surface Energy Balance Algorithm for Land 
(SEBAL) model had been widely used to inverse the 
land surface ET (Bastiaanseen, 2000, Zeng et al., 
2008) and it was based on physical surface energy 
balance theory. In the SEBAL model, the input data 
include visible band images, near infrared band 
imagines, thermal infrared band imagines, as well as 
meteorological data such as air temperature and weed 
speed. The output results included net surface solar 
radiation, soil heat flux, sensible heat flux and latent 
heat flux which was closely related with ET. The 
instantaneous ET was transformed to attain daily ET 
using the fixed ratio interpolation method. The 
processes for the SEBAL model were shown in Fig. 5. 

Water consumption quantity was estimated 
according to the areas of vegetation types and average 
ET values which were derived on typical days. 

4. RESULTS AND DISCUSSION

4.1 Green land classification and typical vegetation 
identification 

According the stratified classification results, the 
green land area was approximately 56.87 km2 
accounting for 38.6% of the total study region. The 
areas for built-up land and roads, green land, water, 
bare soil were 84.30 km2, 56.87 km2, 3.79 km2 and 
2.54 km2, respectively. To evaluate the accuracy of the 
stratified classification results, 100 random sampling 
points were generalized and the classification results 
were compared with the investigation results. The total 
accuracy was 94%. 

According to the object-oriented classification 
results, the deciduous broadleaf forest area was the 
maximum in the green land region and its value was 
23.24 km2 which accounted for 40.9% of the total 
green land region and 15.8 % of studying region. The 
areas for the evergreen needleleaf forest, aquatic 
vegetation, grassland, golf course, and mixed green 
space, were 5.31 km2, 0.82 km2, 8.63 km2, 1.45 km2, 
and 17.42 km2, respectively. 

Fig. 5 Flow chart for applying SEBAL model to 
inverse ET 

Fig.6 Classification results for different land cover 
types 

Fig.7 Classification results for different vegetation 
types 
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4.2 Regional ET reversion results 

The regional daily ET values were reversed using the 
SEBAL model on 4 typical days (May 12th, Jun. 13th, 
Sep. 1st and Oct. 3rd in 2013) and the regional ET 
spatial distribution patterns were shown as Fig.8. 

The ET values for different land covers were 
analysed based on the reversed daily regional ET 
maps. The average daily ET values for different land 
covers from high to low were water body, high-density 
vegetation areas, low-density vegetation areas, no 
vegetation areas such as built-up area and roads. 

Spatially, The ET values within the region between 
the 5th ring road and the 4th ring road were 
considerably higher than in other regions because 
green land and water bodies were more abundant. 
Temporally, the days on which the mean regional ET 
values ranked from high to low maps were Sep. 1st, 
followed by May 12th, Oct. 3rd and Jun. 13th. 

4.3 Comparison of reversed and measured ET values 
for typical quadrats 

The reversed ET values on typical days were extracted 
from the ET maps and the measured ET values were 
from sap flow measurements or from water balance 
measurement. Four quadrets were selected in Bajia 
Park and the vegetation types included Populus, Salix 
babylonica, sabina chinensis, Ophiopogon japonicus, 
Poa annua. The differences between the reversed and 
the measured ET values ranged from -2.0 to 2.5 mm/d, 
and the mean value was 0.1 mm/d. The relative errors 
ranged from -33.9% to 94.3%, and the mean relative 
error is 7.9%. The coefficient of determination is 
0.1392. The errors were mainly caused by mixed 
pixels and the detailed information on green land was 
generalized due to the coarse spatial resolution of 
Landsat8 imagines. 

4.4 Water consumption patterns for different 
vegetation and regional water consumption quantity 

4.4.1 Water consumption patterns for different vegetation 

Base on the vegetation type classification map and the 
reversed daily ET maps, the variation curves of 
seasonal water consumption might be generated by 
selecting typical sample points and by extracting the 
ET values on typical days and 14 sampling points 
were selected. The ET values from water bodies 
sampling points were much higher than green land 
area and they ranged from 6.2 mm/d to 7.9 mm/d. The 
mean ET value for water bodies was 7.2 mm/d. The 
average daily ET values for different vegetation from 
high to low were aquatic vegetation, golf courses, 
mixed green space, deciduous broadleaf forest, 
evergreen needleleaf forest, grassland and the average 
daily ET values were 5.3 mm/d, 4.7mm/d, 4.3 mm/d, 
4.1mm/d, 3.9 mm/d and 3.0mm/d, respectively. 

Fig.8  Reversed Daily ET 
(A. May 12th, B. Jun.13th, C. Sep. 1st, D. Oct. 3rd) 

A 

B 

C 
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Fig. 9 Comparison between measured ET values and 
reversed ET values 

According to the sampling points, the average ET 
values for different vegetation types and water bodies 
were shown in Fig.10. The change trends of seasonal 
ET curves for different vegetation types and water 
bodies were similar and they were like a group of sine 
lines. The highest ET values appeared on Sep.1st and 
the lowest ET values appeared on Jun.13th. The curve 
of deciduous broadleaf forest crossed the curve of 
mixed green space and the curve of evergreen 
needleleaf forest, because the ET values for these 
vegetation types in some periods were similar. 

Fig. 10 Reversed ET change trends for different 
vegetation 

4.4.2 Region water consumption quantity estimation 

The reversed daily ET values on typical days for 
representative vegetation types and the vegetation 
classification results were used to attain the quantity of 
the water consumed in the growing season and two 
assumptions accompanied this extrapolation. (1) The 
monthly average ET value for typical vegetation might 
be presented by the ET value on a typical day. (2) Due 
to the influence of the cloud coverage, there were no 
available imagines in July and August and the monthly 
average ET values in the two months were interpolated 
from the ET values in June and September. 

The monthly water consumption was attained by 
multiplying the areas that were derived from the 
RapidEye imagine, daily ET values for typical 
vegetation which were derived from the reversed ET 
maps and the number of days in the month. By 
summarizing the monthly water consumption, the total 
quantity for water consumed by green land in the 
growing season was attained. 

The quantities of the water consumed by the green 
land in different months are shown in Fig.11 and the 
total quantity is 41.52 Mm3 in the growing season. The 
highest value appeared in September with the value of 
7.79 Mm3 and the minimum value appeared in June 
with the value of 5.65 Mm3. According to the 
statistical results, the deciduous broadleaf forest 
consumed the most water with the value of 17.43 Mm3 
followed by the mixed green space with the value of 
13.52 Mm3, the grassland with the value of 4.74 Mm3, 
the evergreen needleleaf forest with the value of 3.81 
Mm3, the golf courses with the value of 1.24 Mm3 and 
the aquatic vegetation with the value of 0.79 Mm3. 

Fig. 11 Water consumption  by different vegetation in 
different months 

Based on the water consumption characteristics of 
typical vegetation, the green land areas extracted from 
remote sensing imagines, and the investigation data, 
Di et al. (2012) estimated that the water consummated 
by the green land was about 161 Mm3 and the total 
green land area is approximately 197.3 km2 within the 
5th ring road in Beijing urban area. Supposing the 
water consumption is proportional to the area of green 
land, the water consumption would be 46.41 Mm3 by 
Di’s method, accounting for a green land area of 56.87 
km2 in the study region. The difference between the 
result from Di’s method and the result from our 
method is 11.8%. 

5. CONCLUSION

Remote sensing technology is of crucial importance 
for urban green land classification and regional water 
consumption estimation in large regions. In this 
article, this case study was carried out in the northwest 
region of Beijing City and the study area covered 
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approximately 147.5 km2. This study was based on 
high resolution remote sensing imagines, 
meteorological data and water consumption 
experiment results. The following processes were 
included: (1) the green land region was derived from a 
high spatial-resolution RapidEye imagine using 
Stratified Classification method; (2) vegetation types 
were identified using Object-oriented Classification 
method;(3) the daily ET values were reversed using 
the Surface Energy Balance Algorithm for Land 
(SEBAL) model; (4) the regional ET spatial patterns 
and the water consumption temporal patterns for 
different vegetation were analysed based on multi-
temporal daily ET maps, and the total quantity of 
water consumption in the study region was estimated. 

The area of green land was 56.87 km2 accounting 
for 31% of the urban area. Furthermore, the green land 
was divided into 6 classes: deciduous broadleaf forest, 
evergreen needleleaf forest, mixed green space, golf 
course, grassland, and aquatic vegetation and the areas 
were 23.24 km2, 5.31 km2, 0.82 km2, 8.63 km2, 1.45 
km2, and 17.42 km2, respectively. 

The regional daily ET values were reversed using 
the SEBAL model on 4 typical days (May 12th, 
Jun.13th, Sep.1th and Oct.3th in 2013) and the ET 
spatial distribution patterns were analysed. The 
average daily ET values for different types of 
vegetation from high to low were aquatic vegetation, 
golf course, mixed green space, deciduous broadleaf 
forest, evergreen needleleaf forest, and grassland, and 
the average daily ET values were 5.3 mm/d, 4.7mm/d, 
4.3 mm/d, 4.1mm/d, 3.9 mm/d, and 3.0mm/d 
respectively. Compared with the water consumption 
experiment of the typical vegetation, the mean relative 
error for reversed ET values based on the SEBAL 
model was approximately 7.9%. 

Through temporal interpolation, the total water 
consumption quantity for the green land in the study 
region in the growing period was attained and the 
value was 41.52 Mm3.The quantity of water consumed 
for different vegetation types from high to low were 
deciduous broadleaf forest, mixed green space, 
grassland, evergreen needleleaf forest, golf course,and 
the aquatic vegetation, and the values were 17.43 
Mm3, 13.52 Mm3, 4.74 Mm3, 3.81 Mm3, 1.24 Mm3, 
and 0.79 Mm3, respectively. 

Although, the estimation error is relatively small 
compared with the measured data and other related 
research results, further work will be done to reduce 
uncertainty by estimating the ET values in sub-pixel 
scale according to the area contribution of different 
land covers. Therefore, the regional ET results are 
expected to be more accurate and to be more helpful in 
urban water resource management. 
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ABSTRACT- Upscaling instantaneous evapotranspiration (ET) retrieved at a specific time of satellite overpass 
to daily ET is a key issue in regional scale applications for planning water resources and monitoring water use 
efficiency. The constant global shortwave irradiance ratio method which keeps the ratio of instantaneous 
incoming shortwave solar radiation to daily value as constant is reported to be robust in obtaining daily ET. 
However, the method is usually used in clear days, and the study about the cloud effect on daily ET estimation 
trough this method is rare. This study concentrated on the shortwave cloud radiative effect (CRESW; W/m2) on 
daily ET estimation through the constant global shortwave irradiance ratio method.  The CRESW was defined as 
the difference between the downward global irradiance measurements for cloud-sky (satellite overpass moment 
is clear) and for corresponding ideal clear-sky conditions. The selected clear-sky conditions from field data was 
also regraded as reference. Then daily ET was obtained by upscaling instantaneous ET obtained at satellite 
overpass time using the temporal upscaling method at cloud-sky, ideal clear-sky and selected clear sky 
conditions. Compared with observed daily LE, the upscaled LE at selected clear sky condition had a bias of 
6.3W/m2, a RMSE of 14.5 W/m2; at cloud-sky condition had a bias of 8.2 W/m2, a RMSE of 18.4 W/m2, with 
estimation error increased. Compared with daily ET obtained at ideal clear sky condition, the upscaled daily ET 
reduced, and the reduction amount has an exponential increase with the CRESW.  

1. INTRODUCTION

Evapotranspiration (ET) can be used to express 
the vegetation water consumption and reflect the 
surface moisture effectively (Courault et al., 2005; 
Anderson et al., 2012; Tang et al., 2013). Daily ET is 
more significant among many practical applications in 
the fields of water management, drought monitoring 
and climate change study, compared to the 
instantaneous ET resulted from remote-sensing based 
models at the time of satellite overpass (Li et al., 2009). 
Therefore, the remotely sensed instantaneous ET must 
be upscaled temporally to obtain ET integration over a 
longer time scale (e.g. days, months to years).  

In order to accommodate the temporal scaling 
challenges encountered by remote sensing based ET 
models, techniques have been proposed and applied by 
various researchers to upscale instantaneous ET to 
daily value (Brutsaert & Sugita, 1992; Chávez et al., 
2008; Delogu et al., 2012; Cammalleri et al., 2014). 
The constant global shortwave irradiance ratio method 
which keeps the ratio of instantaneous incoming 
shortwave solar radiation to daily value as constant is 
reported to be robust in obtaining daily ET (Ryu et al., 
2012; Niel et al., 2012; Xu et al., 2015). However, the 

temporal upscaling method is usually used in the clear-
sky days, and the study about the cloud effect on daily 
ET estimation trough this method is rare. The issue 
comes, that the cloud coverage is a prominent 
phenomenon in many parts of the world and the mean 
cloud cover per day even exceed 60% in the humid 
tropics (Bussieres & Goita, 1997). Thus, extrapolating 
instantaneous ET only under all-sky clear condition 
has limited applicability for operational remote 
sensing applications.  

In fact, it is practicable to quantify the effect of 
cloud cover using some schemes (Jackson et al., 1983). 
In Long’s study (2000; 2006), shortwave cloud 
radiative effect (CRESW; W/m2) is defined as the 
difference between the downward global irradiance 
measurements for cloud-sky and for corresponding 
ideal clear-sky conditions. The presence of clouds 
denotes a main decrease in irradiance at the surface, 
although other factors such as increased column water 
vapor amount or aerosol optical depth changes may 
also contribute to the difference. The cloudy days 
expressed by irradiance reduction have been validated 
as heavily overcast days using measurements. 
Therefore, an elaborate understanding of the cloud 
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effect is essential and feasible in exactly obtaining 
daily ET.  

This study concentrates on shortwave cloud 
radiative effect on daily ET estimation through the 
constant global shortwave irradiance ratio method.   

2. STUDY SITE  AND DATA 

2.1 Study site 

This study was carried out at the Yucheng station 
(36.8291º N, 116.5703º E, located in the southwest of 
Yucheng County, Shandong Province in North China). 
The Yucheng station is a part of the Chinese terrestrial 
ecosystem flux network and aims at measuring long-
term exchange of carbon dioxide, water vapor, and 
heat between the land and the atmosphere. The climate 
here is the subhumid and monsoon climate with a 
mean annual temperature of 13.1 ℃ and precipitation 
of 528 mm. The soil is sandy loam, and the land cover 
types near the station primarily consist of crop (winter-
wheat and summer-corn rotation), bare soil, tree and 
water. 

Figure 1. The location of study site 

2.2 In situ measurements 

The measurements from the Yucheng station 
needed in this study contain meteorological variables, 
radiation data, and flux data from late April 2009 to 
late October 2010. Meteorological variables, including 
air temperature, wind speed, relative humidity and 
atmospheric pressure, were measured at the height of 
2.93 m during the growth period of wheat and at 4.2 m 
during the growth period of corn. Radiation data, 
including downwelling and upwelling shortwave and 
longwave radiations, were acquired from a CNR-1 
radiometer installed at the height of 3.98 m. Flux data 
H and LE were measured by an Eddy Covariance (EC) 
system. The height of the EC facility was 2.7 m and 
3.75 m during the growth period of wheat and the 
growth period of corn, respectively. G was estimated 

from a single HFP-01 soil heat flux plate at 2 cm 
below the surface without considering heat transfer for 
the 2cm storage layer above the plate.  

All of the meteorological variables and the EC 
measurements were are recorded as a 30-min average, 
so there are 48 records in a day for each variable. It is 
noted that 5 min averaged data of downwelling 
shortwave radiations are contained for clear sky 
identification. 

2.3 Remote sensing data 

Remote sensing data used in this study are from 
the MODIS Terra satellite, including the calibrated 
radiance product (MOD021KM), the land surface 
temperature and emissivity product (MOD11_L2), the 
surface reflectance product (MOD09GA), the 
geolocation product (MOD03) and the cloud mask 
product (MOD35). These data are downloaded from 
the Atmosphere Archive and Distribution System Web 
(https://ladsweb.nascom.nasa.gov/data/search.html). 
Of the 36 spectral channels of the MODIS sensor, two 
visible bands and five near-infrared bands have spatial 
resolutions of 250 m and 500 m, respectively, and the 
rest thermal infrared bands have a spatial resolution of 
1000 m. 

3. METHODS

3.1 The method for the instantaneous LE calculation 

In this paper, the calculation of instantaneous LE 
is performed using the following equation (Boegh et 
al., 2002): 

 
*

= ( / ) s a
p

s ae

e eLE c
r r

ρ γ −
+

 (1) 

where es* is the saturated vapour pressure at the 
evaporating front evaluated on the basis of the surface 
temperature, kPa; ea is the vapour pressure of the air 
above the canopy, kPa, rs is the surface resistance, s/m; 
rae is the aerodynamic resistance, s/m. 

For the calculations of the aerodynamic resistance 
(rae) and surface resistance (rs), the study uses the 
method proposed by Boegh et al (2002). The input 
parameters are surface temperature (Ts), net radiation 
(Rn), soil heat flux (G), air temperature (Ta), and air 
humidity (ea).  

3.2 The temporal upscaling method 

In the constant global shortwave irradiance ratio 
method, the ratio of instantaneous incoming shortwave 
solar radiation to daily value keeps constant, which is 
equal to the ratio of instantaneous ET to the daily ET, 
namely 

d

i i

d

ET Rs
ET Rs

=  (2) 
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where Rs is the incoming shortwave solar radiation; 
the subscript i and d represent instantaneous and daily 
time scale, respectively. 

In the ideal clear-sky days, the ration of 
instantaneous incoming shortwave solar radiation to 
daily value is expressed like this (Bisht et al., 2005; 
Hou et al., 2014) 

= sin( )
2

overpass risei

d set rise

t tRs
Rs t t

π π
− 

 − 
    (3) 

where tset,trise and toverpass are the time for sunset, 
sunrise and overpass of satellite.  

3.3 Clear-sky selections from shortwave irradiance 
measurements 

The clear-sky shortwave is a maximum at local 
solar noon, diminishing to zero at night. The primary 
factor determining the magnitude at any given time is 
the solar zenith angle (Long et al., 2006). Thus, for a 
given solar zenith angle we expect the total shortwave 
to fall within a nominal range of values for clear sky. 
We use the method proposed by Long et al (2000) to 
identify clear sky moments. 

 The first test is to normalize the total shortwave 
data by a power law function of the cosine of the solar 
zenith angle: 

  0
b

NRs Rs / µ↓=   (4) 

where Rs↓  is the downwelling total shortwave;
NRs  is 

the normalized total shortwave; 
0µ is the cosine of the 

solar zenith angle; and b is a constant. 
Maximum and minimum limits are set, and only 

normalized values falling inside this range are 
tentatively labeled as clear. This, as a first cut, 
eliminates periods of obvious positive and negative 
cloud effect. Figure 2 shows the 5-min total shortwave 
and normalized date May 20, 2009. Values used in this 
comparison are 1.31 for the constant b, 1150 W/m2 for 
the maximum limit, 900 W/m2 for the minimum limit. 
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Figure 2. Measured and normalized shortwave 
irradiance 

Next, the temporal changes in total shortwave 
irradiance are studied. For clear periods, the change in 
irradiance is small over short periods of time 
compared to changes due to cloud effects. Thus, the 
change in measured total shortwave to the 
corresponding change in top-of atmosphere irradiance 
(

TF↓
) is compared.

For clear sky, the absolute change in RS↓ over a 
short time must be less than the absolute change in 
F↓T. We use a limit envelope based on F↓T and the 
solar zenith angle in this test for clear sky (Figure 3).  
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Figure 3. Illustration of the change in irradiance with 
time 

In order to account for the uncertainties and noise 
of these measurements, we use minimum and 
maximum values which are less than and greater than, 
respectively, the value of the absolute change of F↓T 
with the time (Eq. (5)). 

  0TMAX | F / t | Cu↓= ∆ ∆ +

  
0 00 1cos

TMIN | F / t | Rt( u . ) / uθ
↓

 = ∆ ∆ − +       (5)

Using the clear-sky identification method, 77 
cloud-sky (satellite overpass moment is clear) days 
and 45 totally clear-sky days were selected. 

3.4 The shortwave cloud radiative effect 

The shortwave cloud radiative effect (CRESW; 
W/m2) is determined using downward global 
irradiance measurements (5-min averages), recorded at 
the surface. All situations in terms of cloud cover and 
cloud type were considered to determine the CRESW, 
which is defined as the difference between the 
downward global irradiance measurements for cloud-
sky (satellite overpass moment is clear) and for 
corresponding ideal clear-sky conditions.  

cloud clearCRESE Rs Rs= −   (6) 
Over long time averages or large spatial domains, 

the CRESW is always negative because clouds reflect 
more radiation than clear-sky, implying that less solar 
radiation reaches the surface. 
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4 RESULTS AND DISCUSSIONS 

4.1 The instantaneous ET calculation from MODIS 
data and field data 

Figure 4 shows the instantaneous ET (LE, used 
interchangeably hereafter) estimated using remote 
sensing data and part meteorology data of 
MODIS/Terra overpass times over 77 cloud-sky days 
and 45 totally clear-sky day. The estimated 
instantaneous LE was compared with the 
instantaneous LE observations corrected by the Bowen 
Ration (BR) method to close the energy imbalance of 
EC measurements. The instantaneous LE of cloud-sky 
days was overestimated a little by a small bias of 
1.5W/m2 and a root mean square error (RMSE) of 37.6 
W/m2. The instantaneous LE of selected clear-sky 
days was undervalued by a bias of -32.31.5W/m2 and a 
RMSE of 48.9 W/m2. 

Then daily LEs at cloud-sky, ideal clear-sky and 
selected clear-sky conditions were obtained by 
upscaling the instantaneous LEs obtained at satellite 
overpass time using the constant global solar radiation 
ratio method. 
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Figure 4. Comparison of the estimated instantaneous LE 
and the measured value corrected with the BR method 

4.2 Upscaling results at cloud-sky and selected clear-
sky conditions 

Daily LEs obtained through the constant global 
solar radiation ratio method at cloud-sky and selected 
clear-sky conditions were compared with the measured 
Daily LEs corrected with the BR method in Figure 5.  

Figure 5 demonstrates that both the daily LEs at 
cloud-sky days and selected clear-sky days were 
underestimated. The upscaled and observed daily LEs 
at the selected clear-sky days produced a significant 
linear relation, with a low bias of -6.3 W/m2, and a 
RMSE of 14.5 W/m2. The estimation bias related to 
cloud-sky days was -8.2 W/m2 and the RMSE was 
18.4 W/m2. Narrowed statistical bias and RMSE of 
daily LE at clear-sky days revealed superior 
performances of the temporal upscaling method at and 
the upscaling results at cloud-sky condition had higher 
estimation deviation. 
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Figure 5. Comparison of the upscaled daily LEs and 
the measured value corrected with BR method at 
cloud-sky and selected clear-sky conditions 

4.3 The shortwave cloud radiative effect on daily 
evapotranspiration estimation  

According to the definition of shortwave cloud 
radiative effect (CRESW), we can obtain the CRESW 
of 77 cloud-sky days, namely the difference between 
the downward global solar irradiance measurements 
for 77 cloud-sky and for corresponding ideal clear-sky 
conditions. Based on the constant global solar 
radiation ratio method, we acquired daily LE which is 
hypothetical value for ideal clear-sky days.  
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Figure 6. The relationship of the CRESW and the 
difference between daily LE upscaled at cloud-sky 
days and corresponding ideal clear-sky days  

Figure 6 illustrates the relationship of the 
CRESW and the difference between daily LE upscaled 
at 77 cloud-sky days and corresponding ideal clear-sky 
days from the same instantaneous LE. Compared with 
daily LE obtained at ideal clear-sky condition, the 
upscaled daily ET at cloud-sky condition reduced, and 
the reduction amount has an exponential relation with 
the CRESW. The exponential relationship was not 
very significant, which was due to the fact that the 
CRESW is defined as the difference between the 
downward global irradiance measurements for cloud-
sky and for corresponding ideal clear-sky conditions, 
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ignoring some cloud effect caused from the column 
water vapor amount or aerosol optical depth changes. 

Meanwhile, it is notable that the instantaneous 
LEs of MODIS/Terra overpass times over 77 cloud-
sky days and 45 totally clear-sky day was both 
estimated using remote sensing data and part 
meteorology data in this study. The parameter 
retrievals required for the LE calculation have some 
deviations, which would affect the daily LE upscaling 
from the instantaneous, namely the behaviour of the 
temporal upscaling method to some extent. 

5 CONCLUSION 

This study evaluated the shortwave cloud 
radiative effect (CRESW; W/m2) on daily LE 
estimation upscaled through the constant global 
shortwave irradiance ratio method.  The CRESW is 
defined as the difference between the downward 
global irradiance measurements for cloud-sky and for 
corresponding ideal clear-sky conditions. The selected 
clear-sky conditions from field data was also as 
reference. Daily ET was obtained by upscaling 
instantaneous ET obtained at satellite overpass time 
using the constant global solar radiation ratio method 
at different conditions, respectively. Compared with 
observed daily LE, the upscaled LE at selected clear-
sky condition had a bias of 6.3W/m2, a RMSE of 14.5 
W/m2; at cloud-sky had a bias of 8.2 W/m2, a RMSE 
of 18.4W/m2, with estimation error increased. 
Compared with daily LEs obtained at ideal clear-sky 
condition, the upscaled daily ET at cloudy-sky days 
reduced, and the reduction amount has an exponential 
increase with the CRESW.  
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Abstract - Tibetan Plateau, the headwater of most Asian rivers, has a crucial influence on the water resources of 
the whole Asia, especially in the east and south of Asia. As an important component of the water cycle, terrestrial 
water storage (TWS) changes greatly affect regional water supply and demand situation. Since launched in 2002, 
the Gravity Recovery and Climate Experiment (GRACE) satellite mission has provided quantitative measurement 
of TWS changes on global and regional scales. In this study, the spatiotemporal variations of TWS anomaly, 
derived from GRACE satellite data during 2003-2005, over the Tibetan Plateau were investigated by using a least 
square regression model and Pearson correlation coefficient. Then we detected the relation between water cycle 
and carbon cycle, with TWS anomaly, the precipitation data from the Tropical Rainfall Measurement Mission 
(TRMM), and the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging 
Spectroradiometer (MODIS). This study revealed that yearly TWS anomaly of the Tibetan Plateau had been 
undergoing a continuous decreasing trend with a rate of approximately -0.87 cm/yr (2.187×1010 m3/yr). Also, it 
showed a high correlation with precipitation both in spatial and temporal distribution; for the entire study area, 
there was an average time lag of about 26.7 days between precipitation and TWS anomaly. In the meantime, both 
TWS changes and precipitation had a pretty high correlation with NDVI (R2 = 0.66 and R2 = 0.79, respectively). 

1 INTRODUCTION 

As an important component of the hydrologic cycle, 
Terrestrial Water Storage (TWS) change is a 
comprehensive reflection of accumulated precipitation, 
evapotranspiration, runoff and groundwater processes 
(Chen et al., 2009). TWS change is very valuable for 
the management of agriculture water and regional water 
resources, which is a prominent problem in the present 
and future. Although TWS changes, including changes 
in surface water, ground water, soil moisture, 
evapotranspiration, snow and ice sheets, can be 
measured by in-situ observations with a pretty high 
accuracy, it is difficult to obtain an extensive region due 
to the small coverage area and limited distribution of in-
situ observation stations (Rieser et al., 2010). 

Under the demands for direct observations of 
large-scale TWS change, the Gravity Recovery and 
Climate Experiment (GRACE) mission was launched, 
jointly by National Aeronautics and Space 
Administration (NASA) and German Aerospace Center 
(DLR), in March 2002. GRACE is the first satellite 
dedicated to measure the earth's time-variable gravity 
changes, and has continuously observed more than 10 
years for global gravity changes (Tapley et al.,2004). 
Studies have proved that the time-variable gravity 
changes are related to water mass redistributions on a 
short-time scale, which represents TWS changes (Hu et 

al., 2006; Rieser et al., 2010). To date, GRACE data has 
been used in amount of studies to investigate TWS 
change, ground water storage. (Rieser et al., 2010; 
Rodell et al., 2009; Seyoum & Milewski, 2016; Hu et 
al., 2006; Xu et al., 2013). 

Precipitation, the recharge source of TWS, plays a 
major role in the water balance. Therefore, we 
compared the spatiotemporal variations of TWS 
changes from GRACE and the precipitation data from 
TRMM over the Tibetan Plateau in this study. In 
addition, this study also investigated whether there was 
a statistically significant correlation between plant 
growth and water storage, with the data sets of NDVI 
from MODIS, precipitation from TRMM, and TWSA.  

2 STUDY AREA AND DATA 
2.1 Study area 

The Tibetan Plateau, located in the southwest of China 
between 26°N-39°N and 73°E-104°E, as shown in 
Fig.1, covers an area of about 2.6×106 km2, accounting 
for 26.8% of the total land area of China. The average 
elevation of the Tibetan Plateau is about 4-5km. 

2.2 GRACE data 

In this study, the monthly GRACE Release 5.0 (RL05) 
data from January 2003 to December 2015 were used 
(available at http://grace.jpl.nasa.gov/) (Swenson & 
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Wahr, 2006) based on the spherical harmonic 
coefficients from the Centre of Space Research (CSR). 

Fig.1. Geographic map showing the topography and 
location boundaries of the Tibetan plateau 

In data processing, the degree 2 order 0 coefficients 
were replaced by the solutions from Satellite Laser 
Ranging (Cheng et al., 2015) and the degree 1 
coefficients were estimated using the method from 
Swenson et al. (Swenson et al., 2008). A glacial 
isostatic adjustment (GIA) correction (Geruo et al., 
2013), a destriping filter and a 300 km wide Gaussian 
filter was applied to the data. Mean monthly solution 
from January 2004 to December 2009 was removed 
from each solution. Then these smoothed spherical 
harmonic coefficients were converted into 1 degree 
gridded data. And finally, the gridded GRACE data was 
scaled using the gridded scaling dataset provided by 
Landerer and Swenson (Landerer & Swenson, 2012) to 
restore much of the energy loss in the truncation and 
filtering. The scaled GRACE TWS Anomaly (TWSA) 
was expressed in centimeter of Equivalent Water 
Height (EWH). 

2.3 Precipitation data and NDVI data 

Precipitation data was collected from the TRMM 3B43 
V7 monthly gridded precipitation product, the widely-
used satellite precipitation measurement product, with 
spatial resolution of 0.25 degree (available at 
https://pmm.nasa.gov/TRMM). The NDVI data was 
collected from MODIS MOD13A3 V5 product, with 
spatial resolution of 1 km (available at 
https://lpdaac.usgs.gov/dataset_discovery/modis). In 
order to keep the consistency of spatial resolution, the 
TRMM precipitation data and the MOD13A3 NDVI 
data were resampled by bilinear interpolation into 1 
degree, and then the comparative analyses were 
conducted. 

3 METHODOLOGY 

3.1 Spherical harmonic expressions of TWSA 

The GRACE spherical harmonic coefficients were 
converted into EWH, which represented the TWSA, 
given by Equation (1): 

∆h(θ,𝜑𝜑)=
2aρaveπ
3ρwater

��
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1+kl

wl𝑃𝑃�lm(cos θ)
l

m=0

N
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×[∆Clm cos(m𝜑𝜑) +∆Slm sin(m𝜑𝜑)]      (1) 

where ∆h(θ,φ) is the EWH value, a=6378136.3 m is the 
radius of the earth at the equator, ρave=5517 kg/m3 is the 
average density of the Earth, ρwater=1000 kg/m3 is the 
density of pure water, N=60 is the maximum spherical 
harmonic degree, l and m are the degree and order of 
spherical harmonic, θ and φ are the co-latitude and 
longitude, kl is the degree l elastic load Love number of 
the Preliminary Reference Earth Model, ∆Clm and ∆Slm 
are the spherical harmonic coefficients from GRACE, 
𝑃𝑃�lm(cos θ) is the l degree and m order normalized 
associated Legendre polynomial. And wl is the 
Gaussian smoothing factor, which can be computed by: 
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where r=300 km denotes the soothing radius. 

3.2 Analysis methods 

In this study, a least square regression model was used 
to fit the TWSA and precipitation time series given by: 

y(𝑡𝑡) = 𝐴𝐴 ∙ sin[2𝜋𝜋 ∙ (𝑡𝑡 − 𝜑𝜑)/𝑇𝑇]              (3) 

The Pearson correlation coefficient R was used to 
analyze the relation among TWS, precipitation and 
NDVI. 

𝑅𝑅 = �
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𝑖𝑖=1 ∙ ∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2𝑁𝑁

𝑖𝑖=1
 (4) 

4 RESULTS AND ANALYSIS 

The spatial distribution of monthly average TWSA in 
the Tibetan Plateau was calculated using the GRACE-
derived TWSA from January 2003 to December 2015. 
From Fig.2, there is a significant difference in TWSA 
among different months. During the period from 
January to May, the TWSA in the northwestern part of 
the Tibetan Plateau remains basically in equilibrium, 
and only the TWSA in the Middle Kunlun Mountain 
Nature Reserve has a small surplus, with a maximum of 
6 cm. The closer to the southeast, the lower the TWS, 
with the lowest value of -17 cm. During the period from 
June to September, affected by the southwest monsoon, 
the Tibetan Plateau comes into rainy season, and 
precipitation increases significantly.
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Fig.2. Spatial distribution of monthly average TWSA in the Tibetan Plateau during 2003-2015 

The TWSA in vast majority of the Tibetan Plateau 
shows a substantial surplus, and the maximum appears 
in the southeast reached 16 cm. From October to 
December, the rainy season is completely over, with no 
precipitation supplement, and because of the steep 
mountains in southern region, the surface water runs off 
rapidly, which makes the TWSA significantly reduce 
even reaching -8 cm. 

 
Fig.3. Temporal comparison between monthly 
precipitation and TWSA 

Fig.3 illustrated a temporal comparison between 
monthly precipitation from TRMM and GRACE-
derived TWSA. It indicated that the yearly TWSA had 
been undergoing a continuous decreasing trend with 
significant seasonal fluctuation for the entire study 
region during 2003-2015, with the change rate 
estimated to be about -0.87 cm/yr (2.187×1010 m3/yr). 
Also, it could be found that peak value and valley value 
of TWSA had a good consistency with precipitation, 
which indicated that the seasonal variation of TWSA in 
the Tibetan Plateau was in line with the seasonal 
regularity of precipitation. After applying regression 
model to the time series of TWSA and precipitation as 

shown in Table 1, we found there was an average time 
lag of approximately 26.7 days between precipitation 
and TWSA, suggesting that it took about one months 
until a temporal gravity observation could detect a 
precipitation event. This phenomenon was mainly 
caused by soil interception, as well as regulation and 
storage of lake and groundwater (Xu et al., 2013). 

Table 1. Annual initial phase, amplitude and period of 
precipitation and TWSA in the Tibetan Plateau 
(Formula and variable names are shown in Equation (3)) 

Production Initial Phase 
(𝜑𝜑/d) 

Amplitude 
(A/cm) 

Period 
(T/d) 

Precipitation 194.80 4.06 365.02 
TWSA 221.5 3.14 364.80 

As shown in Fig.4, the spatial distribution of 
correlation coefficients between monthly precipitation 
and one-month-delay TWSA presented the relative 
higher values compared with other combinations, 
which indicated the existence of the time lag.  

Fig.4. Spatial correlation between monthly 
precipitation and one-month-delay TWSA 
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Meanwhile, TWSA changes in the north of the 
Tibetan Plateau were especially different from the other 
regions both in spatiotemporal distribution and 
variation trend, while there was nothing special in 
precipitation, thus it showed a negative correlation. The 
correlation coefficient between TWS and precipitation 
in the Tibetan Plateau presented a declining trend from 
southeast to northwest. In most regions, the correlation 
coefficients were greater than 0.5 and the maximum 
reached 0.83, while Qaidam Basin, in the northern 
Tibetan Plateau, showed a significant negative 
correlation with the value of -0.51. The main reason for 
this spatial distribution was that the precipitation was 
abundant in the southeastern region, which led to the 
variations of TWS. Perennial little rain in the Qaidam 
Basin, and because of terrain factors, long sunshine 
time, strong evaporation (Su et al., 2015), rapid loss of 
water storage, so that the TWS and precipitation were 
negatively correlated in this area.  

Furthermore, by calculating the monthly average 
of TWS, precipitation, NDVI in the Tibetan Plateau, the 
comparisons between them were shown in Fig.5. From 
Fig.5A and Fig.5B, it can be found that both TWSA and 
precipitation had a pretty high correlation with NDVI 
(R2 = 0.66 and R2 = 0.79, respectively), which 
confirmed that the growth pattern of vegetation was 
closely related to the distribution of precipitation and 
TWSA over the Tibetan Plateau. Compared with 
TWSA, precipitation had a relative higher correlation 
to NDVI. The analysis results indicated that 
precipitation had the most direct impact on NDVI in the 
Tibetan Plateau, which meant that plants were more 
likely to obtain water directly from precipitation. While 
soil moisture, surface and groundwater, etc. were not 
the main factors of vegetation growth. Additionally, the 
highest correlation coefficient of 0.93 between 
precipitation and one-month-delay NDVI in Fig.5C 
indicated that the vegetation growth had a lag effect of 
1 month to precipitation, due to the infiltration of 
precipitation through the soil, plant roots absorption 
process. 

5 CONCLUSIONS 

This study analyzed the variations of TWSA both in the 
spatial and temporal scale over the Tibetan Plateau, and 
compared the spatiotemporal relation among TWSA, 
precipitation and NDVI by using a least square 
regression model and Pearson correlation coefficient. 
Results showed that the TWSA in the northwestern part 
of the Tibetan Plateau was almost in the stable state near 
to zero for the study period, while in the southeastern 
region the TWSA reacted to extreme losses in the dry 
season and surpluses in the rainy season. Meanwhile, it 
indicated that a continuous decreasing trend in the 
yearly TWSA with significant seasonal fluctuation over 
the study region, with the change rate of approximately 

-0.87 cm/yr (2.187×1010 m3/yr). 
In addition, we found there was an average time 

lag of about 26.7 days between precipitation and TWSA. 
The correlation coefficients between TWSA and 
precipitation showed a declining trend from southeast 
to northwest, with correlation coefficients in most 
regions were greater than 0.5 and the maximum reached 
0.83. 

Furthermore, it could be found that both TWSA 
and precipitation had a pretty high correlation with 
NDVI (R2 = 0.66 and R2 = 0.79, respectively), and the 
vegetation growth had a lag effect of 1 month to 
precipitation. In order to further reveal the 
interrelationship between water cycle and carbon cycle 
in the Tibetan Plateau, more statistical methods and 
more datasets should be used to analyze in future work. 

Fig.5. Comparisons between monthly NDVI and 
precipitation, TWSA in Tibetan Plateau. A-C 
represented the comparison of TWS and NDVI, 
precipitation and NDVI, precipitation and one-month-
delay-NDVI, respectively. 
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ABSTRACT - Combining surface evaporation and plant transpiration, evapotranspiration is critical to surface 
water and heat balance as it links water, carbon cycles and energy exchange. Lots of ET models have been 
developed to estimate global terrestrial evapotranspiration at present. An existing problem is that there are large 
model uncertainties among different models. In this study, a generalized regression neural network method was 
used to integrate five global satellite-based models (MOD16, RRS-PM, PT-JPL, MS-PT and Semi-empirical 
model) to improve the accuracy of global ET estimates for nine different vegetation types. Compared to 
individual satellite-based models, the integrated model with a generalized regression neural network produced 
significantly decreased bias (less than 2 W/m2) and root-mean-square error (the maximum of the decrease could 
reach almost 37 W/m2 ) for the validation. The integrated model probably could explain 53%-73% of the land 
surface ET change at 242 eddy covariance global flux sites and it had an improved performance for global ET 
estimation over long-time series. 

1  INTRODUCTION 

As the main process parameter of water and energy 
exchange in hydrosphere, atmosphere and biosphere, 
evapotranspiration (ET) is defined as the water being 
converted from liquid to gaseous and from land 
surface to atmosphere, which combines the 
coinstantaneous surface evaporation and plant 
transpiration (Allen et al., 1998; Li et al., 2009; Wang 
and Dickinson, 2012). Nowadays, lots of studies have 
been developed on evapotranspiration models and 
showed that different models have large uncertainties 
(Chen et al., 2014; Chen et al., 2015; Yao et al., 2014). 
In this study, a generalized regression neural network 
method was used to integrate five global satellite-
based models (MOD16, RRS-PM, PT-JPL, MS-PT 
and Semi-empirical model) to improve the accuracy of 
global ET estimates for nine different vegetation types. 

2  DATA SOURCES AND METHODS 

2.1 Data 

In this paper, observational data from 242 global flux 
tower sites, MODIS NDVI (MOD13A2, 16-day, 
spatial resolution 1km) and MODIS LAI (MOD15A2, 
8-day, spatial resolution 1km) during 2000 to 2009, 

were used to estimate land surface ET at global flux 
tower sites for different satellite-based models. The 
observational data included daily air temperature, 
maximum air temperature, minimum air temperature, 
solar radiation, surface net radiation, soil heat flux, 
vapor pressure, relative humidity, wind speed, sensible 
heat flux and ET. These global sites included nine 
different vegetation covers: cropland (CRO, 35 sites), 
deciduous broadleaf forest (DBF, 28 sites), deciduous 
needleleaf forest (DNF, 4 sites), evergreen broadleaf 
forest (EBF, 19 sites), evergreen needleleaf forest 
(ENF, 62 sites), mixed forest (MF, 11 sites), grass and 
other types (GRA, 57 sites), shrubland (SHR, 17 sites) 
and savanna (SAW, 9 sites). The ground-measured 
flux data, where eddy covariance (ECOR) methods are 
used to measure the exchanges of energy between 
terrestrial ecosystems and the atmosphere, were used 
to validated and evaluated the results. 

2.2 Methods 

At present, scholars have carried out a serious of 
researches about evapotranspiration models, products 
and regional application. According to the precious 
researches, most traditional evapotranspiration 
algorithms were based on physical models such as one 
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source or two source models (Wang and Dickinson, 
2012), Penman-Monteith approach (Penman, 1948; 
Monteith, 1965), Priestley-Taylor approach (Priestley 
and Taylor, 1972) and so on. For these approaches, 
many physical parameters were required and 
calibrations were generally needed in different 
regions. 

The MOD16 model was developed based on the 
Penman-Monteith equation by Mu et al. in 2011. The 
total ET is the sum of interception evaporation (ETi), 
canopy transpiration (ETc) and soil evaporation (ETs) 
(Mu et al., 2011). The soil evaporation conclude and 
unsaturated soil evaporation and saturated wet soil 
evaporation. The model was a modified version of the 
model published in 2007 by Mu et al. (Mu et al., 
2007). 

The RRS-PM model was developed by Yuan et al. 
in 2010. It is also developed based on the Penman-
Monteith equation. Based on the model published in 
2007 by Mu et al., Yuan et al. revised the algorithm 
parameters, improved calculation of the vegetation 
cover fraction by using EVI, and modified the air 
temperature constraint for vegetation conductance 
(Yuan et al., 2010). 

The PT-JPL model was developed based on the 
Priestley and Taylor equation by Fisher et al. in 2008. 
The total ET is the sum of interception evaporation 
(ETi), canopy transpiration (ETc) and soil evaporation 
(ETs). Both atmospheric moisture (RH and VPD) and 
eco-physiological constraints (FPAR and LAI) were 
introduced in the model without using any ground-
based observed data (Fisher et al., 2008). 

The MS-PT model which based on the Priestley 
and Taylor equation was developed by Yao et al. in 
2013. It estimates ET from four components: saturated 
wet soil evaporation, unsaturated wet soil evaporation, 
vegetation transpiration, and evaporation from 
vegetation interception. In the model, the surface soil 
moisture constraints were parameterized by using the 
apparent thermal inertia derived from DT and 
vegetation transpiration was estimated by the N95 
model. By reducing the atmospheric inputs of PT-JPL 
algorithm, the revised model inputs only contains Rn, 
air temperature, DT, and NDVI (Yao et al., 2013). 

The Semi-empirical model (UMD) was developed 
by Wang et al. (Wang et al., 2010). To solve the 
problem that there is no method can monitor trends of 
the surface latent heat flux for decades, the semi-
empirical algorithm was developed to estimate global 
ET on a multi-decadal time scale, which adds 
empirical coefficients to the Penman equation and uses 
wind speed to calculate aerodynamics impedance. By 
using shortwave radiation, temperature, wind speed, 
water vapor pressure deficit, relative humidity deficit 
and satellite derived NDVI, ET were estimated over 

global scale. This model works well in different 
climate conditions. 

Generalized regression neural networks (GRNNs), 
which is the generalization of probabilistic neural 
networks and radial basis function networks, were 
proposed by Specht in 1991 (Specht, 1991). The 
advantage of GRNNs is that they can approximate the 
surfaces inherent in arbitrary sample datasets, and 
have special properties that "these networks do not 
require iterative training to calculate estimates directly 
from training data". At present, GRNNs have been 
widely used in many fields such as adaptive control, 
system identification, time series prediction and 
pattern recognition (Leung et al., 2000; Xiao et al., 
2009; Xiao et al., 2012). The network structure and 
weight of GRNNs are determined by the input 
parameters of GRNNs. The only free parameter is its 
smoothing parameter σ. Therefore, the training of 
GRNNs is to determine the optimal solution of the 
smoothing parameter σ. 

3 RESULTS AND DISCUSSION 

The GRNNs integrated results underestimated ET for 
all types. For CRO, the results of the RRS-PM were 
the worst, and the results of the two PT-based models 
were significantly better than the results of the two 
PM-based models. All individual models 
underestimate ET. For DBF, the results of different 
models were similar. The results of the two PM-based 
models were not as good as the results of the two PT-
based models. The two PM-based underestimated ET, 
while the two PT-based models and the semi-empirical 
model overestimated ET. For DNF, the results of the 
semi-empirical model were worse with the largest bias 
and RMSE and the highest R2. For EBF, the results of 
the two PM-based models were better than those two 
PT-based models. For ENF, the results of the MS-PT 
model were better with smaller bias and RMSE. For 
GRA, the results of the UMD model were the best. 
The results of the two PT-based models were 
significantly better than those of the two PM-based 
models. The PT-JPL model and UMD model 
overestimated ET while other three models 
underestimated ET. For MF，the MS-PT model had 
the smallest RMSE, the MOD16 model had the 
smallest bias, and the UMD model had the highest R2. 
For SAW, the results of the RRS-PM model were 
worse with larger bias and RMSE. The MOD16 had 
the smallest bias and the largest RMSE. For SHR, the 
results of the UMD model were the best. Except RRS-
PM underestimated ET, other models all overestimated 
ET. 
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Fig. 1 The R2 of estimated ET of six models and 
ground-measured ET for different vegetation types. 

Fig. 2 The averaged biases of ground-measured ET 
versus estimated ET of six models for different 
vegetation types. 

Fig. 3 The averaged RMSEs of estimated ET of six 
models for different vegetation types. 

In general, for individual models, the R2 of UMD 
were the best. Except EBF, R2 of other types of UMD 
were greater than 0.5. Through integrating by GRNNs, 
R2 were all greater than 0.5 for all nine types. For 
CRO, DBF, GRA and SAW, the R2 of the integrated 
ET were worse than the UMD model, but better than 
other four methods. For MF, the R2 of the integrated 
ET was worse than the two PT-based models and the 
UMD model. For most types, the results of the two 
PT-based models were better than those of the two 
PM-based models. The bias of the integrated ET were 
all below 2W/m2. Except CRO and GRA, the RMSEs 
of the integrated ET by GRNNs performed better than 

the individual models. For CRO and GRA, the RMSEs 
of the integrated ET were a little greater than that of 
the UMD model. Through integrating, the estimated 
ET were significantly improved on the whole. 

4 CONCLUSIONS 

For different vegetation types, the integrated results 
were better than those from the five satellite-based 
models. Compared to each of the five satellite-based 
models, the integrated model with a generalized 
regression neural network produced significantly 
decreased bias (less than 2 W/m2) and root-mean-
square error (RMSE, the maximum of the decrease 
could reach almost 37 W/m2) for the validation. The 
correlation coefficient in the validation for the 
integrated model was lower than the best of the single 
model for five vegetation types. The integrated model 
probably could explain 53%-73% of the land surface 
ET change at 242 eddy covariance global flux sites 
and on the whole it had an improved performance for 
global ET estimation over long-time series. 
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ABSTRACT- The main goal of this paper is to provide a ten-day GPP product from MSG/SEVIRI data in the 
framework of the EUMETSAT/LSA SAF project. The proposed algorithm to derive GPP from MSG/SEVIRI relies 
on the Monteith approach, which is driven by the flux density of photosynthetically active radiation (PAR), the 
fractional absorption of that flux (fAPAR) and the light-use efficiency (ε), through the assimilation of the LSA SAF 
products. ε is operationally parameterized as a function of a maximum value (εmax) and a factor (Cws), which 
accounts for the reduction of photosynthetic activity in case of short-term water stress. The Cws uses the daily 
actual evapotranspiration (DMET, LSA-302) and the reference evapotranspiration (DMETREF, LSA-303) LSA 
SAF products. A quality assessment of the MSG GPP product is carried out by means of a site-level comparison 
using GPP estimates from FLUXNET La Thuile synthesis eddy covariance (EC) data. Moreover, an inter-
comparison with other satellite similar derived products, such as MODIS GPP (MOD17A2) and FLUXCOM 
GPP products is achieved. Results have shown as the intra-annual variability at the EC fluxes towers has been 
well reproduced by the MSG GPP estimates, particularly over the dry season where more influence on the 
canopy due to water stress is expected. The comparison at regional scale has indicated similar discrepancies 
between MSG-MODIS and MSG-FLUXCOM products that those derived between MODIS-FLUXCOM. 

1  INTRODUCTION 

The main goal of this paper is to provide a ten-day 
gross primary production (GPP) product over Europe 
and Africa from the integration of SEVIRI/MSG 
products in the framework of the EUMETSAT/LSA 
SAF (http://lsa-saf.eumetsat.int) for 2012. 

GPP from SEVIRI data is estimated using 
Monteith's light use efficiency (LUE) concept 
(Monteith, 1972). This concept provides the 
theoretical basis for most models of GPP relying on 
optical remote sensing and considers GPP as 
proportional to the incoming photosynthetically active 
radiation (PAR), the fractional absorption of that flux 
(fAPAR) and the light-use efficiency (ε). The accuracy 
of the GPP products based on the proposed approach is 
highly dependent on the fAPAR, and the down-welling 
surface shortwave radiation flux (Gilabert et al., 2015). 
One of the major source of uncertainty in the GPP 
model is LUE parameter (ε) since it depends on 
meteorological data (also through the use of some 
variables such as evapotranspiration, precipitation, 
etc., which are needed to account for the reduction in 
efficiency due to water stress). Since water availability 
and radiation are known as main potential climatic 
constraints to vegetation productivity in many areas of 
Europe and Africa, special attention is paid to capture 
the GPP response under dry conditions by controlling 
the water shortage limitations. 

2  METHODS 

To derive the ten-day MSG/GPP estimates, first the 
gross primary production on a daily basis is computed 
as: 

   (1) 

where daily down-welling surface shortwave 
radiation flux (DIDSSF) MSG product (LSA‐201) is 
used to derive the PAR (i.e., 0.46DIDSSF (Iqbal, 
1983)) and the daily fAPAR (MDFAPAR) (LSA‐ 407). 
Second, ε is operationally parameterized as a function 
of a maximum value (εmax), which is downregulated 
by an estimator related with water stress (Cws). 
Overall, optimized εmax values can range between 
0.55–3.5 g MJ−1 (Garbulsky et al., 2010). Three values 
have been assigned to the main ecosystems types: a 
value of 1.8 g MJ-1 is given to deciduous broadleaf 
forest (DBF), 1.5 g MJ-1 to evergreen needleleaf forest 
(ENF) and 1.2 g MJ-1 to remaining ecosystems types 
(Garbulsky et al., 2010). GPP was not computed for 
desert areas.  

The water stress factor (Cws) is parameterized as 
a simplified local water budget proposed by (Maselli 
et al., 2009) for Mediterranean ecosystems and applied 
satisfactorily over Spain (Gilabert et al., 2015). Cws 
accounts for the limited photosynthetic activity in case 
of short-term water stress based on actual (AET) and 
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potential (PET) evapotranspiration, both cumulated 
over a two-month period for forests and shrublands, 
and one-month period for grasslands. A variant of this 
parameterization is proposed in the MSG GPP 
algorithm as follows: 

  (2) 

where ET0 is the reference evapotranspiration. 
Cws can vary between 0.6 (when short-term water 
shortage reduces photosynthesis to 60% of its potential 
value) and 1 (when there is no such reduction, as it 
occurs in irrigated crops).  

The ten-day MSG/GPP estimates are calculated 
by averaging the 10 subsequent and consecutive daily 
GPP observations. All daily observations are 
considered in the averaging except those with poor 
quality. The 10-day estimates are only computed when 
there is a minimum of three daily GPP data.  

3 MATERIALS 

3.1 PAR 

PAR is the photosynthetically active radiation in the 
0.4–0.7 µm spectral range and is computed as the 46% 
of daily irradiation (Iqbal, 1983). Daily irradiation 
images for Europe and Africa are provided from the 
daily down-welling radiation flux (DIDSSF) MSG 
product (LSA-201) at 3.1 km spatial resolution (sub-
satellite point) for the year 2012. It essentially depends 
on the solar zenith angle, on cloud coverage and, to a 
lesser extent, on atmospheric absorption and surface 
albedo (LSA SAF, 2012). 

The MSG DIDSSF product is computed by 
integrating the downward surface solar flux (DSSF) 
product every 30 minutes over a whole day. The 
validation results of DSSF using in situ data from six 
European ground measurement stations (Geiger et al., 
2008) throughout two years showed a difference 
between instantaneous satellite estimates and ground 
measurements of about 40 and 110 W m-2 for clear and 
cloudy sky conditions, respectively. A more thorough 
validation of the MSG DSSF product was carried out 
in Spain (Moreno et al., 2013). The resulting statistics 
from this validation showed a bias of -0.12 MJ m-2 
(rMBD of about 1%) and a mean absolute difference 
of 1.0 MJ m-2 (rMAD of 6%) in terms of daily global 
irradiation.  

3.2. fAPAR 

fAPAR is the fraction of PAR that is absorbed by leaves 
and provides a link between the canopy function, i.e. 
its energy absorption capacity, and its structure and 
condition. The MSG fAPAR product (MDFAPAR, LSA-
407) delivered by the LSA SAF network was used as 

input. It has a 3.1 km spatial resolution (sub-satellite 
point) and daily frequency over the geostationary 
MSG grid (García-Haro et al., 2015). The MDFAPAR 
product is based on a linear relationship between the 
Renormalized Difference Vegetation Index (RDVI), 
computed from clear-sky top of the canopy 
reflectances in the red (RR) and near infrared (RNIR) 
bands for an optimal angular geometry in the solar 
principal plane. Observed deviations between MSG 
fAPAR and other fAPAR products were in the order of 
about 0.1 for fAPAR (García-Haro et al., 2015).  

In this study, the fAPAR time series are filtered 
and reconstructed using an optimized LOESS method 
(Moreno et al., 2014; Gilabert et al., 2015).  

3.3 Cws 

The daily Cws is computed using the daily actual 
evapotranspiration LSA SAF product (DMET, LSA-
302) and the reference evapotranspiration (ET0). The 
latter corresponds to the evapotranspiration from a 
clearly defined reference surface and is also provided 
by the LSA SAF (DMETREF, LSA-303), using an 
algorithm based on fundamental physical principles as 
close to the Food and Agricultural Organization of the 
United Nations (FAO) reference surface as possible. 
ET0 estimates depend on the daily short-wave 
radiation at the surface derived from MSG/SEVIRI by 
the LSA SAF (DIDSSF, LSA-203). The Cws 
parameterization based on the assimilation of different 
MSG/SEVIRI products, enhances synergy and the 
internal consistency of the family of products. 

4 RESULTS 

The performance of the resulting ten-day GPP 
estimates is assessed by site-level comparisons using 
GPP estimates from eddy covariance (EC) towers and 
a consistency analysis against alternative GPP 
products available from independent remote sensing 
global data, such as MODIS GPP (MOD17A2) and 
global flux fields from the Max Planck Institute (MPI) 
(FLUXCOM products).  

4.1 Direct comparison with in situ GPP estimates. 

Daily GPP data from 18 EC flux towers were 
downloaded from the global Fluxes Database Cluster 
data set (FLUXNET). The purity of a 5 km × 5 km 
pixel using the 1 km Global Land Cover 2000 
(GLC2000) to select adequate sites for comparing 
MSG GPP and EC estimates without bias due to 
surface spatial heterogeneity was analyzed. Then, sites 
presenting one landcover fraction greater than 80% 
were directly selected, while the rest were assessed 
visually using Google earth tool (Table 1). 
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Table 1. Statistics of the MSG GPP direct comparison 
between MSG GPP and GPP EC. The mean bias error 
(MBE), mean absolute error (MAE) and root mean 
square error (RMSE) are given in g m–2 day–1, and 
their relative values (rMBE, rMAE and rRMSE) in %. 
The correlation coefficient (r) is also shown. 
SITE ID MBE 

(rMBE) 
MAE 

(rMAE) 
RMSE 

(rRMSE) r 
CZ-BK1 –1.3 (–27) 1.8 (38) 2.5 (52) 0.84 
DE-SfN 0.002 (0.1) 1.4 (40) 1.9 (51) 0.78 
FI-Let –2.5 (–32) 2.7 (34) 3.2 (40) 0.78 
FI-Hyy –1.8 (–25) 2.2 (30) 2.6 (37) 0.74 
FI-Sod 2.2 (44) 2.3 (46) 2.9 (60) 0.74 
IT-Lav –2.6 (–38) 2.7 (39) 3.6 (53) 0.85 
DE-Hai –1.2 (–26) 2.2 (49) 3.1 (69) 0.82 
DE-Lnf –1.8 (–36) 3.0 (60) 4.3 (86) 0.71 
IT-Col –0.4 (–9) 1.6 (37) 2.1 (48) 0.92 
DK-Sor –2.8 (–46) 3.1 (51) 4.5 (74) 0.89 
BE-Vie –1.5 (–25) 2.2 (36) 2.9 (47) 0.75 
FR-Pue 0.8 (23) 1.5 (45) 2.1 (61) 0.69 
DE-Gri –0.4 (–9) 1.8 (38) 2.5 (52) 0.81 
IT-MBo –0.7 (–16) 1.7 (39) 2.5 (57) 0.87 
SN-Dhr –0.9 (–38) 1.2 (47) 2.2 (86) 0.91 
ES-LMa –0.04 (–2) 1.0 (47) 1.2 (55) 0.56 
ZA-Kru –0.9 (–22) 1.4 (36) 2.0 (52) 0.77 
DE-Geb 0.4 (18) 1.5 (64) 2.4 (99) 0.63 

The RS GPP products generally present similar 
pattern. For ENF, one of the most productive 
vegetation types considered in the present study (CZ-
BK1, DE-SfN, FI-Let, FI-Hyy, FI-Sod, IT-Lav), a 
mean bias error (MBE) lower than 40% is observed in 
most of the towers (Table 1) with a very good 
agreement between MSG GPP and EC GPP values 
(r>0.7). A lower overall error and bias (RMSE=2.87 g 
m-2 day-1 and MBE=−1.17 g m-2 day-1) are obtained 
when considering all ENF sites (Figure 1), observing a 
better agreement at EC GPP values lower than 7.0 g m-

2 day-1 (distribution close to the one-to-one line). For 
the DBF flux towers, moderate (r=0.69 for FR-Pue) to 
very good agreement (r=0.92 for IT-Col) was observed 
between MSG GPP and EC GPP. The MSG GPP 
estimates agree with MODIS and FLUXCOM values, 
but the high EC GPP levels were not reached (e.g. 
DN-Lnf and Dk-Sor) giving an overall negative bias 
and RMSE= 3.38 g m-2 day-1 when all DBF towers 
were considered. For BE-Vie, DK-Sor, De-Lnf and 
DE-Hai discrepancies between the GLC2000 and the 
information provided by the tower (Table 1) were 
observed. These discrepancies were also presented for 
the grassland (De-Gri, IT-MBo and SN-Dhr) and the 
savanna EC towers (ES-LMa, ZA-Kru). For 
grasslands towers IT-MBo and De-Gri, a good 
agreement was observed (correlation up to 0.9 for IT-
MBo). A higher agreement (RMSE=2.18 g m-2 day-1; 
MBE=-0.57 g m-2 day-1) between the MSG GPP and 
EC GPP estimates is observed when the ENF and DBF 
towers are excluded (Figure 1c). An overall error of 

2.79 g m-2 day-1 with a bias lower than one between 
the MSG GPP and EC GPP estimates when 
considering all sites is obtained.  
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Figure 1. Evaluation of the MSG GPP against in situ 
EC GPP for the sites according to ENF, DBF, rest of 
land covers and all land covers together. The black 
lines show the one-to-one ratios, whereas the blue 
lines are the fitted ordinary least square regression.  

4.2 Consistency checking with synergistic global 
satellite carbon product. 

The overall RMSE (Figure 2) over the considered 
period are computed between the MSG and MODIS 
and the MSG and FLUXCOM GPP products. The 
RMSE between MODIS and FLUXCOM GPP values 
is also computed (bottom Figure 2).  
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Figure 2. RMSD and MBD (in g m–2 day–1) between 
MSG-MODIS (top), MSG-FLUXCOM (centre) and 
MODIS-FLUXCOM (bottom).   

The results show that the MSG GPP provides RMSE 
and MBE values regarding the other reference 
products (MODIS and FLUXCOM) of the same order 
than those observed between MODIS and FLUXCOM 
over Europe. The major differences with MSG relies 
on the GPP estimates over tropical forests in central 
Africa, with RMSE values up to 3.0 g m-2 day-1. 
Nevertheless, MODIS and FLUXCOM provides 
higher differences over semi-arid, savanna and 
transitional woodlands (e.g. RMSE and MBE values 
up to 2.0 g m-2 day-1).  

Table 2. Statistics for the inter-comparison of the MSG 
GPP at 10-day and MODIS with EC GPP data. The 
MBE and RMSE are in g m–2 day–1. The correlation 
coefficients (r) are presented. 
SITE ID MBE RMSE  r 

CZ-BK1 MSG10day –1.3 2.1 0.91 
MODIS -1.4 1.9 0.93 

DE-SfN MSG10day – 0.11 1.2 0.86 
MODIS -0.02 1.9 0.84 

FI-Let MSG10day –2.5 2.9 0.90 
MODIS -2.4 2.8 0.84 

FI-Hyy MSG10day -1.7 2.3 0.74 
MODIS -1.7 2.1 0.85 

FI-Sod MSG10day 2.2 2.3 0.85 
MODIS -0.5 0.9 0.89 

IT-Lav MSG10day -2.6 3.4 0.89 
MODIS -3.0 3.8 0.86 

DE-Hai MSG10day -1.1 2.7 0.87 
MODIS -1.4 2.8 0.92 

DE-Lnf MSG10day -1.6 4.0 0.75 
MODIS -2.1 3.8 0.87 

IT-Col MSG10day -0.3 1.8 0.96 
MODIS -0.3 2.3 0.91 

DK-Sor MSG10day -2.7 4.4 0.93 
MODIS -3.2 4.6 0.94 

BE-Vie MSG10day -1.5 2.5 0.79 
MODIS -1.9 2.4 0.91 

FR-Pue MSG10day 0.7 1.7 0.75 
MODIS 2.2 3.2 0.75 

DE-Gri MSG10day -0.5 1.9 0.89 
MODIS -1.5 2.6 0.90 

IT-MBo MSG10day -0.7 2.3 0.91 
MODIS -0.9 1.7 0.95 

SN-Dhr MSG10day -0.9 2.1 0.93 
MODIS -1.4 2.8 0.92 

ES-LMa MSG10day -0.1 0.9 0.61 
MODIS -0.4 1.1 0.54 

ZA-Kru MSG10day -1.0 1.7 0.88 
MODIS -0.5 1.6 0.89 

DE-Geb MSG10day 0.4 1.9 0.71 
MODIS 0.05 1.4 0.84 

The MSG GPP provides similar or lower errors 
than MODIS at nine of the eighteen sites (Table 2). In 
general, an underestimation is observed for the three 
RS products, being larger at the most productive DBF 
and ENF sites, such as DK-Sor, DE-Hai, DE-Lnf and 
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FI-Let. In general, a good agreement is observed 
between the MSG GPP and EC GPP estimates when 
the GPP MSG is re-sampled to 10-day (Figure 3). The 
computed statistics are in agreement with those 
derived for the MODIS product. MBE errors lower 
than 1.0 g m-2 day-1 are obtained for the grasslands and 
savannas EC towers. Lowers errors are obtained for 
the ENF EC sites (CZ-BK1, De-SfN, FI-Let, FI-Sod 
and IT-LAv) than for the DBF sites (De-Hai, DE-Lnf, 
IT-Col, DK-Sor, BE-Vie). 

30 60 90 120 150 180 210 240 270 300 330 360

DOY

0

5

10

15

G
P

P
 (g

 m
-2

 d
ay

-1
)

DE-Hai

MSG 10-day

MODIS

in-situ

30 60 90 120 150 180 210 240 270 300 330 360

DOY

0

5

10

15

G
P

P
 (g

 m
-2

 d
ay

-1
)

IT-Col

MSG 10-day

MODIS

in-situ

30 60 90 120 150 180 210 240 270 300 330 360

DOY

0

5

10

15

G
P

P
 (g

 m
-2

 d
ay

-1
)

IT-MBo

MSG 10-day

MODIS

in-situ

30 60 90 120 150 180 210 240 270 300 330 360

DOY

0

5

10

15

G
P

P
 (g

 m
-2

 d
ay

-1
)

SN-Dhr

MSG 10-day

MODIS

in-situ

Figure 3. Temporal profiles for MODIS, MSG GPP at 
10-day and EC GPP (scaled at 10-day). 

The annual spatial patterns for MSG, MODIS, and 
FLUXCOM GPP (Figure 4) are compared. The three 
estimates agree reasonably well, although differences 
are significant in some areas. Specifically, there is a 
good agreement in Europe and North and South 
Africa, but MSG GPP is lower than FLUXCOM and 
MODIS over Central Africa. The largest differences 
occur in Equatorial areas covered by tropical forest 
where MODIS and FLUXCOM estimates are around 
3500 g m–2 yr–1, while annual MSG GPP is below 
3000 g m–2 yr–1.  

Figure 4. Annual GPP estimates for MSG, MODIS and 
FLUXCOM. 
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5 CONCLUSIONS 

The resulting GPP product (MSG GPP) was assessed 
by direct site-level comparison with GPP from eddy 
covariance data (EC GPP). MSG GPP presented 
rMBE lower than 40% for the most forest vegetation 
types with a very good agreement (r>0.7) between EC 
GPP and MSG GPP. The comparison with MOD17A2 
and FLUXCOM has revealed good agreement among 
products over Europe and North and South Africa. 
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ABSTRACT – Particular attention must be paid to the estimation of carbon fluxes between biosphere and 
atmosphere in Mediterranean regions such as Comunitat Valenciana since an increase in the intensity and the 
duration of droughts has been reported. A production efficiency model (PEM) driven mostly by remotely sensed 
data was used to estimate monthly gross primary productivity (GPP), GPPPEM, in two sites where eddy 
covariance (EC) towers were placed (ES-CPa, a shrubland; and ES-ES1, an evergreen needleleaf forest). 
GPPPEM was validated against GPP from EC sites, GPPEC, (R = 0.93 and RMSE = 15 g m-2 month-1 in ES-CPa, 
R = 0.71 and RMSE = 30 g m-2 month-1 in ES-ES1). Several simulations were performed by the biogeochemical 
model BIOME-BGC with different effective soil depth (ze) values and monthly GPP (GPPBGC) and respirations 
were obtained. GPPBGC series were compared to GPPPEM ones, which were taken as a reference, and the ze that 
obtained the minimum RMSE were selected (40 cm and 65 cm respectively for ES-CPa and ES-ES1). Optimized 
GPPBGC presented a better agreement with GPPEC than default GPPBGC (i.e. with ze = 100 cm). Finally, optimum 
BIOME-BGC outputs were used to estimate net ecosystem exchange and it was validated against EC 
observations (R 0.74 = and RMSE = 16 g m-2 month-1 in ES-CPa, R = 59 and RMSE = 30 g m-2 month-1 in ES-
ES1). 

1 INTRODUCTION 

Vegetation productivity in Mediterranean regions 
such as Comunitat Valenciana is being affected by the 
increase in the intensity and the duration of droughts 
(Kovats et al., 2014). Particular attention to the 
estimation of carbon fluxes in these regions must 
therefore be paid. 

Gross primary productivity (GPP) has already 
been estimated by production efficiency models 
(PEMs) driven by a combination of remote sensing 
and ground data in this kind of regions (Gilabert et al., 
2015; Maselli et al., 2009; Sanchez-Ruiz et al., 2017). 
However, ecosystems simulation biogeochemical 
models such as BIOME-BGC (Running and Hunt, 
1993; White et al., 2000) are needed for the estimation 
of net carbon fluxes and have been applied in 
Mediterranean regions too (Chiesi et al., 2007; Maselli 
et al., 2009). BIOME-BGC needs a considerably big 
amount of inputs that can be divided into drivers 
(meteorological time series and site data) and 
parameters (ecophysiological data). A particular site 
physical property that is not usually available at 

spatially distributed level is the effective soil depth 
(ze), that is, the soil depth which plant roots can reach. 
Water storage depends on ze and precipitation, which 
is concentrated in short periods of time in Comunitat 
Valenciana. 

The present study aims at calibrating BIOME-
BGC in terms of ze for the estimation of net carbon 
fluxes in Comunitat Valenciana. To do this, monthly 
GPP series for the 2005-2012 period simulated by 
BIOME-BGC with different ze are compared to the 
ones obtained by a PEM driven mostly by remotely 
sensed data. The latter are taken as a reference and the 
optimum ze are selected. Next the optimized BIOME-
BGC outputs are used to estimate net ecosystem 
exchange (NEE). Both GPP and NEE are validated 
against eddy covariance (EC) data in two sites. 

2 STUDY AREA AND SITES DESCRIPTION 

Comunitat Valenciana is a Spanish region located 
in the eastern part of the Iberian Peninsula (between 
37.8500 º and 40.7833 º in latitude, and -1.5833 º and 
0.5167 º in longitude). Altitude ranges between 0 
m.a.s.l. and 1839 m.a.s.l. with mountains covering 

138

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



most of its surface. Climate is mostly typical 
Mediterranean with a NW-SE gradient in air 
temperature and precipitations concentrated in spring 
and especially in autumn. During the study period 
(2005-2012), mean annual air temperature and 
averaged annual precipitation varied spatially from 12 
ºC to 18 ºC and from 270 mm year-1 to 940 mm year-1, 
respectively. According to the Third Spanish Forest 
Inventory (NFI3), the most abundant species in 
Comunitat Valenciana are Pinus halepensis Mill. and 
Quercus ilex L. among  trees, and Thymus spp. and 
Rosmarinus officinalis L. in the case of shrubs. 

Figure 1 shows a vegetation type map of the study 
area elaborated from SIOSE (IGN, 2011) data and a 
zoom in the surroundings of the two study sites.  

Descriptive information of the two study sites 
where EC towers are placed is reported in Table 1. 

3 DATA  

3.1 Used data 

Daily net ecosystem exchange data measured in 
the two EC towers abovementioned were downloaded 
from the European Carbon Database Cluster 
(http://www.europe-fluxdata.eu). 

The Spanish Meteorological Agency (AEMet) 
provided in situ daily measurements of cumulated 
precipitation and maximum and minimum air 
temperature from meteorological stations distributed 
throughout the study area for the period 2005-2012.  

SEVIRI product LSA-09 (daily integrated down-
welling surface shortwave flux, DIDSSF) was 
downloaded from the LSA-SAF Server 
(http://landsaf.meteo.pt/) for the 2007-2012 period 
when available. Otherwise LSA-07 (down-welling 
surface shortwave flux estimated every 30 minutes, 
MDSSF) was downloaded instead. Details on these 
products can be found in “Product User Manual 
Down-welling Surface Shortwave Flux (DSSF),” 
(2011). 

MODIS products MCD43A1 and MCD43A2 
(Schaaf et al., 2002) for the period 2005-2012 were 
retrieved from the online Reverb, courtesy of the 
NASA EOSDIS Land Processes Distributed Active 
Archive Center (LP DAAC), USGS/Earth Resources 
Observation and Science (EROS) Center, Sioux Falls, 
South Dakota, reverb.echo.nasa.gov. 

The global 3 arc second digital elevation model 
from the Shuttle Radar Topography Mission (SRTM) 
(Farr et al., 2007) was downloaded from 
http://edcftp.cr.usgs.gov/pub/data. 

Soil clay, sand and silt content maps (Ballabio et 
al., 2016) were downloaded from the European Soil 
Database (http://esdac.jrc.ec.europa.eu/resource-
type/european-soil-database-soil-properties).  

Figure 1. Vegetation type map of Comunitat Valenciana 
(top). Zooms on ES-CPa (bottom left) and ES-ES1 (bottom 
right). OSA (out of study area), NC (non-classified), GRASS 
(grassland), SHRUB (shrubland), EBF (evergreen 
broadleaved forest), LDBF (low altitude deciduous 
broadleaved forest), HDBF (high altitude deciduous 
broadleaved forest), LENF (low altitude evergreen 
needleleaved forest), HENF (high altitude evergreen 
needleleaved forest), and EC (eddy covariance site). The 
altitude threshold was set at 800 m. 

Table 1. Descriptive information of the study sites and period 
of EC data availability. h is the altitude above the sea level, 
PRE is the averaged annual precipitation, and T is the mean 
annual air temperature. 

Site ES-CPa ES-ES1 
Lat (º) 39.2242 39.3448 
Lon (º) -0.9031 -0.3200 
h (m) 810 5 

PRE (mm) 470 550 
T (ºC) 13 18 

Vegetation type SHRUB LENF 
Data period 2009-2011 2005-2006 
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3.2 Data preprocessing 

Daily GPP (GPPEC) was calculated from the EC 
observations obtained according to Reichstein et al., 
(2005) methodology. Both GPPEC and NEE (NEEEC) 
were summed up to monthly values. 

Daily cumulated precipitation and maximum and 
minimum air temperature images were obtained by 
ordinary kriging from the in situ measurements 
provided by AEMet. Mean air temperature images 
were calculated from maximum and minimum ones. 

DIDSSF was integrated from MDSSF when not 
available. 1-km global incoming solar radiation 
images were obtained through the application of 
artificial neural networks (ANN) to the precipitation 
and air temperature images abovementioned. Both 
DIDSSF and the ANN-derived solar radiation were 
previously validated (Moreno et al., 2013, 2011). A 
relationship between them was found and it was used 
to fill DIDSSF gaps and the whole 2005-2006 period. 

All images were reprojected to a 1-km spatial 
resolution latitude/longitude regular grid. 

4 METHODS 

4.1 Production efficiency model 

A Monteith-like PEM described by equation (1) 
was used to calculate daily GPP (GPPPEM) estimates in 
the two EC sites: 

GPPPEM = PAR fAPAR εmax εT εW (1) 

where PAR (MJ m-2 day-1), the photosynthetically 
active (400 – 700 nm) radiation, was calculated as the 
46 % of daily global incoming solar radiation; fAPAR, 
the fraction of PAR absorbed by vegetation canopy, 
was estimated according to the Roujean and Breon 
(1995) algorithm; εmax is the maximum light use 
efficiency set as 1.2 g MJ-1; εT is the TMIN_scalar 
used in MOD17 algorithm (Running and Zhao, 2015); 
and εW is the water stress coefficient used in CASA 
(Potter et al., 1993). 

DIDSSF images were used to calculate PAR. 
MCD43A1 and MCD43A2 were used to calculate 
fAPAR and a gap filling and noise reduction filter 
(Moreno et al., 2014) was applied before the final 
lineal interpolation to obtain daily values. In the case 
of ES-ES1, due to the proximity of different water 
bodies surrounding the tower, fAPAR was estimated 
from MOD13Q1 (Didan and Huete, 2015), 16-day 
NDVI at 250-m spatial resolution, through Myneni 
and Williams (1994) equation. The minimum air 
temperature images were used to calculate εT. The 
mean air temperature images and the DIDSSF ones 
were used to calculate εW through the Jensen and 
Haise (1965) equation using the precipitation images 
as actual evapotranspiration proxies (Maselli et al., 

2009). Monthly GPPPEM estimates were obtained by 
sum of the daily values. 
4.2 BIOME-BGC 

BIOME-BGC (Running and Hunt, 1993; White et 
al., 2000) is a biogechemical model able to estimate all 
main vegetation processes in a terrestrial ecosystem 
finding a quasi-climax equilibrium condition. Daily 
maximum and minimum air temperature and 
precipitation series were used to simulate daylight 
average air temperature and daylight average partial 
pressure of water vapor through MT-CLIM (Thornton 
et al., 2000). The same input series, the resulting ones, 
and the daily incoming solar radiation ones were used 
as inputs for BIOME-BGC together with the 
ecophysiological parameters obtained by Chiesi et al. 
(2007) for Mediterranean ecosystems. Monthly GPP 
(GPPBGC) and growth (Rgr), maintenance (Rmn), and 
heterotrophic (Rhet) respirations series were simulated 
with different ze for the two EC sites. 
4.2.1 Effective soil depth calibration 

BIOME-BGC was run with 40 different ze values 
for each EC site. ze values ranged from 5 cm to 200 cm 
by 5 cm steps. GPPBGC series were compared to the 
GPPPEM ones and the ze that obtained the minimum 
RMSE was selected. 
4.2.2 Net ecosystem exchange 

The optimum BIOME-BGC outputs in terms of ze 
were used to calculate NEE and it was validated 
against EC measurements. 

In the case of ES-CPa, since the growth of 
SHRUB in this kind of regions is limited, it can be 
assumed that the ecosystem is close to equilibrium and 
NEE can be calculated from optimized BIOME-BGC 
outputs using Equation (2): 

NEEBGC = GPPBGC – Rgr – Rmn – Rhet (2) 

In the case of ES-ES1, an actual volume (VA = 146 
m3 ha-1) estimation was extracted from NFI3 for the 
nearest plot that contained the same species. Next 
BIOME-BGC outputs were corrected using this value 
in Equation (3) (Maselli et al., 2009) to calculate 
actual NEE: 

NEEA,BGC = GPPBGC FCA / FC – Rgr FCA / FC – 
Rmn VA / VP – Rhet VA / VP (3) 

where FCA and FC are, respectively, the actual and 
potential forest cover, and VP the potential volume. 
The latter can be calculated from BIOME-BGC output 
dead stem carbon, while the forest covers can be 
calculated using VA, VP, and BIOME-BGC output 
maximum LAI through Beer’s law. 
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5 RESULTS 

5.1 Identification of optimum ze 

RMSE between GPPPEM and GPPBGC as a function 
of the ze used in BIOME-BGC simulations is shown in 
Figure 2 for the two EC sites. Optimum effective soil 
depths of 40 cm and 65 cm were found for ES-CPa 
and ES-ES1, respectively, always shallower than the 
default one (100 cm). 

Figure 2. RMSE between GPPPEM and GPPBGC as a function 
of ze for ES-CPa (top) and ES-ES1 (bottom). 

Table 2. Statistics of the validation of GPP and NEE against 
EC data in the two sites. MBE, MAE, and RMSE are 
expressed in g m-2 month-1. Correlations (R) are statistically 
significant at 95 % confidence level. 

ES-CPa 
R MBE MAE RMSE 

GPPEC / GPPPEM 0.93 7 12 15 
GPPEC / GPPBGC,100 0.67 40 40 50 
GPPEC / GPPBGC,40 0.84 6 18 20 
NEEEC / NEEBGC,40 0.74 -10 12 16 

ES-ES1 
R MBE MAE RMSE 

GPPEC / GPPPEM 0.71 7 17 30 
GPPEC / GPPBGC,100 0.54 30 40 50 
GPPEC / GPPBGC,65 0.55 3 30 40 

NEEEC / NEEA,BGC,65 0.59 -13 20 30 

5.2 Validation at EC sites 

The results of the validation of estimated carbon 
fluxes against EC data are gathered in Table 2. 
Regarding GPP, GPPPEM generally presents the best 
results except that minimum MBE is obtained by 
GPPBGC using the optimum ze. The use of the optimum 
ze always improved the results in the case of GPPBGC, 
especially reducing the errors. The accuracy achieved 
for NEE is generally lower than that for GPP due to 
the difficulties in correctly simulating all respiration 
processes. 

Scatterplots of simulated GPP and NEE vs EC data 
are shown in Figure 2. 

6 DISCUSSION AND CONCLUSIONS 

A PEM mainly driven by remotely sensed data 
was used to estimate monthly GPPPEM in two EC sites. 
Then monthly GPPBGC and respirations were simulated 
by BIOME-BGC using 40 different ze values. The high 
correlations and low errors obtained by the validation 
of GPPPEM against EC data justified its use as a 
reference to compare to GPPBGC and select the 
optimum ze by the minimum RMSE criterion. The 
obtained ze, 40 cm and 65 cm respectively for ES-CPa 
and ES-ES1 were coherent with the vegetation type, 
i.e. a shallower depth for the less productive SHRUB 
and a deeper depth for the more productive LENF, and 
always improved the statistics with respect to default 
ze = 100 cm when compared to EC data. Finally the 
optimum BIOME-BGC outputs were used to estimate 
NEE and NEEA and they were validated against EC 
measurements. Reasonably good correlations were 
obtained, although errors were rather high. Effective 
soil depth revealed itself as a critical variable for the 
simulation of water budget by BIOME-BGC. Since 
water storage capacity depends on it, the importance 
of ze is even higher in the studied semiarid 
Mediterranean areas due to the concentration of annual 
precipitation in short periods of time. The air 
temperature and precipitation time series had to be 
corrected before using them because a disagreement 
was found when comparing with the measurements 
taken at the EC towers. This must be taken into 
account if this methodology is applied at spatially 
distributed level, especially in high altitude areas. The 
regional modelling of net carbon fluxes also requires 
spatially distributed estimates of woody biomass 
(Maselli et al., 2009). Such estimates can be derived 
from a VA map that is currently being obtained by the 
integration of ground and remotely sensed data for the 
study area. 

  141

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Figure 2. From top to bottom: GPPEC vs GPPBGC in 
ES-CPa, GPPEC vs GPPBGC in ES-ES1, NEEEC vs 
NEEBGC in ES-CPa, NEEEC vs NEEA,BGC in ES-ES1. 
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Abstract - Glacier mass balance (GMB) monitoring is not only crucial for water resource management but also 
essential for understanding the glacier response to climate change over the Yarlung Zangbo River Basin 
(YZRB). The long-term GMB series from 1980 to 2014 was reconstructed at monthly and yearly scales based 
on GRACE and GLDAS products, and two indirect approaches were adopted to examine the rationality of the 
reconstructed time series under the poor condition of field data availability over the YZRB. Good correlation 
was found between GRACE-based terrestrial water storage change (TWSC) and GLDAS-based TWSC at both 
monthly and yearly scales, but one year time lag (lag-1) of GLDAS-based TWSC compared to GLDAS-based 
TWSC was adjusted to establish the good correlation with GRACE-based TWSC at yearly scale over the YZRB. 
The reconstructed GMB series revealed two periods of decreasing trend for the years from 1980 to 1994 and 
from 1998 to 2014. In particular, less accumulation in cold months (i.e. JAN, FEB, MAR, APR, OCT, NOV, and 
DEC) and more ablation in warm months (i.e. MAY, JUN, JUL, AUG, and SEP) was found in the latter period 
compared to the former one, which suggested an overall decreasing tread of reconstructed GMB time series for 
the YZRB. The reconstructed GMB time series not only offer a unique opportunity for understanding the 
varying characteristics of GMB in the YZRB during the past decades, but also provide a new perspective for 
estimating the glacier water resource in other large watersheds under the global changes. 

1 INTRODUCTION 

Glacier mass balance (GMB) is considered as the most 
important bridge and tie linking the meteorology and 
water resources (Zhu et al., 2017). However, 
traditional direct and continuous mass balance 
measurements for the glaciers in an extensive region 
are extremely difficult due to the inaccessibility of 
glaciers for logistical difficulties and maintains in high 
altitude mountainous region, especially for the YZRB 
due to its unique geographical location (Nie et al., 
2016). Pioneer studies have suggested that strong 
relationships existed between annual GMB and 
minimum glacier-wide albedo derived from Moderate 
Resolution Imaging Spectro-radiometer (MODIS) 
(Dumont et al., 2012; Sirguey et al., 2016). However, 
optical remote sensing is of a notable weakness that 
the imagery is easy to be affected by cloud, which 
greatly weakens the relationship, moreover, for 
estimation of GMB of a glacier, successive field 
observations of GMB are needed, which makes this 
approach unpractical. 

With the success launch of the GRACE (Gravity 
Recovery and Climate Experiment) satellite and the 
advances of GLDAS (Global Land Data Assimilation 

System) products, studies of terrestrial/ground water 
storage (TWS) variations and GMB by using these 
two data products have been implemented in the past 
decade (Chen et al., 2009; Rodell and Famiglietti, 
2002; Zhu et al., 2017; Zeng et al., 2012). Aiming to 
take the best use of hydro-meteorological variables 
from GRACE and GLDAS products, in association 
with the relevant approaches proposed by pioneer 
studies, this study attempted to estimate and 
reconstruct long term monthly and yearly GMB over 
the YZRB from 1980 to 2014 under water balance 
principle for the closed watershed YZRB.  

2 STUDY REGION, DATA AND METHODOLOGY 

2.1 Study region 

Located in 27º49′-31º7′N and 82º1′-97º6′E, the 
Yarlung Zangbo River Basin (YZRB) with an total 
area of approximately 25×104 km2 is one of the 
highest river basins in the world with an average 
elevation higher than 4600 m above sea-level (Liu et 
al., 2014) (Fig.1). Because of its location in the 
Yarlung Zangbo Suture Zone, within which enormous 
transportation channels carry moisture from the Indian 
Ocean to the inner region of the Qinghai-Tibet Plateau, 
the YZRB plays an important role as a precipitation 
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generation mechanism over the Qinghai-Tibet Plateau, 
where many maritime and continental glaciers 
developed with abundant solid (i.e. glaciers and snow 
cover) and liquid (stream flow) water resource in 
China (Nie et al., 2016). According to Chinese Glacier 
Inventory, within the YZRB, there are approximately 
10,816 glaciers (14,493 km2), which accounts for 29% 
and 23% of total glaciers in Tibetan Plateau and China, 
respectively (Yao et al., 2010). 

2.2 Data 

2.2.1 GRACE Products and Processing 

Among various TWS anomaly (TWSA) products, 
three GRACE level-3 Release-05 (RL05) products are 
widely used to estimate the regional and global water 
storage variations, which are provided by University 
of Texas Center for Space Research (CSR), Jet 
Propulsion Laboratory (JPL), and Geo Forschungs 
Zentrum (GFZ), respectively. All these products are in 
1º×1º spatial resolution and at monthly time scales. 
Prior to any analysis, the scale factor, provided 
separately with the GRACE RL05 products, should be 
applied firstly to reduce the correlated errors in post-
processing caused by truncation, destriping and 
Gaussian smoothing filter (Swenson and Wahr, 2006). 
Uncertainties caused by instrument and post-
processing do exist in each product and by far no 
direct method can assess them (Swenson and Wahr, 
2006; Yi and Sun, 2014), therefore these three 
GRACE products of the YZRB from April 2002 to 
December 2014 were compared to determine an 
optimal combined solution. In this study, the TWSA 
products with the missing data were linearly 
interpolated to derive TWS change (TWSC) time 
series (Nie et al., 2016). 

2.2.2 GLDAS Data and Processing 

To estimate the GMB, the change of soil moisture 
(SMC), canopy water storage (CWSC), snow water 
equivalent (SWEC) need to be deducted respectively 
from TWSC. In this study, the monthly hydrologic 
variables, SM, CWS, and SWE with spatial resolution 
of 1º×1º, were obtained from four hydrologic models 
(CLM, MOSAIC, NOAH, and VIC) in GLDAS 
products for the YZRB during 1980-2014, monthly 
averaged change of SM, CWS, and SWE (Non-glacier 
covered regions) obtained from these four hydrologic 
models were considered as the “real vaiables” of the 
studied hydrologic processes. Since the above 
mentioned hydrologic variables were not simulated in 
the south and north polar regions, thus they can’t not 
be processed in the same way as done to GRACE 
products (i.e. truncation to 60th degree and order, 
smoothing with a Gaussian filter of 300 km in radius), 
otherwise numerious errors might be introduced into 
their spherical harmonic coefficients. Hydrologic 
variables, i.e. rainfall (P), snowfall (S), 
evapotranspiration (E), surface runoff (Qs), and 
subsurface runoff (Qsb) derived from all four 
hydrologic models of GLDAS were also used to 
deduce TWSC (noted as TWSC-GLDAS) through 
water balance principle over the closed YZRB. 
Additionally, it is worthwhile to note that the monthly 
and yearly TWSC and GMB were not reconstructed 
during 1995-1997 for the unnatural trends in the 
simulated hydrologic variables of GLDAS during the 
period (Nie et al., 2016). 

2.2.3 Datasets Used to Evaluate the Reconstructed 
GMB Series  

Three approaches were adopted to directly/indirectly 
evaluate the reconstructed GMB datasets for the 
YZRB.

Fig.1 Geographic location and topographic map of the YZRB. Glacier locations and GRACE pixels covering the 
study region used for various estimations were also presented in the figure 
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The datasets utilized for this purpose include The 
Second Chinese Glacier Inventory datasets (SCGI, 
Version 1.0), the China Precipitation and Temperature 
Analysis Products (CPTAP) and Land-Use/Cover-
Change (LUCC) maps. The first two datasets were 
used for analyzing the change trend of precipitation 
and temperature over glacier-covered areas, and the 
last one was for detecting the change of glacier 
covered extent (GCE) during the study periods. The 
CPTAP, produced and routinely calibrated by the 
National Meteorological Information Center (NMIC) 
and the China Meteorological Administration (CMA) 
based on approximately 2472 meteorological stations 
across China (Chen et al., 2008; Shen et al., 2010), 
with the spatio-temporal resolution of 0.5º×0.5º/daily 
were used to understand the precipitation and 
temperature variations over the glacier-covered areas 
of the YZRB during 1980-2014. The SCGI dataset, 
with overall accuracy about 96.7% for glacier area 
inventory, was provided by Cold and Arid Regions 
Science Data Center at Lanzhou (Guo et al., 2015), 
which was used as the glacier boundary for the 
corresponding period. According to SCGI, the glacier 
accounted for approximately 4.6% of the total area of 
the YZRB. The LUCC datasets, derived through 
artificial visual interpretation primarily based on 
Landsat TM/ETM imageries, were provided by Data 
Center for Resources and Environmental Sciences, 
Chinese Academy of Sciences (RESDC). Seven 
LUCC maps of the YZRB for 1980, 1990, 1995, 2000, 
2005, 2010, and 2015 respectively are available 
presently, among which the LUCC maps for 1980, 
1995, and 2015 were selected to detect the GCE 
changes over the YZRB during the studied periods.  

2.3 Methodology 

2.3.1 Reconstruct Glacier Mass Balance 

Theoretically, if the water consumption for human 
activities is less enough to be neglected, the water 
balance equation for the YZRB can be expressed as: 

1n n n n n n n nTWSC TWSA TWSA P S E Qs Qsb        (1) 

( ,12) ( 1,12)m m m m m m m mTWSC TWSA TWSA P S E Qs Qsb         (2) 

where P, S, E, and Q denote accumulative rainfall, 
snowfall, actual evapotranspiration and runoff, 
respectively. n and m represent a specific month and a 
certain year, respectively. TWSAn and TWSAn-1, as well 
as TWSA(m,12) and TWSA(m-1,12) denote the basin-scale 
averaged TWSA for the month n and n-1, as well as 
basin-scale averaged TWSA in December of the year 
m and m-1, respectively. 

According to Equation 1 and 2, various linear 
regression models were established between GRACE-
based TWSC and different combinations of hydro-
meteorological variables (e.g. P, S, P+S-E, and P+S-

Qs) (Nie et al., 2016; Zeng et al., 2012). Among them, 
an optimal linear regression model was identified by 
R2 and employed to reconstruct the TWSC over the 
YZRB during 1980-2014. The GMB during 1980-
2014 can be expressed as Equation 3: 

re gl ngGMB TWSC SCC SWEC    (3) 

where TWSCre denotes the reconstructed TWSC series; 
SCCgl stands for the sum of SMC and CWSC based on 
GLDAS datasets; and SWECng for the change of SWE 
over the non-glacier covered regions. 

2.3.2 Evaluating the Reconstructed Glacier Mass 
Balance  

Unfortunately, in-situ GMB measurements or similar 
research are not available for validating the 
reconstructed GMB series over the YZRB. Although 
validating long-term GMB datasets is very difficult, 
the variation trend of GMB in time series might be 
indirectly assessed by climatic indices and glacier-
cover extent (GCE) owning to strong sensitivity of 
GMB to precipitation and temperature. In general, an 
increase (a decrease) of GCE usually indicates glacial 
accumulation (ablation). Therefore, the two indirect 
approaches were employed to evaluate the 
reconstructed long-term GMB series in present study. 

3 RESULTS AND DISCUSSION 

3.1 TWS Changes (TWSC) during 2003-2014 

3.1.1 GRACE-based TWSA 

To obtain the GRACE-based TWSC, the monthly 
TWSAs series, derived from CSR, JPL and GFZ as 
well as their average were calculated over the YZRB 
during 2003-2014 (Fig.2). The TWSAs variations 
illustrated with the dataset from different data 
processing centers exhibited strong annual cycles and 
generally coincide well with each other. In particular, 
the correlation coefficients (noted as CC) between 
three TWSAs series range from 0.96 to 0.98 at the 
significance level of α<0.001. Table 1 lists the annual 
amplitudes, annual phase, and variation trend of 
different GRACE-based TWSAs datasets and their 
average over the YZRB during 2003-2011, among 
which the uncertainties in annual amplitudes, annual 
phase and variation trend of different GRACE 
products have been estimated as two standard 
deviations (95% confidence interval) after errors in 
monthly datasets were propagated in the least squares 
fit procedure (Feng et al., 2014). High consistency 
among annual amplitudes, annual phase and variation 
trend of different GRACE products as seen in Table 
implied that the averaged series of TWSAs from CSR, 
JPL and GFZ can be used to deduce the TWSC in the 
following sections. 
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Fig.2 GRACE-based monthly TWSAs over the YZRB 
during 2003-2014 

Table 1. Annual amplitudes, phases and variation 
trend of TWSAs from different GRACE products and 
their average series during 2003-2014 

GRACE 
product 

Annual 
amplitude 

(cm) 

Annual 
phase  

(degree) 

Annual 
trend  

(cm/yr) 
CSR 4.29 ± 0.40 227.68 ± 

7.48 

-0.72 ± 

0.08 

JPL 4.28 ± 0.37 225.50 ± 

9.22 

-0.77 ± 

0.08 

GFZ 4.69 ± 0.38 227.05 ± 

7.00 

-0.73 ± 

0.08 

Average  4.55 ± 0.35 226.10 ± 

7.31 

-0.75 ± 

0.07 

3.1.2 Comparisons of TWSC from GRACE and 
GLDAS  

According to Equation 1 and 2, the monthly and 
yearly TWSC-GRACE and TWSC-GLDAS datasets 
were computed during 2003-2014. Good correlation 
between these two datasets at monthly scale with the 
CC about 0.67 at the significance level of α<0.001, as 
exhibited in Fig.3, suggested reliability of the 
approach utilized. 

Fig.3 Comparison of monthly basin-scale averaged 
TWSC-GRACE and TWSC-GLDAS series during 
2003-2014 

While a rather low correlation for these two datasets at 
yearly scale with the CC only about 0.30 (not shown) 
was detected. However, we think that it was probably 
caused by accumulated errors of the hydrologic 
variables (see Equation 3). It should be noted that 
GRACE has the advantage of capturing human-
induced TWSC signals, while the hydrologic variables 
in GLDAS are susceptible to the quality of forcing 
data (Nie et al., 2016). Therefore, further exploration 
to reconstruct more reliable and longer-term TWSC 
series based on the GRACE-based TWSC by means of 
different combinations of hydrologic variables might 
be an effective alternative. 

3.2 Reconstruct GRACE-based TWSC for 1980-2014 
over the YZRB 

The CCs between TWSC-GRACE and the different 
combinations of hydro-meteorological variables (e.g. P, 
S, E, Qs, Qsb, and P+S-E-Qs) derived from GLDAS 
were calculated based on Pearson correlation analysis 
at both monthly and yearly scales, the results obtained 
were listed in Table 2.  

Table 2. Correlations of the basin-scale averaged TWSC-GRACE with different combinations of hydro-
meteorological variables 

Hydrologic 
 variables 

Monthly Yearly 
(No time lag) 

Yearly 
(one year lag) 

CC Sig. CC Sig. CC Sig. 

TWSC-
GRACE 

P+S 0.73 α<0.001 0.37 - -0.41 - 
E 0.68 α<0.001 0.33 - -0.12 - 
Qs 0.72 α<0.001 0.38 - -0.37 - 
Qsb 0.37 α<0.001 0.35 - -0.3 - 
Qs+Qsb 0.62 α<0.001 0.37 - -0.34 - 
P+S-E 0.73 α<0.001 0.38 - -0.58 α<0.1 
P+S-E-Qs 0.69 α<0.001 0.35 - -0.63 α<0.05 
P+S-E-Qsb 0.75 α<0.001 0.37 - -0.68 α<0.05 
P+S-Qs 0.73 α<0.001 0.36 - -0.41 - 
P+S-Qsb 0.74 α<0.001 0.37 - -0.44 - 
P+S-E-Qs-Qsb 0.67 α<0.001 0.30 - -0.75 α<0.01 
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Fig.4 Monthly reconstructed TWSC based on “P+S-Qsb” (noted as “TWSC-P+S-Qsb”) and TWSC-GRACE (a-
1 and -2); yearly reconstructed TWSC based on “P+S-E-Qs-Qsb” and TWSC-GRACE (b-1 and -2) 

Notably, at the yearly scale, higher correlations 
between TWSC-GRACE and the combinations of 
hydrologic variables were found in comparisons with 
one year time lag between them, probably can be 
explained by instantaneous measurements of GRACE-
based TWSA and overestimation of runoff (Qs+Qsb) 
in GLDAS datasets. From Table 2, it can be found that 
the combination of hydrologic variables “P+S-E-Qsb” 
most closely correlated with TWSC-GRACE at 
monthly scale, while the combination of hydrologic 
variables “P+S-E-Qs-Qsb” derived from TWSC-
GLDAS with one year time lag has the highest 
correlation with TWSC-GRACE at the yearly scale. 
On the basis of above analysis, the monthly and yearly 
TWSC datasets for 1980-2014 were reconstructed and 
the results were shown in Fig.4. It can be seen that 
significant seasonal signals with the annual amplitude 
of 1.84±0.26 Gt during 1980-1994 and 1.56±0.24 Gt 
during 1998-2014 at monthly scale (Fig.4a-1,-2) and 
additional yearly TWSC series exhibited a decreasing 
trend both during 1980-1994 and 1998-2014 (Fig.4b-
1,-2). 

3.3 Reconstructed long-term GMB series during 1980-
2014 

3.3.1 Reconstructed Seasonal Variability of GMB over 
the YZRB  

The long-term monthly GMB series, calculated 
according to Equation 3, was shown in Fig.5a. 
Significant seasonal cycles with annual amplitude of 
2.45±0.31 Gt during 1980-1994 and annual amplitude 

of 2.31±0.24 Gt during 1998-2014 at monthly scale 
can be clearly recognized, which suggested a relative 
larger fluctuation in GMB during 1980-1994 than that 
during 1998-2014. Monthly mean GMB in different 
periods (Fig.5b) revealed less accumulation in the cold 
seasons (JAN, FEB, MAR, APR, OCT, NOV and DEC) 
and generally more ablation in the warm ones (MAY, 
JUN, JUL, AUG, and SEP) during 1998-2014 
compared to 1980-1994. Overall, the glaciers within 
the YZRB presented a negative mass balance during 
1980-2014. 

Fig.5 Monthly GMB (blue), SCCgl (gray) and SWECng 
(green) over the YZRB reconstructed during 1980-2014 (a); 
Mean GMB at each month of a year in different periods (b) 
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3.3.2 Reconstructed Inter-annual Variability of GMB 
over the YZRB  

Based on Equation 3, the yearly GMB series during 
1980-2014 was obtained over the YZRB (Fig.6).  

Fig.6 Yearly GMB (blue), SCCgl (gray), and SWECng 
(green) over the YZRB reconstructed during 1980-
2014 

Decreasing trends of GMB for YZRB in both periods 
1980-1994 (-0.24 Gt/yr) and 1998-2014 (-0.18 Gt/yr) 
at monthly scale and its annual mean for periods of 
1980-1994 (-0.26 ± 7.93 Gt/yr) and 1998-2014 (-4.36 
± 6.36 Gt/yr) (mean ± one standard deviation), 
respectively, were revealed. Correspondingly, it can be 
expected that precipitation (temperature) regimes 
should exhibit decreasing (an increasing) trend over 
GCE for the studied period, which may indirectly 
examine the reliability of the reconstructed GMB. 

3.4 Indirect Evaluation of the Reconstructed GMB 

3.4.1 Response of GMB to Precipitation and 
Temperature  

Fig.7a presented annual precipitation over GCE of the 
YZRB, a general decreasing trend during 1980-2014 
with annual precipitation fluctuated with an increasing 
trend (1.74 mm/yr) during 1980-1994 and following a 
significant decreasing trend during 1998-2014 at a 
level of 0.1, can be seen evidently. While for annual 
temperature, as exhibited in Fig.7b, a significant 
increasing trend occurred during 1980-2014, in 
particular, the change rate of annual mean temperature 
during 1998-2014 was larger than that during 1980-
1994. The GMB of the YZRB was well corresponded 
to the temperature and precipitation changes in the 
studied periods under the context of climate changes. 

3.4.2 Change of GCE Derived from LUCC  

Fig.8 gives the spatial distribution of different land use 
types in different years, from which we can see that 
GCE had a significant decreasing trend from 1980 to 
2015, especially in the east of the YZRB. The glacier 
areas in 1980, 1995, and 2015 were 10010.65 km2, 
8448.71 km2, and 7668.73 km2, respectively, which 
suggested about 15.6% decreasing (-1561.94 km2) 

during 1980-1995 and about 9.2% (-779.98 km2) 
during 1995-2015, which is highly consistent with the 
continuous decreasing of GMB during 1980-1994 and 
during 1998-2014. Additionally, the decreased GCE 
primarily converted to unutilized land with a 
proportion of 41.8% during 1980-1994 and with a 
proportion of 37.9% during 1998-2014 through change 
detection statistics in ENVI software.  

Fig.7 Inter-annual change trends of precipitation (a) 
and temperature (b) over the YZRB during 1980-2014. 
Lin denotes linear trend and Zc for Mann-Kendall test 
statistics 

Fig.8 Comparison of GCE in LUCC for the year of 
1980 (a), 1995 (b), and 2015 (c) 
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4 CONCLUSION 

With GRACE-based TWSA and GLDAS datasets, the 
long-term seasonal and inter-annual variability of 
GMB were reconstructed over the YZRB during 1980-
2014. High consistency among three GRACE-based 
monthly TWSA datasets with correlation coefficients 
ranging from 0.96 to 0.98 demonstrated the reliability 
of these two products. However, strongest negative 
correlations were found between TWSC-GRACE and 
TWSC-GLDAS with one year time lag from 2003 to 
2014. For GMB within the YZRB reconstructed, 
generally less accumulation in cold months and more 
ablation in warm months during 1998-2014 than that 
during 1980-1994 characterized the general treads of 
GMB variations over the past few decades. Inter-
annual variations of GMB presented a decreasing 
trend during both 1980-1994 and 1998-2014, but 
smaller GMB during the latter period than that during 
the former period furtherly revealed that glaciers have 
accelerated ablation over the YZRB during 1980-2014 
under the background of increasing temperature and 
decreasing precipitation. 
No doubt errors do exist in the reconstructed GMB 
series as presented in this study. Those errors might be 
resulted from the defects of simple regression model 
utilized in this study, or from the simulation 
uncertainty of hydrologic variables in GLDAS datasets, 
the instrument error and post-processing error of 
GRACE-based TWSA series, or even by the neglected 
groundwater change. However, we do believe the 
reconstructed GMB series and analysis results offer an 
opportunity and a new perspective for understanding 
the characteristics of GMB variations over the YZRB 
in the past few decades. 
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ABSTRACT - Precise and rapid estimation of grassland productivity has an important significance for 
evaluating regional ecological carrying capacity, utilizing natural resources reasonably. In this study, based on 
MODIS remote sensing data, meteorological data and ground measured data, the light utilization efficiency 
(LUE) parameter of CASA model was optimized, and the optimized model was used to estimate and analyze net 
primary productivity (NPP) and its spatio-temporal distribution of Xilingol Grassland between 2005 and 2014. 
The results indicated that: (Ⅰ) Maximum LUE was calculated to be 0.539 g_C.MJ-1 for Xilingol grassland 
according to the least error criterion. (Ⅱ) Measurement validation showed good performance of optimized 
model in research area, with R2 of 0.72 and mean relative estimation error of 0.29. (Ⅲ) NPP of Xilingol 
grassland decreased from northeast to southwest gradually. Accordingly, the NPP in different grassland types 
was as follows: the eastern meadow grassland > the central typical grassland > the western desert grassland. (Ⅳ) 
The total annual NPP showed a rising trend during 2005-2014, increasing from 156.67 g_C.m-2.a-1 in 2005 to 
186.53 g_C.m-2.a-1 in 2014. Precipitation and temperature were found to be the dominant climatic factors that 
controlled the interannual variability in NPP. In terms of research area, temperature appeared to control NPP only 
in regions where precipitation was scarce, in other words, the rise of temperature has little effect on NPP when 
precipitation was sufficient. 

1  INTRODUCTION 

Grassland ecosystem is one of the most important 
types of terrestrial ecosystems on the planet. As an 
important parameter of grassland ecosystem 
functioning and the carbon cycle, grassland NPP is the 
foundation of material cycle and energy flow, as well 
as the most direct indicator of grassland’s ecological 
status and services (Ruppert et al, 2014). Global and 
regional estimation of grassland NPP is of great 
importance for the management and protection of 
grassland resource. Specially, the research of regional 
grassland production is importance of evaluating 
ecosystem carrying capacity, using and developing 
grassland resource reasonably, and providing decision 
support for grassland management departments.  
Grassland NPP refers to the remainder subtracting 
autotrophic respiration from the total amount of 
organic matter fixed by grassland vegetation. A 

number of methods have been adopted to obtain 
grassland NPP, among of these, the method based on 
measured data is traditional and less used in view of 
time and energy consuming and non-spatial continuity. 
In the current research, model-based method is 
commonly applied for estimating grassland NPP. 
Models for grassland NPP estimate can be categorized 
into three groups: climate-related statistical models 
such as Miami model, Thornthwaite Memorial model, 
Chikugo model; process-based models, such as 
BIOME-BGC model, CENTURY model, TEM model, 
CARAIB model; light use efficiency models, such as 
CASA model, GLO-PEM model, C-Fix model, TURC 
model. Light use efficiency models based on remote 
sensing data, can estimate NPP in different spatio-
temporal resolutions and explore dynamic changes in 
NPP. Compared with other models, it can simulate 
vegetation NPP more efficiently and accurately. 
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CASA (Carnegie-Ames-Stanford Approach) model is 
the most commonly used light use efficiency model 
for estimating grassland NPP, which fully considers 
the environment conditions and vegetation 
characteristics. In addition, it estimates NPP directly 
instead of subtracting autotrophic respiration from 
GPP, thus is relatively simpler and more efficient for 
calculating NPP. CASA model was developed based 
on Monteith’s equation (Potter et al. 1993; Field et 
al.1995), using remote sensing data, meteorological 
data and ground data to simulate vegetation NPP. In 
recent years, there have been several studies into 
regional grassland NPP with CASA model (Bradford 
et al., 2005; Zhang et al., 2008). While previous 
researchers have mainly obtained model parameters 
from references, few studies have modified and 
optimized model parameters aimed at specific region. 
Additionally, due to lacking of measured data, model 
validation proved to be the issue. Therefore, more 
detailed analysis need to done aimed at specific 
ecosystem or region. The objectives of this study were 
to estimate and validate NPP of Xilingol grassland 
from 2005 to 2014 using optimized CASA model, and 
further analyze its spatio-temporal distribution. 

2  Materials and Methods 

2.1 Study area 

This study was conducted in the Xilingol grassland, 
located in the central part of Inner Mongolia at 41°35
′~ 46°46′N, 111°09′~ 119°58′E. Xilingol 
grassland is a typical temperate grassland of northern 
China and the sensitive zone in response to climate 
change, with an arid and semiarid temperate 
continental monsoon climate. The elevation varies 
from 800 m to 2000 m, with higher elevation in South 
than that in North as a whole. The total area of the 
Xilingol grassland is 192,512 km2, accounting for 
95.03% of the total land area of Xilingol. The map of 
grassland resources in China at a 1:1,000,000 scale 
shows that the vegetation types in the grassland are 
meadow grassland, typical grassland and desert 
grassland ranging from east to west (Fig.1). 

2.2 Data 

2.2.1 Field Sampling Data 

The field sampling was conducted in ungrazing region 
every July and August from 2005 to 2014, to obtain 
the maximal aboveground biomass in the growing 
season. The sampling sites, with an area of at least 1 
km2, were chosen to represent typical vegetation 
communities. To obtain the actual aboveground 
biomass of herbs, all the aboveground plants in three 
or four plots (1 m × 1 m) were harvested to measure 

their fresh weight. As to shrubs in the homogeneous 
grassland, one plot (10 m × 10 m) was sampled to 
obtain the aboveground biomass, then the sum of the 
weights in three or four plots were calculated. Finally, 
by drying fresh grass in the laboratory and averaging 
the dry weight of both the herbs and shrubs in three or 
four plots at the sampling site, the field sampling 
dataset can be obtained. In view that there were few 
unnatural disturbances in ungrazing region, the 
aboveground biomass was transferred into 
aboveground NPP by the conversion coefficient of 
0.45. The total NPP was estimated based on 
aboveground NPP and the ratio between the 
underground and aboveground NPP. The estimated 
total NPP could be used for model parameter 
optimization and model validation. 

 
Fig.1. Location of the study area and grassland types 

2.2.2 Remote Sensing Data 

In this study, MODIS 8-day composited surface 
reflectance product (MOD09A1) with a resolution of 
500 m was selected to invert the parameters for CASA 
model, MODIS 8-day composited FPAR product 
(MOD15A2) and PSNnet (net photosynthesis) product 
(MOD17A2) with a resolution of 1 km were used for 
model validation. There were seven bands in 8-day 
composited surface reflectance product, of which, 
band 1 (Red 620~670nm) and band 2 (NIR 
841~876nm) were used to calculate the Normalized 
Difference Vegetation Index (NDVI), band 2 (NIR 
841~876nm) and band 6 (NIR 841~876nm) were used 
to calculate the Land Surface Water Index (LSWI).  

2.2.3 Meteorological Data 

The meteorological data used in this study was 
provided by the China Meteorological Data Sharing 
Service System, including ground climatological daily 
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dataset and radiation daily dataset. Few meteorological 
stations in the Xilingol grassland, especially radiation 
stations, couldn’t meet the conditions of interpolation, 
so 35 ground meteorological stations in the the 
Xilingol grassland and surrounding districts were 
selected for interpolation after taking full 
consideration of stations distribution. To be consistent 
with the remote sensing data, these data should be 8-
day composited as well, then ANUSPLINE software 
was used in the interpolation process of the 8-day 
composited meteorological data. In consideration of 
the model demand, the outputs from the ANUSPLINE 
software were 8-day mean temperature, 8-day 
precipitation, 8-day solar radiation with 500 m spatial 
resolution. 

2.3 CASA model 

CASA model is the most commonly used light use 
efficiency model, in which vegetation NPP is mainly 
determined by vegetation absorbed photosynthetic 
Active Radiation (APAR) and light use efficiency (ε): 

( ) ( ) ( ), , ,NPP x t APAR x t x tε= ∗             (1) 

( ) ( ) ( ), , ,APAR x t SQL x t FPAR x t= ∗0.5∗   (2)

( ) ( ) ( ) ( )1 2ε , , * , * , * maxx t T x t T x t W x tε ε ε ε=                   (3) 

where NPP(x, t) is the net primary productivity (g_C 
m−2 8-day−1) fixed by green vegetation at pixel x in t 
time, APAR(x, t) is the amount of absorbed 
photosynthetic active radiation (MJ m−2 8-day−1) at 
pixel x in t time, and ε(x, t) represents the actual light 
use efficiency (g C MJ−1) of pixel x in t time. SOL(x, t) 
is total solar radiation (MJ m−2) of pixel x in t 8-day, 
FPAR(x, t) is the absorbed fraction of photosynthetic 
active radiation (PAR) absorbed by vegetation canopy, 
constant 0.5 stands for the fraction of total solar 
radiation that can be used by vegetation (0.4 ~ 0.7μm). 
Tε1 (x,t) and Tε2 (x,t) are environmental stresses which 
reflect the reduction of light use efficiency caused by 
temperature factor, Wε(x,t) is the environmental stress 
which indicates the reduction of light use efficiency 
caused by moisture factor, εmax is the maximum light 
use efficiency in an ideal condition. 

2.3.1 FPAR 

The original CASA model used the MODIS/NDVI to 
invert FPAR, but this algorithm cannot accurately 
calculate the actual ground vegetation FPAR. Although 
the FPAR has a significantly linear relationship with 
both NDVI and RVI, previous research has proved that 
estimations using the FPAR - NDVI relationship have 
tended to estimate FPAR on the high side, while 
estimations using the FPAR - RVI relationship have 
tended to estimate FPAR on the low side. Therefore, 

the above two methods were combined to optimize 
traditional estimation, and the mean of the two FPAR 
values calculated using NDVI and RVI value was 
taken for FPAR estimation in this study, as follows: 

( ) ( )( ) ( )
( )

, *
, min max min

min
max min

NDVI x t NDVI FPAR FPAR
FPAR x t FPAR

NDVI NDVI
− −

= +
−  (4) 

( ) ( )( ) ( )
( )

, *
, min max min

min
max min

SR x t SR FPAR FPAR
FPAR x t FPAR

SR SR
− −

= +
−    (5) 

( ) ( )
( )

1 ,
,

1 ,
NDVI x t

SR x t
NDVI x t

+
=

−         (6) 

( ) ( ) ( )FPAR , FPAR ,
FPAR ,

2
NDVI SR

x t x t
x t

+
=

      (7) 

where FPARmax and FPARmin are constants with values 
of 0.950 and 0.001 respectively; NDVImax and NDVImin 
are the maximum and minimum Normalized 
Difference Vegetation Index respectively; and SRmax 
and SRmin are the maximum and minimum Ratio 
Vegetation Index respectively. 

2.3.2 Environmental stresses 

Temperature stress factor Tε1(x,t) refers to the effect to 
vegetation productivity caused by biochemical 
function under the condition of low temperature and 
high temperature, Temperature stress coefficient Tε2(x,t) 
refers to the diminishing tendency of light use 
efficiency when environment temperature T(x,t) 
changes from optimum temperature Topt(x,t) to 
maximum or minimum temperature, can be calculated 
as follow: 

( ) ( ) ( ) 2

1 , 0.8 0.02* 0.0005*opt optT x t T x T xε  = + −   (8) 

( ) ( ) ( ) ( ) ( )2 0.2* 10 , 0.3* 10 ,

1.184 1, *
1 1opt optT x T x t T x T x t

T x t
e e

ε    − − − − +   
=

+ +  (9)

Moisture stress factor (Wε) reflects the water influence 
on photosynthesis, was usually estimated based on the 
amounts of potential evapotranspiration and actual 
evapotranspiration in previous research. In this study, 
we proposed an simple approach using a satellite-
derived water index to estimate Wε. Short wave 
infrared band (SWIR) is sensitive to the soil water and 
vegetation water content, so near infrared band (NIR) 
and short wave infrared band (SWIR) are combined to 
invert land surface water index (LSWI) (Xiao et al., 
2005). LSWI values range from -1 to 1, with the 
increase of soil water or vegetation water content, 
SWIR absorption increases and reflection decreases, 
resulting in LSWI values increased. 
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max

1 LSWI
1 LSWI

Wε
+

=
+     (10) 

LSWI NIR SWIR

NIR SWIR

ρ ρ
ρ ρ

−
=

+                (11) 

where LSWImax is the maximum LSWI within the 
vegetation growing season for individual pixels, ρNIR 
and ρSWIR are the reflectivity in NIR and SWIR band 
respectively. 

2.3.3 εmax 

As the critical parameter of CASA model, maximum 
light use efficiency is affected by various factors (e.g. 
geographic location, climate, vegetation type). Based 
on the least error criterion between the observed and 
estimated NPP, we obtained the optimum εmax for the 
northern temperate grassland in China (Yu et al., 2009). 

( ) ( )2

1

E
j

i i max
i

x m n ε
=

= −∑
 (12) 

Where, E(x) is the error between the observed and 
estimated NPP, j is the number of observed NPP, mi 
represents observed NPP of the i sampling plot, and 
ni=APAR(x)×Tε (x)×Wε (x). Equation 12 can also be 
expanded as follows:  

( ) 2 2 2

1 1 1

E 2
j j j

i i i max i i
i i i

x m m n n mε
= = =

= − +∑ ∑ ∑
  (13) 

which is hyperbolic equation, E(x) is minimum when 
maximum light utilization efficiency was calculated to 
be 0.539 g_C.MJ-1 for Xilingol grassland according to 
the above formula. 

3. Results

3.1 Validation of the CASA model 

Using the reserved observed data (approximately 20% 
of the total samples), we calculated the root-mean-
square error (RMSE) and mean relative estimation 
error (REE) between the estimated NPP and the actual 
NPP to evaluate the accuracy of the model. In addition, 
we used actual NPP for validating the precision of the 
MODIS 8-day NPP. It turned out that R2 between 
estimated NPP and the actual NPP was 0.72 (P < 
0.001), higher than R2 between MODIS NPP and the 
actual NPP (Fig.2). By calculating the mean relative 
estimation error (REE) between estimated NPP and the 
actual NPP, we concluded that accuracy of optimized 
model could reach 71%, superior to the performance 
of MODIS NPP in study area. 
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Fig.2. The relationships between actual and 
simulated/MODIS NPP 

3.2 Spatial distribution of NPP 

During 2005 to 2014, the annual mean NPP of 
Xilingol grassland estimated by CASA model was 
161.23 g_C.m-2.a-1 with a remarkable spatial 
heterogeneity. As can be seen from the spatial 
distribution map, NPP decreased from northeast to 
southwest gradually, the region with NPP great than 
400 g_C.m-2.a-1 mainly distributed in northeast of 
Xilingol, NPP ranged from 100 to 200 g_C.m-2.a-1 in 
the central region, and was generally less than 100 
g_C.m-2.a-1 in the southwest region (Fig.3). As a whole, 
NPP in study area mostly focused on the range from 
50 to 200 g_C.m-2.a-1, accounting for 80 percent of 
total pixels. However, there was a small amount of 
pixels with NPP great than 400, below 2%. 

Fig.3. Spatial distribution of annual average NPP 
during 2005 to 2014 

Other than obvious spatial heterogeneity, vegetation 
productivity differed in biomes. On the whole, the 
average annual NPP of different grassland types 
followed an order of: eastern meadow steppe > middle 
temperate steppe > western desert steppe. Specifically, 
the average annual NPP of montane meadow was 
413.97 g_C.m-2.a-1, far above the annual NPP of 
temperate meadow-steppe (246.38 g_C.m-2.a-1). 
Temperate steppe-desert had the lowest productivity, 
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with average annual NPP of 80.02 g_C.m-2.a-1. The 
annual NPP in montane meadow, emperate meadow-
steppe and low-land meadow were higher than the 
average value of study area, while temperate steppe, 
temperate meadow-steppe, temperate steppe-desert 
and temperate desert owned lower annual NPP 
compared with average level. 

3.3 Interannual variation in NPP 

The annual fluctuation of the NPP was observed, 
ranging from 120.01 g_C.m-2.a-1 in 2007 to 187.57 
g_C.m-2.a-1 in 2008 (Fig.4). During 2005 to 2014, NPP 
presented increasing trend with a rate of 3.89 g_C.m-

2.a-1. During the years 2008, 2012, 2013 and 2014,
annual NPP of temperate grassland was higher than 
multi-year average, with values of 193.49 g_C m-2 yr-1, 
190.83 g_C m-2 yr-1, 178.08 g_C m-2 yr-1 and 193.84 
g_C m-2 yr-1, respectively. 
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Fig.4. Interannual variation of NPP during 2005 to 
2014 

As we know, precipitation and temperature are the two 
most commonly factors to NPP on interannual scales. 
By analyzing the interannual variations of these two 
climate variables and correlation with NPP, we found 
precipitation had a higher correlation with NPP than 
temperature in temperate grassland. During ten years, 
precipitation showed a significant increasing trend in 
accordance with NPP. There was relatively little 
precipitation in 2007, thus lower productivity 
compared with other years. Although precipitation in 
2012 was far above that in 2008, there was lower NPP 
in 2012 than 2008. The reason for this phenomenon 
was that low temperature counteracted some effect of 
high precipitation on NPP in 2012. This suggested that 
the combined effects of precipitation and temperature 
were responsible for the annual variations in NPP on 
northern temperate grassland. 

The spatial pattern of NPP trends during 2005-2014 
was shown in Fig.5, of which, only about 10% grid 
cells showed negative annual NPP trends. NPP 
exhibited increasing trend in most parts of Xilingol 
grassland, and significantly decreased in southwest of 

East Ujimqin and West Ujimqin, as well as Xilinhot. 
By grassland types, the NPP trend of temperate 
meadow-steppe (4.26 g_C m-2 yr-1), improved 
grassland (4.09 g_C m-2 yr-1) and temperate steppe 
(3.98 g_C m-2 yr-1) were higher than overall level in 
study area, while annual NPP in montane meadow 
(2.08 g_C m-2 yr-1) and temperate desert (2.83 g_C m-2 
yr-1) showed relatively low tendency. 

Fig.5. Spatial distribution of NPP interannual 
tendency during 2005 to 2014 

3.4 Temporal variation of NPP within the year 

Based on 8-day NPP of multi-year average, we 
conducted that the growing season ranged from mid-
April to early October in the northern temperate 
grassland, and NPP peaked in about 209th day with 8-
day NPP 12.38 g_C m-2. Xilingol grassland began to 
turn green in mid-April and accumulate biomass with 
the temperature and precipitation increasing. Up until 
early October, grassland entered the period of wilt, and 
productivity declined. 
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Fig.6. Temporal variation of 8-day NPP from 2005 
to 2014 

In view of the difference in climate factor, the time to 
maximum NPP in different years was inconsistent 
(Fig.6). For example, the maximum NPP occurred in 
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about August 13th for the year 2007, while June 18th 
in 2010. The variation curve of 8-day NPP was 
consistent with that of 8-day precipitation, especially 
in growing season. However, temperature played a 
more important role than precipitation in the period of 
greening up in temperate grassland. The temperature 
of time to greening up and wilting tended to zero, this 
also meant that vegetation in northern temperate 
grassland accumulated biomass when temperature 
above zero. 

4. Discussions and Conclusions

In this study, we optimized maximum light use 
efficiency for improving the simulation accuracy of 
regional productivity. Maximum light utilization 
efficiency was calculated to be 0.539 g_C.MJ-1 for 
Xilingol grassland according to the least error criterion. 
Measurement validation showed good performance of 
the optimized model in research area, with an overall 
coefficient of determination of 0.72 and mean relative 
estimation error of 0.29. Due to the shortage of 
measured data, the value of maximum light use 
efficiency has always been controversial, our results 
will be a good reference on the research about 
temperate grassland.  

The combined effects of precipitation and temperature 
were responsible for the annual variations in NPP on 
northern temperate grassland. Specifically, 
temperature appeared to play an even greater role in 
NPP for the regions where precipitation was scarce, in 
addition, the rise of temperature has little effect on 
NPP when precipitation was sufficient. In other words, 
sufficient precipitation could counteract some effect of 
high temperature. As to the sequential variation within 
the year, the curve of 8-day NPP was consistent with 
that of 8-day precipitation, especially in growing 
season. However, temperature played a more 
important role than precipitation in the period of 
greening up in temperate grassland. The temperature 
of time to greening up and wilting tended to zero, this 
also meant that vegetation in northern temperate 
grassland accumulated biomass when temperature 
above zero. 
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ABSTRACT -This study examined greenup in the Xilingol grasslands of northern China. A double logistic function 
was used to reconstruct a time series of SPOT-VEGETATION (VGT) Normalized Difference Vegetation Index 
(NDVI) from 1999 to 2012. The dynamic threshold method was used to monitor the greenup date by remote sensing. 
68% of the ground monitoring results were consistent with the remotely-sensed greenup date. For the sample plots, 
the root-mean-square error (RMSE) of the greenup date measured by remote sensing was 8.7 d. The greenup date 
of temperate grassland, comprising 66.4% of the total grassland area, is usually in mid to late April, with some 
variability (standard deviation = 18.45 d). Based on the linear trend analysis of each pixel, only 13.9% of the 
pixels showed a significant change over the 14-year time series. However, the linear trend increased from the 
southeast to the northwest, and 57% of the pixels demonstrated earlier greenup. Across the whole region, the linear 
trend showed an average rate of change of -1.5 d/10 a. The correlations at seven meteorological stations were 
statistically significant (p<0.05). The average correlative value of deterministic factors was 0.54. The partial 
correlation coefficients between greenup date and temperature prior to seedling establishment were negative at 
five stations, among which three stations exhibited significant negative correlations. Partial correlation 
coefficients between greenup date and precipitation prior to seedling establishment were negative at all eight 
stations, and five of these exhibited significant negative correlations.  

1 INTRODUCTION 

Global warming has led to observable changes in the 
greenup date of grassland vegetation (Myneni, 1997). 
In recent years, researches on climate change have 
become more and more important, and scholars have 
paid more and more attention to the research on 
phenology. Phenology has become the frontier fields of 
global climate change research. The greenup date is the 
beginning of plant growth season, which is one of the 
important stages, and plays an important role in plant 
growth. Remotely-sensed greenup date reflects the 
regional scale surface vegetation growth. It is regional 
vegetation phenology calculated according to time 
series vegetation index, based on the change of 
vegetation index curve. 

Traditional phenology has the characteristics of 
objective and accurate. But in addition to some 
countries in Europe, most of the countries and regions 
lack of wide coverage, long time series of plant 
phenology observation data. It was difficult to analyse 
large-scale vegetation phenology (Chen and Wang, 
2009).Remote sensing has been applied to the 
monitoring and research of vegetation phenology, 
which has broadened the means and field of vegetation 
phenology research and promoted the study of global 

change (Schwartz, 1998).Remote sensing data has been 
widely used in the study of large-scale vegetation 
activities, especially for the relatively simple structure 
of grassland ecosystem. 

Time series data based on high time resolution 
remote sensing data (such as NOAA/AVHRR, MODIS, 
SPOT-VGT) can accurately reflect the large scale 
vegetation phenological characteristics (Wei, 
2013).Phenology initially applied mainly in the service 
of agricultural production development. The 
development of remote sensing technology to 
agricultural phenology provides a new monitoring 
method. Remote sensing monitoring has played an 
important role in agriculture season forecast, crop's 
monitoring and control of plant diseases and insect 
pests (Zhang, et al., 2002; Friedl, et al., 2002; Mark, et 
al., 2001).Vegetation index has been widely used in 
vegetation classification, the dynamic changes of 
vegetation, vegetation phenological study, etc.  (Hou, et 
al., 2004; Walker, et al., 2014; Nan, et al., 2012; 
Hmimina, et al., 2013). 

At present, vegetation phenological studies has 
focused on the effects of climate warming on vegetation 
(Piao and Fang, 2003; Xu, et al., 2015). More and more 
researchers began to pay close attention to vegetation 
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phenology, but under the background of global climate 
change and the shortage of coverage phenological 
observation station, herbaceous vegetation phenology 
researches were relatively insufficient, lacked of large 
scale grassland phenological monitoring research based 
on remote sensing. 

 China, as a country of abundant grassland 
resources, possesses around 400,000,000 hectares of 
various natural grasslands, which account for about 
41.7% of China’s total land area. A deeper 
understanding of the spatiotemporal characteristics of 
these changes and their response to climate factors is of 
great importance in guiding the start time of grazing and 
in helping explore the effects of the grassland 
ecosystem on the global carbon cycle. Using remote 
sensing methods, the greenup date of grassland 
vegetation monitoring was characterized by rapidness 
and broad coverage, and has a prospect of wide 
applications. 

2 MATERIALS AND METHODS 

2.1 Study area 

Xilingol League is located in the central part of Inner 
Mongolia, between 41°35' and 46°46'N and 111°09' and 
119°58'E. This area comprises natural pastures that are 
among the highest in quality in northern China, and the 
total grassland area is 192,512 km2, representing  
95.03% of the total area of the region. The Xilingol 
grassland is primarily dominated by temperate meadow 
steppe, temperate steppe and temperate desert steppe 
(Fig.1). The league has a wide range of grassland types, 
some continuity in spatial distribution and certain 
typicality and completeness in type. Therefore, the 
study area is representative and can better study the 
characteristics of remote sensing phenology. 

Fig.1. The location map of Xilingol League, China 

2.2 Dataset 

The remote sensing data were SPOT VGT S10 products 
with a 1km spatial resolution for the period from 1999 
to 2012 from the VITO（http://free.vgt.vito.be/）. The 
NDVI was developed using the Maximum Value 

Composition (MVC). A double logistic function was 
used to reconstruct the NDVI time series. 

Ground-based monitoring greenup date data came 
from Grassland Monitoring and Supervision Center 
Ministry of Agriculture，PR China and the Xilinhot 
Meteorological Experimental Station for Animal 
Husbandry. The former included 162 sample plots, 426 
quadrats from 2010-2012 distributed in Sonid Right 
Banner, Boarder Yellow Banner, Xilinhot and Dong 
Ujimqin Banner. The later included typical species 
greenup date like Leymus chinensis and Stipa krylovii 
from 2000-2012.  

Meteorological data used in this study included 
temperature and precipitation data were downloaded 
from Climatic Data Center, National Meteorological 
Information Center, China Meteorological 
Administration (http://data.cma.cn). There are eight 
national weather stations in the study area. Because 
there were some abnormal data value and the missing 
value, we need to do some data quality control work 
like time anomaly test, space anomaly value test, high 
and low outliers test, missing value substitution, etc.  

2.3 Determination of vegetation greenup date 

TIMESAT is a software package that can analyse 
remote sensing time series data (Jönsson, 2004). It can 
filter and reconstruct NDVI time series and then extract 
the vegetation greenup date. TIMESAT includes three 
methods of data reconstruction such as Savitzky Golay 
filter (S-G), Asymmetric Gaussian function filter (A-G) 
and Double Logistic function filter (D-L). By importing 
NDVI time series data into the TIMESAT software, we 
can check every pixel`s reconstructed results in the 
preview data interface. We chose some representative 
area in temperate meadow steppe, temperate steppe and 
temperate desert steppe and test different filtering 
method to reconstruct NDVI time series.  

We found D-L method was similar to A-G method 
and S-G method considered the peak more. D-L method 
and A-G method could achieve NDVI time series curve 
smoothing, meanwhile too much information would not 
lose. D-L method and A-G method had similar 
reconstruct result which were better than S-G method. 
This paper selected D-L method to reconstruct NDVI s 
time series. 

Threshold method is a high efficient method by 
defining a threshold size. Greenup date results extracted 
by this method is relatively accurate, but it was easy to 
receive subjective influence for different researchers 
and threshold values. Comparing with fixed threshold 
method, dynamic threshold method had better 
practicability in spatiotemporal characteristics. 

We used the following dynamic threshold 
method model: 

NDVIlim = (NDVImax － NDVImin) × C     (1) 
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NDVIlim is the dynamic threshold; and NDVImax 
and NDVImin are respectively the maximum and 
minimum NDVI values in the annual NDVI cycle; C is 
a coefficient.  

Combined with the ground-based monitoring data, 
considering distribution of extract the greenup date 
after a large number of tests, we used 25% threshold to 
extract the greenup date. 

3 RESULTS 

3.1 Spatial-temporal pattern of grasslands greenup date 
in Xilingol league 

Xilingol League grassland area is large and the 
meteorological factors distribution has obvious spatial 
differences.  Due to climate change and human 
activities, the grassland greenup date has certain change 
rules (Chen, et al., 2005). A lot of research has shown 
that this area remotely-sensed greenup date had 
advanced trend. But the change trend of vegetation 
greenup date in space distribution was complex and 
regional heterogeneity. 

3.1.1 Verification of the remotely-sensed greenup date 
monitoring results  

The remotely-sensed greenup date monitoring results 
were verified using data derived from ground-based 
monitoring of 162 sample plots from 2010 to 2012, 
among which 11 sample plots belongs to the outliers. 
After eliminating these 11 sample plots, we used 151 
samples plots for verification of the remotely-sensed 
greenup date monitoring results. 68% of the ground 
monitoring results were consistent with the remotely-
sensed greenup date. 7 sample plots remotely-sensed 
monitoring results differed by 30d from ground-based 
monitoring results, among which 5 sample area 
belonged to the temperate desert steppe. 22 sample 
plots remotely-sensed monitoring results differed by 
20d from ground-based monitoring results, among 
which 13 sample area belonged to the temperate desert 
steppe. We found in temperate desert steppe the 
threshold value for monitoring greenup date was not 
high accuracy. The Root Mean Square Error (RMSE) is 
used to evaluate the effectiveness of the extraction 
method. RMSE represents the deviation between the 
remotely-sensed ground-based monitoring results and 
reflects the accuracy of the dynamic threshold method. 

The calculation formula of RMSE is as follows: 

(2) 

n is the total number of samples, and Oi is the 
remotely-sensed monitoring greenup date, and Pi is the 
ground-based monitoring greenup date. 

For the sample plots, the RMSE of the greenup 
date measured by remote sensing was 8.7d. The time 

series data interval used in this paper is 10d, so it was 
reasonable and feasible to extract the remote sensing 
monitoring results in the study area through the 
dynamic threshold method.  

The remotely-sensed greenup date monitoring 
results were also verified using ground-based 
monitoring data derived from the Xilinhot 
meteorological experimental station for animal 
husbandry. After eliminating outliers and missing 
values, we found 11 among 17 sample plots results were 
consistent with the remotely-sensed greenup date. From 
dominant species verification results, the accuracy was 
about 69%. So dominant species greenup date could 
better represent the region greenup date. When working 
in the field observation, quadrat`s greenup date could 
be judged according to dominant species. 

3.1.2 Spatial patterns of vegetation remotely-sensed 
greenup date  

According to the spatial pattern of the multi-year mean 
remotely-sensed greenup date (Fig.2), the greenup date 
in most areas occurred between early April and mid 
May. They were delayed from the south to the north. 
The spatial pattern of vegetation growth was affected 
by complex meteorological factors. Vegetation was 
sensitive to water and heat conditions during growth in 
Xilingol league grasslands. The higher temperature and 
more precipitation during growth season, the earlier 
vegetation greenup.  

Fig.2 Mean greenup date during 1999-2012 

Tab.1 shows the multi-year mean greenup date of 
every grassland type. Temperate desert steppe greenup 
date concentrated in early April and mid April, mainly 
distributed in central and north Sonid Left Banner and 
northwest Sonid Right Banner. Temperate steppe 
greenup date concentrated in mid April and late April, 
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mainly distributed in southeast Sonid Right Banner, 
east Sonid Right Banner, Abag Banner, Xilinhot, west 
West Ujimqin Banner, local west East Ujimqin Banner, 
Xianghuang Banner, Zhengxiangbai Banner and 
Zhenglan Banner. Temperate meadow steppe greenup 
date concentrated in late April and early May, mainly 
distributed in central and north Sonid Left Banner and 
northwest Sonid Right Banner. 

Tab.1 Mean greenup date of every grassland type (%) 
Mean 
greenup 
date 

early 
April 

mid 
April 

late 
April 

early 
May 

mid 
May 

temperate 
desert 
steppe 

35.88 53.57 10.18 0.36 0.02 

temperate 
steppe 9.2 36.39 42.49 10.93 0.99 

temperate 
meadow 
steppe 

1.46 13.06 59.97 24.99 0.51 

3.1.3 Spatial patterns of trends in vegetation remotely-
sensed greenup date 

Linear trend of greenup date research(Fig.3) showed 
that 57% of pixels were advanced, 43% of pixels were 
delayed, the average change trend was -1.5d/10a, 8% of 
pixels` trend were significant advanced, 5.9% of pixels` 
trend were significant delayed. Linear trend increased 
from southeast to northwest, overall, the role of climate 
change on Xilingol league area grassland has promote 
greenup date in advance. The trend in Warm meadow 
steppe was small, about 80% of the pixels` trend were 
within ±10d/10a, 43% of pixels` trend in warm 
grasslands and warm desert grasslands were greater 
than 10d/10a .  

Fig. 3 The greenup date trend 

3.2 Remotely-sensed greenup date in relation to 
meteorological factors 

Xilingol league area grasslands greenup date were 
significant negative correlation with the temperature 
and precipitation (Tab. 2). Specifically, the average of 
greenup date and temperature of partial correlation 
coefficient was -0.18, 5 sites were negatively 
correlated, 3 sites were significant negative correlated. 
The average of greenup date and precipitation of partial 
correlation coefficient was -0.58, 8 sites were 
negatively correlated, 5 sites were significant negative 
correlated. Most of the sites, temperature and 
precipitation worked at the same time. The average 
regression coefficient between greenup date and 
temperature and precipitation was 0.54, 7 sites were 
significantly related. 

Tab. 2 The partial correlation and regression coefficient 
of greenup and temperature and precipitation 

partial correlation 

meteorological  
stations temperature precipitation regression

coefficient 

East Ujimqin 
Banner -0.386 -0.743** 0.423* 

Erenhot 0.853** -0.663 0.648* 

Naran-Bulag -0.69** -0.165 0.502* 

Abag Banner 0.102 -0.65** 0.278 

Sonid Left 
Banner 0.408 -0.862** 0.686** 

Zhu Rihe -0.683** -0.665* 0.518* 

West Ujimqin 
Banner -0.89** -0.097 0.654* 

Xilinhot -0.162 -0.825** 0.606** 

** and * indicate that the correlation is significant at the 
0.01 and 0.05 levels, respectively. 

4 CONCLUSION AND DISCUSSION 

4.1 Conclusion 

We monitored the grassland greenup date through 25% 
dynamic threshold method in Xilingol league. The 
accuracy was 68% through 162 sample plots of ground 
monitoring data during 2010 to 2012, the remotely-
sensed greenup date `s RMSE was 8.7 days. 

The greenup over this area occurred between early 
April and mid May. They were delayed from the south 
to the north. Linear trend of greenup date research 
showed that 57% of pixels were advanced, the average 
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change trend was -1.5d/10a, 13.9% of pixels` trend 
were significant changed. Linear trend increased from 
southeast to northwest, overall, the role of climate 
change on Xilingol league area grassland had promoted 
greenup date in advance. The trend in warm desert 
grasslands were greater than in Warm meadow steppe. 

Collectively, these results demonstrate that 
increasing precipitation and higher temperatures can 
advance the greenup date. Further analysis showed that, 
in relatively wet regions, increase in temperature 
promoted greenup, while the effect of precipitation was 
more important in dry regions. 

4.2 Discussion 

The datasets used in the present study were remote 
sensing data and ground observed data. The nature of 
the remote sensing information determines that there is 
uncertainty in data acquisition, processing, and 
analysis. For ground observed data, such as vegetation 
greenup date, there is relatively strong subjectivity in 
the estimation process, and different persons may 
obtain different greenup date. Thus, there is also 
uncertainty in the ground observed data. Therefore, it is 
crucial to eliminate the data uncertainty as much as 
possible. 

The ground verification sample pilots distributed 
unevenly. Some areas had no observation data and some 
observation data of region may not have continuous 
data. For the high accuracy monitoring greenup date, it 
is necessary to make more continuous observations.   
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ABSTRACT - Sandstorms involve strong winds that blow sand and dust such that the air visibility declines. 
Northern China, including Beijing and Tianjin, have seriously suffered from sandstorms at the end of the 20th 
century. Grass production is not only an essential material base for maintaining grassland ecosystems but also 
an important parameter for assessing the condition of the grassland ecosystems. This study established a remote 
sensing estimation model with MODIS NDVI data and field survey data from 2000 to 2010 in Beijing-Tianjin 
sandstorm source region (BTSSR). We estimated grass production from 2000 to 2010 and assessed the change of 
grass production both temporally and spatially. The results showed that: (1) The optimal model was established 
by exponential function model. The MRE and the precision of the model were 0.288 and 71.2% respectively. The 
average total grass production was 33.13 million tons, and the yield of grass production was 986.59 kg/ha. (2) 
Grass production exhibited significant spatial heterogeneity in BTSSR and decreased from the southeast to the 
northwest. (3) Grass production in most of BTSSR exhibited a positive increase trend over the past decade. 
Grass production significantly increased in the drought grassland desertification control region and the 
HunShanDaKe sandy land region. Accurate measurements of grass production and its temporal and spatial 
variation are important for utilization and protection of grassland resources, and this study is meaningful and 
reference for the evaluation of grassland management strategies in China. 

1  INTRODUCTION 

Sandstorms involve strong winds that blow sand and 
dust such that the air visibility declines. These storms 
are caused by arid climates and desertification; they 
are also an important indicator of the ecological and 
environmental conditions of northern China. North 
China, including Beijing and Tianjin, experienced 
strong sandstorms at the end of the 20th century. 
According to statistics, the Beijing and Tianjin regions 
experienced more than 10 sandstorms, floating dust 
and blowing sand from March to April of 2000 (Qin et 
al., 2012). China proposed the Beijing and Tianjin 
sandstorm source control project in June 2000, and it 
was completely implemented by 2002. The first-stage 
construction lasted 10 years (2001-2010) and was 
intended to inhibit land desertification in the Beijing 
and Tianjin regions, improve the ecological 
environment, and perform United Nations Convention 
to Combat Desertification. The project aimed to 
optimize the ecological environment of the capital and 
control zone and to inhibit the expansion of 
desertification. The sandstorms were notably reduced; 
thus, the ecological environment of Beijing and its 
peripheral regions was greatly improved through 
vegetation protection, tree planting and seeding, 

converting grain plots back to forests, and controlling 
minor watersheds, grasslands, and ecological 
immigrants. After the project was implemented, the 
ecological impacts and their effects on governance 
gained attention. The sandstorm source control project 
of Beijing and Tianjin was an ecological restoration 
project whose purpose was to ensure the survival and 
development of humans. To date, most studies showed 
that the project had a positive effect (Wang et al., 
2007; Yang and Ci, 2008; Yin and Yin, 2010).  

The major aim of the sandstorm source control 
project was to restore the vegetation of forests and 
grasslands. The underlying theory of the project was 
that the variation of land utilization promotes the 
variation in ecosystem functions. Thus, vegetation, 
soil, water and climate would be impacted. Grass 
production is an important indicator of the vegetation 
restoration effect. Thus, the increase or decrease of 
grass production can be used to assess the success or 
failure of ecological restoration programs. Grass 
production is the material basis for preserving 
grassland ecosystems and is the most direct indicator 
of grassland conditions. It is important guiding 
significance for impacts of the Beijing and Tianjin 
sandstorm source control project to understand the 
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spatial-temporal distribution and variation of grass 
production. 

Remote sensing technology provides a novel 
method for monitoring grass production. The main 
advantages of remote sensing monitoring are the 
macroscopic scale, speed and efficiency. Remote 
sensing provides timely grassland information for 
grassland management and decision-making. For 
instance, the normalized difference vegetation index 
(NDVI) of remote sensing data products (e.g., 
Advanced Very High Resolution Radiometer 
(AVHRR), Moderate Resolution Imaging 
Spectroradiometer (MODIS), or Landsat-TM/ETM+) 
is extensively applied to dynamic spatial-temporal 
monitoring of grassland vegetation (Gaitán et al., 
2013; Kang et al., 2007; van Leeuwen et al., 2006; 
Wylie et al., 2002). Based on MODIS data and the 
corresponding ground-based data in 2005, Xu et al. 
(2008) divided the entire country into 6 different 
grassland zones to establish estimation models of grass 
production; they explored the spatial distribution of 
grass production in China. Piao et al. (Piao et al., 
2007) established an above-ground biomass statistical 
model using national grassland resource inventory data 
and the AVHRR-NDVI time series dataset; then, they 
estimated the distribution of above-ground biomass 
carbon stocks in China’s grasslands from 1982 to 
1999. 
Researchers have studied the dynamics variation of 
vegetation in small regions of the Beijing and Tianjin 
sandstorm source control project (He and Lv, 2003; 
Zhang et al., 2012; Zhao et al., 2011). In addition, 
aspects of the project’s engineering, as well as its 
ecological and economic impacts, have been studied 
(Hu et al., 2012; Wang et al., 2007; Wang et al., 2013). 
Several studies have documented the vegetation 
restoration conditions, and few studies have monitored 
grass production using remote sensing technology in 
the Beijing and Tianjin sandstorm source region. In 
this study, we estimated the grass production between 
2000 and 2010 and assessed the impacts of the Beijing 
and Tianjin sandstorm source control project. The 
results provide scientific evidence for ecological 
protection and management. 

2  MATERIAL AND METHODS 

2.1 Study area 

The Beijing and Tianjin sandstorm source region 
stretches from Darhan Muminggan United Banner of 
Inner Mongolia in the west to Pingquan County of 
Hebei Province in the east and from Dai County of 
Shanxi Province in the south to East Ujimqin Banner 
of Inner Mongolia. The region is located at 109°30'-
119°20'E and 38°50'-46°40'N, and it covers 75 
counties (banners, municipalities and districts) of 5 

provinces (autonomous regions and municipalities 
directly under the central government), including 
Beijing, Tianjin, Hebei, Shanxi and Inner Mongolia. 
The total area is 458,000 km2: approximately 700 km 
from east to west and 600 km from south to north. The 
area comprises plains, mountains and plateaus. The 
annual mean temperature is 4-7.5°C and the annual 
mean precipitation is 250-470 mm. Significant 
differences of temperature and precipitation occur in 
different areas. Overall, the project region has a 
temperate continental climate. The natural vegetation 
primarily includes Stipa grandis P. Smirn, Stipa 
krylovii Roshev and Artemisia frigida Willd. 

The study area has 15 grassland types (see Fig. 
1 for the grassland types at a scale of 1:1,000,000), 
such as temperate steppe, temperate meadow steppe 
and temperate desert steppe. The grassland covers an 
area of 401,000 km2 and accounts for approximately 
87.6% of the total land area. The study area is divided 
into four zones based on climate, soil and 
vegetation(Yang et al., 2014): the northern arid 
grassland desertification control zone (NAGDCZ), 
with a desertification area of 27,815 km2; the 
Hunshandake sandy land control zone (HSLCZ), with 
a desertification area of 48,567 km2; the farming-
pastoral area of desertificated land control zone 
(FADLCZ), with a desertification area of 13,712 km2; 
and the water conservation zone of Yan hills and 
mountains (WCZYHM), with a desertification area of 
11,745 km2 (Fig. 1). 

Fig. 1 Spatial distribution of grassland types and 
sampling sites in four zones. 

2.2 Field data 

The ground sample plot data were obtained from the 
authors’ multi-year field survey and the large-scale 
field campaign organized by the Grassland Monitoring 
and Supervision Center Ministry of Agriculture, P. R. 
China, from 2005 to 2010. Sampling occurred at the 
peak of the vegetation growing season, from July to 
August. The size of the sample plots of herbaceous 
plants and stunted brushwood was 1 m×1 m, while 
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that of the sample plots for shrubs was 10 m×10 m. 
The major vegetation species included Leymus 
chinensis Trin., Stipa grandis P. Smirn, Artemisia 
frigida Willd., Reaumuria soongorica Pall. and 
Lespedeza bicolor Turcz.. All herbaceous plants were 
harvested to measure their fresh weight. For shrubs, 
we sorted the plants into three groups according to 
their sizes (large, medium and small) and harvested 
the green parts, along with the branches of the same 
year (Jin et al., 2014). For most of the sampling sites, 
we selected three plots (1 m×1 m) as one sample site; 
the distances between plots were more than 250 m, 
and the areas between the sampling sites were at least 
1 km2. The precise geographical coordinates were 
recorded as field data. Because the quality of the field 
data might influence the accuracy of the models (Yang 
et al., 2007), we conducted strict verification and 
standardization of the field data in accordance with the 
grassland types and the multi-year conditions of the 
sampling plots. Then, we eliminated abnormal data in 
the field dataset to obtain 2,327 field samples (Fig. 1). 

2.3 Remote sensing data 

The remote sensing data were obtained from the 
MOD09Q1 data products on NASA’s website 
(http://modis.gsfc.nasa.gov/). The data were the 8-day 
synthetic reflectivity product data with a spatial 
resolution of 250 m. The data were collected during 
the peak growth period of the grassland from 2000 to 
2010 (from the last ten days of July through the first 
ten days of September). The data were processed by 
the MODIS Reprojection Tools (MRT) software, 
including projection conversion, format conversion 
and mosaicking. Based on the characteristics of the 
study area and biomass studies, we used NDVI as the 
remote sensing data. The NDVI was calculated using 
red and near-infrared bands of MODIS reflectance 
data from 2000 to 2010. The NDVI was calculated as 
follows: 

RNIR

RNIRNDVI
ρρ
ρρ

+
−

=
   (1) 

ρNIR and ρR were the reflectances of the red and near-
infrared bands. 

According to the sampling time and 
geographical coordinates of the field data, we 
calculated the mean NDVI within a circular area of 
each site using geographic information system (GIS), 
with 3-4 pixels per mean NDVI. Then, we built the 
database for the grass production and NDVI within the 
corresponding period. 

2.4 Establishment and verification of estimation 
models  

According to the database of the grass production and 
NDVI from 2005 to 2010, we randomly selected 80% 

of the field data to establish models and 20% of the 
field data to verify the models. We developed 
statistical models using the statistical regression 
method, including the unary linear regression model, 
logarithmic function model, power function model and 
exponential function model. Based on the reserved 
verification data, the MRE and precision were 
calculated to evaluate the models, as shown in 
equations (2)-(3). Finally, we used the determination 
coefficient (R2) and precision to confirm the optimal 
model.  

( )[ ]
N
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MRE iii∑ ′−

=
2

/

   (2) 
( ) %1001 ×−= MREprecision          (3) 

3 RESULTS AND DISSCUSION 

3.1 Model Establishment 

We obtained 1,878 field data to establish models and 
449 field data to verify the models based on the grass 
production and NDVI spatial database. The unary 
linear regression model, logarithmic function model, 
power function model and exponential function model 
were developed using SPSS software. The optimal 
model for remote sensing data and grass production 
was determined with R2 and precision. 

Fig. 2 Relationship between the estimated and the 
actual grass production 

The correlation coefficient of the exponential 
function model was highest in the study region, and R2 
was 0.460. A good relationship existed between the 
estimated and the actual grass production on the basis 
of the exponential model (Fig. 2). Each point was 
distributed within the periphery of the 1:1 line. The 
MRE was 0.288, and the precision of the model was 
71.2%; thus, the model could estimate the grass 
production in the Beijing and Tianjin sandstorm source 
region at the macro scale. Figure 2 showed that the 
low grass production zones were concentrated, while 
the high grass production zones were decentralized. 
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Therefore, the estimation error of the high grass 
production zone was larger than that of the low grass 
production zone. 

3.2 Spatial-temporal distribution of grass production 

Because the model was based on fresh grass yields, the 
actual calculated grass production was converted via 
the conversion factor for the dry-fresh ratio. This 
conversion factor is referenced in ‘Grassland 
Resources of China’ (Veterinary, Department of 
Animal Husbandry, 1996). Based on the optimal 
exponential function model, we estimated the grass 
production in the Beijing and Tianjin sandstorm source 
region from 2000 to 2010 during the peak growth 
season. The average total grass yield was 33,130,000 
tons, and the average unit production was 986.59 
kg/ha. 

Based on the average grass production in the 
Beijing and Tianjin sandstorm source region, obvious 
spatial differences occurred to the grass production 
(Fig. 3). The spatial distribution exhibited a gradual 
increase from the northwest to the southeast. (1) 
Because of the humid climate and the abundant 
rainfall in the water conservation zone of Yan hills and 
mountains, the grassland vegetation had favourable 
growth conditions; the grass production was over 2000 
kg/ha, which was the highest in the study area. The 
average grass production was 2951.3 kg/ha over the 
10-year period. The annual variation of grass 
production was relatively stable (CV=8.53%). After 
the sandstorm source control project of Beijing and 
Tianjin was implemented, the grass production 
increased in the decade and reached a maximum of 
3282.9 kg/ha in 2006. (2) The range of the grass 
production of the farming-pastoral area of 
desertificated landcontrol zone was between 1000 
kg/ha and 2500 kg/ha, and the average grass 
production was 1230.8 kg/ha over the 10-year period. 
The annual variation of grass production fluctuated to 
some extent (CV=15.43%). In this zone, the grass 
production reached a maximum of 1514.7 kg/ha in 
2006. (3) The middle of the Hunshandake sandy land 
control zone had the maximum grass production, 
ranging from 1000 kg/ha to 2000 kg/ha. The western 
part of this zone had lower grass production, i.e., 
below 500 kg/ha. The average grass production was 
930.0 kg/ha over the 10-year period in this zone. The 
annual variation of grass production was larger 
(CV=19.68%). The grass production increased more in 
the intermediate stage of the project than in the early 
stage and declined in the last stage. The maximum 
grass production occurred in 2003, while the minimum 
of approximately 641.5 kg/ha occurred in 2009. (4) 
Because of the arid climate and shortage of rainfall, 
the grass production was the lowest in the northern 
arid grassland desertification control zone, particularly 

in the grassland desertification zone; the average grass 
production was 650.4 kg/ha over the 10-year period. 
The annual variation of grass production greatly 
fluctuated (CV=21.93%). The grass production 
increased from 2000 to 2006; the maximum grass 
production of approximately 866 kg/ha occurred in 
2003. The grass production largely declined from 2007 
to 2010 (excluding the year 2008) and accounted for 
approximately 70% of the average grass production 
over the period.  

Fig. 3 The 11-year-averaged grass production between 
2000 and 2010 

We selected the grassland types with more than 
5000 km2 to analyse the grass production variations in 
grassland types in the Beijing and Tianjin sandstorm 
source region between 2000 and 2010 (Fig. 4). The 
annual grass production fluctuated to some extent. The 
grass production of different grassland types increased 
from 2000 to 2006 and fluctuated from 2007 to 2010. 
Because the northern regions of China suffered severe 
droughts in 2007 and 2009 (Barriopedro et al., 2012; 
Piao et al., 2010), the grass production notably 
declined in 2007 and 2009. The droughts might be one 
of the reasons that the grass production declined 
during the later phase of the project. The grass 
production of warm shrubby tussock was higher than 
the other grassland types. The annual variation of 
warm shrubby tussock was stable (CV=5.6%), and the 
average production of warm shrubby tussock was 
2983.94 kg/ha over the 10-year period. The temperate 
meadow steppe grasslands were the second-most 
productive grassland, with an average production of 
1968.56 kg/ha. The maximum production of these two 
grassland types (i.e., warm shrubby tussock and 
temperate meadow steppe) occurred in 2006. The 
grass production of the temperate steppe and the 
lowland meadow were in the mid-production range. 
The temperate steppe covered the largest area, 
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accounting for 49.5% of the grassland area. The 
average grass production of the temperate steppe was 
792.43 kg/ha, and the annual variation was unstable 
(CV=20.4%). The desert steppe had the lowest grass 
production. The average grass production of the 
temperate steppe desert and temperate desert steppe 
were 233.94 kg/ha and 254.34 kg/ha, respectively. 
Meanwhile, the maximum values of the grass 
production for the temperate steppe, the lowland 
meadow, the temperate steppe desert and the temperate 
desert steppe occurred in 2003. 

Fig. 4 The interannual variation of grass production in 
different grassland types 

4 CONCLUSIONS 

Based on the grassland ground sample plot data in the 
Beijing and Tianjin sandstorm source control region 
and MODIS remote sensing data (NDVI), we 
developed statistical models for grass production. 
Moreover, we explored the spatial-temporal 
distribution of grass production in the Beijing and 
Tianjin sandstorm source control region from 2000 to 
2010. We modelled the grassland growth conditions at 
the macro scale, which provided a reference for the 
evaluation of the project. The results indicated the 
following: (1) The exponential function model 
established with the NDVI and grass production was 
the optimal model. The MRE was 0.288, and the 
precision of the model was 71.2%. The average total 
grass yield was 33,130,000 tons over the project 
period, and the average unit production was 986.59 
kg/ha. (2) The spatial distribution of the grass 
production exhibited obvious differences in which the 
production increased from the northwest to the 
southeast. From the highest to lowest production, the 
areas with grass production were the water 
conservation zone of Yan hills and mountains > the 
farming-pastoral area of desertificated land control 
zone > the Hunshandake sandy land control zone > the 
northern arid grassland desertification control zone. 
(3) Interannual variations of grass production were 
apparent. The grass production presented a stable 
increase from 2000 to 2006, while it fluctuated 

between 2007 and 2010. The interannual variations 
notably differed among the four zones. The production 
of the grassland desertification control zones 
(Hunshandake sandy land control zone and northern 
arid grassland desertification control zone) exhibited 
larger annual variations than the other zones. 

According to the analysis of the grass 
production in the Beijing and Tianjin sandstorm source 
control region over the project period, the grass 
production clearly increased in some areas of the 
region; thus, the project had an important impact. 
Based on the outcome of the first-stage construction of 
the Beijing and Tianjin sandstorm source control 
project, the grassland management must be further 
strengthened. Overgrazing may result in decreased 
vegetation and enhanced wind erosion that restricts the 
recovery of grassland (Shinoda et al., 2011). 
Therefore, the methods of livestock production should 
be effectively improved to cultivate high-quality 
pasture and to assess the livestock carrying capacity in 
the context of grass production and ultimately reverse 
the trend of grassland degradation.  
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Three decades of NOAA-AVHRR data to assess vegetation dynamics in 
the Iberian Peninsula and the Balearic Islands: the IBERIAN NDVI 
dataset.   
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ABSTRACT - We have processed the complete afternoon 1.1-km spatial resolution NOAA – AVHRR daily 
images available since 1981 to develop a NDVI dataset for the Iberian Peninsula and the Balearic Islands. We 
developed an automatic processing approach that includes an accurate calibration using post-launch calibration 
coefficients, geometric and topographic corrections, cloud removal, temporal filtering and bi-weekly composites 
by maximum value composite. We also corrected inhomogeneity between AVHRR/2 and AVHRR/3 by means of a 
cross calibration with the GIMMS3g dataset. The resulting product has been the IBERIAN NDVI dataset, which 
was compared with other existing NDVI products. For this purpose we used the GIMMS3g bi-weekly NDVI with 
8-km resolution, the SMN-VHP weekly product at 4-km pixel resolution and the monthly MODIS NDVI product 
at 1-km of spatial resolution. We chose Mann-Kendall and Theil-Sen tests to calculate the significance of the 
trends and the magnitude of change of the NDVI datasets. We found high resemblance of the seasonal and 
annual NDVI trends from the IBERIAN NDVI and the other three datasets. The IBERIAN NDVI dataset allows 
retrieving NDVI changes at longer temporal coverage (1981 – 2015) than MODIS and higher spatial resolution 
(1.1-km) than GIMMS and SMN. 

1 INTRODUCTION 

Remote sensing data allows extracting spatial and 
temporal information about environmental variables. 
The Normalized Difference Vegetation Index (NDVI) 
reflects the difference of the light absorption by 
vegetation in the red and infrared regions of the 
electromagnetic spectrum (Rouse et al., 1974), which 
is directly related to the photosynthetic activity and it 
provides indirect information on the vegetation 
activity, total biomass and vegetation coverage 
(Tucker, 1979).  

The NDVI is highly useful to assess spatial and 
inter-annual changes in the vegetation activity and it 
has been widely used to assess long term changes in 
vegetation over the past decades (Fensholt, 2012). The 
images from the Advanced Very High Resolution 
Radiometer (AVHRR) data from the National Oceanic 
and Atmospheric Administration (NOAA) polar-
orbiting satellites are the longest and continuously 
available record to monitor vegetation dynamics and 
they have been widely analysed to retrieve NDVI and 
to develop long term databases of this index (Beck et 
al, 2011).  

There are different NDVI datasets available at the 
global scale, obtained from the AVHRR imagery, as 
the Global Inventory Modelling and Mapping Studies 
(GIMMS) (Tucker et al., 2005) or the Mediterranean 

Extended One-Km AVHRR Data Set (MEDOKADS) 
NDVI dataset (Koslowsky and Friedrich, 2005). There 
are also other NDVI products from other sensors as 
the Moderate-Resolution Imaging Spectroradiometer 
(MODIS) on-board the Terra satellite and the Long 
Term Data Record (LTDR), which combines NDVI 
data from different sensors including both the AVHRR 
and MODIS (Dardel et al., 2014).  

Nevertheless, these products usually are affected 
by a low spatial resolution (e.g. 64 km2 per pixel in the 
case of the GIMMS dataset), or they are covering a 
short period (e.g. MODIS since 2000). NOAA-
AVHRR images are available from 1981 at the spatial 
resolution of 1.1 km at the Nadir. We have used this 
data to develop a high spatial resolution and long-
temporal coverage since 1981. 

2 DATA AND METHODS 

Firstly, we processed the NOAA-AVHRR images and 
obtained the called IBERIAN NDVI dataset for 
Iberian Peninsula and the Balearic Islands. Secondly, 
we did a comparison between the new dataset and 
other three NDVI products: the GIMMS3g, the 
Smoothed NDVI (SMN) -both of them were also 
obtained from the AVHRR sensor- and the MODIS 
dataset.  
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2.1 The IBERIAN NDVI dataset 

The IBERIAN NDVI dataset is a set of semi-monthly 
images (two per month) with 1,1-km spatial resolution 
at nadir obtained from the processing of the original 
AVHRR data collected from the High Resolution 
Picture Transmission (HRPT) receiving ground station 
(available at National Institute for Aerospace 
Technology (INTA), Maspalomas, Canary Islands, 
Spain hhttp://www.inta.es/index.asp).  

The processing of approximately 2 Tb of images 
included radiometric calibration with post-launch 
calibration coefficients for the afternoon satellites: 
NOAA-7, 8, 9, 11, 14, 16, 18, and 19 (Rao and Chen, 
1995; NOAA’s User Guide, Roben 2009), inter-
satellite normalization to NOAA-9 (Trishchenko et al., 
2002 and 2009), automatic geometric correction using 
97 Ground Control Points to the European 1979 UTM 
zone 30º (between 35ºN and 44ºN and 11º W and 5ºE), 
visual revision and a non-lambertian topographic 
correction (Teillet, 1982). 

Moreover, a cloud removal process was included: 
the algorithm described in Azorin-Molina et al. 2013 
uses the five bands of the AVHRR sensor and identify 
between cloud, snow-ice and clear ground pixels to 
compute the daily cloud masks. Thereafter, the NDVI 
was obtained using the Channel 1 (Red) and Channel 2 
(Near-Infrared) top-of-the-atmosphere reflectance (ρ), 
according to: 

NDVI = ρNIR – ρRed / ρNIR + ρRed (1) 

Semi-monthly NDVI values were obtained by 
means of a maximum composite method (Huete, 
1985) with the purpose of reducing atmospheric 
effects. Data gaps were filled by means of regression 
models and a fitting correlation procedure using the 
NDVI of the semi-monthly periods before and after 
the date of interest, based on Quarmby et al. (1993) 
and also the semi-monthly series were temporally 
filtered by means of a maximum filter to reduce noise. 

Finally, we deal with the limitations of the 
instruments due to the AVHRR/3 sensor introduced in 
2000 has different characteristics than AVHRR/2. 
Friedrich and Koslowsky (2009) highlight that 
uncertainty in the data obtained from AVHRR 
instruments can be introduced by changes in spectral 
characteristics rather than by real vegetation changes. 
In addition, the authors said that corrections presented 
by Trishchenko are useful to normalize the 
information but are not enough to correct the 
AVHRR/3 characteristics in NDVI time-series. 

In the same line, Pinzon and Tucker (2014) applied 
a correction for the AVHRR instruments to generate 
the GIMMS3g NDVI dataset (1981 – 2015). We 
corrected the inhomogeneity between AVHRR/2 and 
AVHRR/3 in the IBERIAN NDVI dataset by means of 

a cross calibration with the GIMMS3g dataset. We 
only applied the correction for the AVHRR/3 data 
from 2000 to 2015. 

2.2 The AVHRR – GIMMS3g NDVI dataset 

The GIMMS3g product consists in semi-monthly 
maximum NDVI value composite images at 8-km of 
spatial resolution for the period 1981 - 2015. It has 
been corrected for cloud cover, atmospheric 
correction, volcanic aerosols, sensor degradation, 
inter-satellite differences and solar and viewing angle 
effects due to satellite drift (Tucker et al., 2005, 
Pinzon and Tucker, 2014). Data is available at 
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/; 
last accessed October 2017 

2.3 The AVHRR – SMN dataset 

The Smoothed NDVI (SMN) is a product used in the 
calculation of the Vegetation Health Product (VHP), 
which is calculated at a weekly time scale at 4-km of 
spatial resolution. It is available since 1981 but it 
contains temporal gaps. The dataset is smoothed for 
cloud removal and adjusted using the Empirical 
Distribution Function statistical technique in order to 
correct sensor degradation, satellite orbital drift and to 
reduce aerosols (Kogan et al., 2011). 
The dataset is available at 
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh
_ftp.php; last accessed October 2017. 

2.4 The MODIS NDVI dataset 

From the MODIS instrument that starts to work in 
2000 we chose the available monthly NDVI data 
resampled from 250m to 1-km spatial resolution called 
MOD13A3.005. 
(https://lpdaac.usgs.gov/dataset_discovery/modis/modi
s_products_table/mod13a3; last accessed October 
2017). 

2.5 Comparison analyses 

In order to compare the new dataset with the other 
three products, we adapted the IBERIAN NDVI 
dataset as follows:   

a) IBERIAN NDVI was resampled to 8x8km
pixel resolution as GIMMS and the period
1982 – 2014 was selected.

b) IBERIAN NDVI was resampled to 4x4-km
of grid size as SMN. This product has
temporal gaps so we compared only the
common available images for both datasets
during the period 1982 – 2014.

c) IBERIAN NDVI images for the period 2004
– 2014 were selected to compare with the
MODIS NDVI images. Both datasets have 
1x1-km spatial resolution.  

  169

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



The comparison was based on the calculation of the 
annual, seasonal and monthly NDVI averages 
graphically displayed and also on a correlation 
analysis using Pearson’s correlation, for each dataset 
and for all the pixels of the study area. 

Furthermore, we determined the NDVI trends of 
the four datasets. To conduct the trend significance 
(p<0.05) we used the non-parametric Mann-Kendall 
test (Lanzante, 1996) positive values of tau indicated a 
trend of increasing NDVI and negative values 
decreasing NDVI. To identify which areas show the 
major changes we chose the Theil-Sen slope estimator 
(Sen, 1968) to obtain the magnitude of change. The 
results are displayed in annual and seasonal maps that 
allow determining the trend significance of change in 
NDVI for the four datasets.  

3 RESULTS 

In general, all the datasets exhibit an increase in the 
NDVI trends during the last decades for the Iberian 
Peninsula and the Balearic Islands. In figure 1 the 
graphics shown the average NDVI for the entire study 
area and allows comparing the information between 
datasets.  

The evolution of the NDVI over the years is 
shown in figure 1.A. The temporal behaviour of 
average NDVI from the IBERIAN NDVI product (thin 
black line) has a similar trend as the annual NDVI 
averages of the GIMMS (dashed line), MODIS (thick 
grey line) and SMN (dotted line) datasets. All of them 

exhibit an increase in vegetation activity for the 
common period. It is notice that the NDVI temporal 
series from the IBERIAN dataset has the same scale as 
the SMN product but lower than the GIMMS and 
MODIS values.  

The monthly NDVI averages for the whole study 
area (figure 1.B) show similar patterns for three of 
four datasets. The GIMMS and SMN show a pic of the 
vegetation activity on April while IBERIAN monthly 
pic is on May. Alternatively, the MODIS dataset 
exhibits higher average values during the mentioned 
both months and also show higher values on 
December and January. 

Pearson’s annual and seasonal correlations 
between datasets in figure 1.C show the relationship 
between pair of datasets. We used all the pixels of the 
study area from each dataset to observe the general 
temporal behaviour. The highest correlation values are 
found on summer and the lowest on winter. The most 
similar correlations are the annual and autumn ones 
and the less are the winter and spring values. The 
correlation between GIMMS and IBERIAN datasets 
show high annually and seasonally correlation values 
(about 0.8). For the IBERIAN and SMN the 
correlation values are near 0.7 and finally, there is 
more variability in the correlation values between 
IBERIAN and MODIS.  

The resulting spatial patterns of NDVI trends are 
shown in figure 2. In order to simplify the 
interpretation we grouped the information in five 
categories: Significant positive change (dark blue), No 
significant positive change (blue), No significant and 
no change (white), Not significant negative change 
(red), Significant negative change (dark red). 

The annual maps (first column of maps in figure 
2.A, B and C) exhibit a significant increase in NDVI
(mostly in blue) in the majority of the Iberian 
Peninsula and the Balearic Islands for the analysed 
periods 1982 – 2014 (in A and B) and 2004-2014 (in 
C).  

The comparison between IBERIAN and GIMMS 
datasets in figure 2.A  for the period 1982 – 2014 
exhibit that the seasonal resulting maps also show an 
increase in the NDVI trends, predominantly in blue. 
Although there are few local areas in red that exhibit a 
decrease in the NDVI trends as for example in the 
Guadalquivir basin on spring.  

The figure 2.B exhibits the comparison between 
IBERIAN and SMN datasets. There is a good 
adjustment between trends on winter and the 
significance of change differs on spring, summer and 
autumn. The south-western areas of the Iberian 
Peninsula present more negative significant magnitude 
of change on spring in the SMN product and more 
positive significant change on autumn maps than in 
the IBERIAN corresponding maps. 

Figure 1. (A) NDVI annual average. (B) NDVI monthly 
average. (C) Pearson correlation between datasets. 
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Figure 2. NDVI annual and seasonal significant magnitude of change. 
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On the other hand, the summer maps show 
negative significant magnitude of change (red) in large 
part of the territory meanwhile for the IBERIAN 
dataset the results are not significant or have a positive 
significant change. 

Alternatively, the IBERIAN-MODIS comparison 
annual maps for the period 2004 – 2014 in figure 2.C 
show that the main increase of the NDVI values is 
recorded in the south-western part of the Iberian 
Peninsula for the IBERIAN dataset. The main 
decrease is exhibited in some parts of the Ebro and 
Guadalquivir river basins and also in the south-eastern 
part of the Iberian Peninsula. The seasonal maps 
present a good adjustment between the IBERIAN and 
MODIS dataset on autumn, the trends differs on spring 
and summer and does not adjust on winter for the 
northern part of the Iberian Peninsula due to the 
IBERIAN dataset exhibit more negative significant 
changes than MODIS. 

Finally, the figure 3 shows the annual and seasonal 
NDVI significant magnitude of change for the 
IBERIAN dataset at 1,1-km² spatial resolution 
between 1982 and 2014.  

4 CONCLUSIONS 

In this study we have developed a NDVI dataset 
(1981 – 2015) with 1.1 km² resolution. We have 
showed that the processing methods developed and the 
algorithms used with the original NOAA-AVHRR 
images are useful to obtain a dataset that enables 
determining changes in the vegetation activity over the 
last three decades across The Iberian Peninsula and the 
Balearic Islands.  

We have compared the performance of the new 
dataset with the other datasets to identify trends. It is 
notice that the comparison between GIMMS and 
IBERIAN shows the best agreement in the NDVI 
trends. The increases and decreases are found in 
approximately the same areas but the amount of 
significant or not significant trends are more 
accurately localized in the IBERIAN maps.   

The main advantage of the IBERIAN NDVI 
dataset is that allows retrieving changes in the inter-
annual variability of NDVI values at longer and 

continuous temporal coverage (1981 – 2015) than 
MODIS and higher spatial resolution (1.1-km) than 
GIMMS and SMN datasets. 
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ABSTRACT - Land cover and its change are one of the important factors of global environmental change. The 
new GF-2 satellite provides abundant spectral features and texture information, and airborne light detection and 
ranging (LiDAR) provides accurate three-dimensional coordinates at a finer scale. Fusing these data has the 
potential to improve land cover classification. In the article, we selected the random forest (RF) as a classifier. 
The spectral bands of GF-2, normalized difference vegetation index (NDVI), normalized digital surface model 
(nDSM) derived from LIDAR data, and their gray-level co-occurrence matrix (GLCM) textures including mean, 
variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation were generated to create 
seven scenarios with different combination of RF input variables. We estimated the classification performance on 
GF-2 data, compared and assessed the individual and combined contributions of GF-2 and LiDAR data with 
regard to classification accuracy using fusion data. GF-2 data alone or the fusion of GF-2 data and other 
sources can provide relatively good classification mapping accuracy in complex urban environments. The 
classification accuracy of fused data from the GF-2 and LiDAR data exceeded those of GF-2 or LiDAR data 
alone. GLCM textures significantly improved the classification performance whether in GF-2 data or LiDAR 
height data. A fusion of GF-2 data, NDVI, LiDAR data and their texture features (102 RF variables) achieved the 
best classification accuracy in seven scenarios. Total accuracy and kappa coefficient were 93.32% and 0.91, 
respectively. Almost all classes in producer’s accuracy and user’s accuracy were greater than 90%. 

1 INTRODUCTION 

Land cover refers to the surface covering of Earth 
under the influences of both natural and the man-made 
factors. Land cover and its changes caused by human 
exploitation of land resources are one of the important 
factors of global environmental change. Dynamically 
monitoring land use and land cover is always a hot 
topic (Salehi et al. 2012; Yan, Shaker, and El-
Ashmawy 2015). 

In previous studies, high or very high spatial and 
spectral resolution optical satellite sensors (such as 
QuickBird, SPOT, WorldView, GeoEye, and the 
GaoFen-1) or the fusion of these and LiDAR data have 
been reported to be used in land cover mapping of 
urban, agricultural, forest, wetland environment, and 
so on (Chen et al. 2009; Duro, Franklin, and Dubé 
2012; Agarwal et al. 2013; Rasel et al. 2016; Fu et al. 
2017). The GF-2 satellite as the first civilian optical 
remote sensing satellite with a resolution superior to 1 
m was independently developed by China and has 
made it possible to identify complex terrestrial 
features with high accuracy (Li et al. 2016; Wang, 
Wang, and Wu 2016). Although the data from this 
satellite is relatively new, some studies have already 
estimate its performance of land cover classification at 
present (Zhang et al. 2017; Uamkasem, Huang, and Bi 
2017; Zheng et al. 2017). However, few studies have 

compared and assessed the classification performance 
based on GF-2 and LiDAR data alone or fused data 
from both or fused data from GF-2, LiDAR data with 
their textures. 

In the article, we selected one of machine learning 
algorithms-RF as a classifier. The spectral bands of 
GF-2, NDVI, nDSM derived from LiDAR data, and 
their textures including mean, variance, homogeneity, 
contrast, dissimilarity, entropy, second moment and 
correlation, were generated to create different 
scenarios with different combination of RF input 
variables. Based on these study data, we respectively 
compared the classification map accuracy of seven 
scenarios using the total accuracy and class-level 
accuracies as metrics. This study aims to provide a 
reference for the efficient improvement of land cover 
classification and offer support for extending the 
applications of classification algorithms and data 
sources. 

2 MATERIALS AND METHODS 

2.1 Study area 

The study area is located in Xuchang City, Henan 
Province, China (Figure 1). It contains numerous 
natural landscapes and artificial structures, including 
vegetation, buildings and roads. The city has a warm 
temperate and sub-humid monsoon climate with 
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abundant heat resource and sufficient sunlight, and it 
is characterized by spring droughts that increase sand, 
hot summers with rainfall concentrations, fine 
autumns with extended sunshine, and cold winters 
with little rain and snow. The mean annual temperate 
is 15°C, and the mean annual precipitation is 700 mm. 

Figure 1 Location of the study area 

2.2 LiDAR data 

The raw LiDAR data for this study was acquired using 
a Riegl VZ-1000 LiDAR scanner system mounted to a 
fixed wing aircraft on March 16, 2016. The system 
recorded a single pulse return and intensity. The 
density of the point cloud for the study area was 8 
points per m2. The horizontal and vertical resolutions 
of the point clouds were 0.38 m and 0.4 m, 
respectively. The final LiDAR point clouds were all 
georeferenced to the Universal Transverse Mercator 
(UTM) Zone 49N/WGS-84 projection coordinates 
system. 

We first removed noise points (low, isolated and air 
points) via filtering. Then, the point clouds were 
classified into non-ground and ground points using 
Terrasolid software. The ground and all points were 
respectively interpolated into a digital elevation model 
(DEM) and digital surface model (DSM) with 1 m 
resolution using ArcGIS software. A normalized 
digital surface model (nDSM) was created though 
raster calculation subtracting DEM from DSM. 

2.3 Satellite GF-2 and ancillary data 

GF-2 was the first civilian optical remote sensing 
satellite with a resolution superior to 1m, and it was 
independently researched and developed by China. 
GF-2 was successfully launched on August 19, 2014. 
It is equipped with two multispectral scanners, 1 m 
panchromatic and 4 m high resolution, respectively.  

We obtained one scene from the GF-2 image data 
corresponding to the study area. The image contains 
both panchromatic and multispectral bands and was 
acquired on February 16, 2017. The pre-processing 
applied to the GF-2 images included radiometric 
calibration, atmospheric correction, and 
orthorectification. The above three processes were 
implemented using ENVI software. Atmospheric 
correction was performed using the Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) module. Thus, the digital numbers (DN) of 
the raw images were converted into real reflectance 
values. Then, we respectively performed 
orthorectification of the panchromatic and 
multispectral bands using an RPC Orthorectification 
module. In addition, the multispectral bands were pan-
sharpened with the panchromatic band using the 
Gram-Schmidt Pan-Sharpening model to generate 
Very-high-resolution (VHR) multispectral images at 1 
m resolution. Finally, we selected the nDSM derived 
from the LiDAR data as a reference image for VHR 
multispectral images registration and resampling to 
achieve a total root-mean-square error of less than one 
pixel. The data were spatially subset to include only 
the study area. The normalized difference vegetation 
index (NDVI) was then calculated from the VHR 
multispectral images by Equation (1). 

RR
RR

REDNIR

REDNIRNDVI
+

−
=

  (1) 
where RNIR and RRED are the reflectance value in the 

near-infrared bands and the red bands of GF-2, 
respectively. 

2.4 Textural Analysis 

In this study, 8 GLCM textures from GF-2 bands 
(blue, green, red and near-infrared bands), ancillary 
data (NDVI) and LiDAR-derived height data (nDSM), 
including mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment, correlation, 
were calculated for classification. After a number of 
experiments, the window sizes with the best 
performance were selected for the subsequent 
classifications, including 7×7 pixels, 9×9 pixels. 
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2.5 Random Forest classifier 

A random forest is an ensemble of classification trees 
in which each tree contributes with a single vote for 
the assignment of the most frequent class to the input 
data (Breiman, 2001; Rodriguez-Galiano and Chica-
Olmo 2012). Random Forest algorithm efficiently runs 
on large data sets and handle thousands of input 
variables. RF assesses the importance of input 
variables based on the permutation importance 
measure, which has been shown to be a reliable 
indicator in classification (Guo et al. 2011). The RF 
model requires two important parameters during 
execution: the number of variables in the random 
sampling used at each split to grow a decision tree 
(mtry) and the numbers of decision tree (ntree). The 
mtry parameter is not critical and is often set to the 
square root of the number of inputs (Guo et al. 2011). 
The ntree parameter values was set to the upper limit 
of 1000 because that value has been shown to be 
effective for many RF applications (Diaz-Uriarte and 
Andrés 2006; Gao et al. 2015). In this paper, we 
optimized the ntree and mtry parameters to improve 
the RF classifier efficiency based on the OOB (out-of-
bag) error values. The RF model was performed using 
R project here. 

2.6 Data fusion 

We fused the GF-2 multispectral image data, its 
ancillary data (NDVI), nDSM and their 8 texture 
features to assess differences in classification accuracy. 
We used layer-stacking to combine abovementioned 
data sources into eight scenarios of composite images: 
(1) scenario 1: 4 input variables generated by the GF-2 
multispectral data (blue, green, red and near-infrared 
bands); (2) scenario 2: 5 input variables generated by 
the GF-2 multispectral data and its ancillary data 
(NDVI); (3) scenario 3: 85 input variables generated 
by the GF-2 multispectral data, its ancillary data 
(NDVI), their texture features (7×7 pixels) and their 
texture features (9×9 pixels); (4) scenario 4: 1 input 
variable generated by the nDSM; (5) scenario 5: 17 
input variables generated by the nDSM, its texture 
features (7×7 pixels) + its texture features (9×9 pixels); 
(6) scenario 6: 6 input variables generated by the GF-2 
multispectral data, its ancillary data (NDVI) and 
nDSM; (7) scenario 7: 102 input variables generated 
by the GF-2 multispectral data, its ancillary data 
(NDVI), nDSM, their texture features (7×7 pixels) and 
their texture features (9×9 pixels).  

2.7 Accuracy assessments 

The scenes of the study area contain imbalanced 
classes: building, pavement/road and tree are 
predominant land cover types, while grass and 
cropland are minor classes. The available reference 

samples of six classes were randomly selected (see 
Table 1). 70% of samples were used as training data 
for RF model, the other 30% were used as testing data. 
A confusion matrix was used to evaluate the accuracy 
of the classification results. Based on the 
abovementioned scenarios, we differentiated between 
six classes, namely, building, pavement/road, tree, 
grass, cropland and shadow. 

Table 1 The total numbers of training and testing 
samples for the six classes 

Class Total samples (pixels) 
Building 2495 

Pavement/Road 
Tree 
Grass 

Cropland 
Shadow 

2020 
2141 
684 
172 

1529 

3 RESULTS 

In this study, we used the grid search approach based 
on the OOB error values to optimize the mtry and 
ntree parameters in the abovementioned scenarios 
(Eisavi et al. 2015). When OOB error rate was lowest 
in every scenario, we selected the mtry and ntree 
parameters (the optimum values) to run the RF model. 
Based on the total classification accuracy and kappa 
coefficient, scenario 7 outperformed the other 
scenarios (see Table 2). Total accuracy and kappa 
coefficient of scenario 7 were highest, 93.32% and 
0.91, respectively. Land cover discrimination at the 
class level revealed general uptrends with fusion data 
using GF-2, NDVI, LiDAR and textures (see Table 3). 

Table 2 Comparison of total accuracy and kappa 
coefficient among the scenarios 

Scenario Total Accuracy 
(%) 

Kappa 
Coefficient 

1 76.86 0.70 
2 77.11 0.71 
3 83.33 0.79 
4
5
6 
7 

57.59 
80.13 
89.97 
93.32 

0.44 
0.74 
0.87 
0.91 

Comparing scenario 1 with scenario 2, the total 
accuracy increased from 76.85% to 77.10%, kappa 
coefficient increased from 0.70 to 0.71. Compared to 
scenario 1 and scenario 2, scenario 3 yielded good 
results, with a total accuracy of 83.33% and kappa 
coefficient of 0.79. The producer’s accuracy and user’s 
accuracy on building, road, tree, grass and shadow 
classes showed larger increases. Cropland was 
precisely identified in all three scenarios, the 
producer’s accuracy and user’s accuracy were 100% 
and showed no changes (see Table 2 and 3). 

  176

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Table 3 Comparison accuracy of scenarios at the 
class-level  

Scenario Class Producer’s 
accuracy 

 (%) 

User’s 
accuracy 

(%) 
1 

2 

3 

4 

5 

6 

7 

Building 
Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 
Building 

Road 
Tree 
Grass 

Cropland 
Shadow 

77.07 
69.42 
79.29 
51.87 
100.00 
91.65 
78.67 
71.04 
75.99 
50.25 
100.00 
91.72 
82.80 
78.28 
88.57 
55.56 
100.00 
94.18 
74.02 
94.44 
59.08 
0.99 
0.00 

10.71 
95.36 
76.24 
89.29 
30.00 
69.44 
70.74 
92.27 
92.16 
87.38 
75.69 
100.00 
92.52 
95.67 
94.28 
92.22 
83.66 
100.00 
93.31 

78.24 
70.23 
73.24 
64.53 
100.00 
89.92 
79.67 
71.77 
74.96 
60.61 
100.00 
84.38 
85.17 
78.96 
77.82 
87.59 
100.00 
90.66 
71.41 
51.15 
57.06 
100.00 
0.00 

35.29 
94.61 
69.65 
90.50 
50.81 
38.46 
70.59 
95.02 
92.16 
84.74 
80.88 
97.87 
89.72 
97.46 
92.72 
93.73 
79.72 
100.00 
92.34 

In comparison, the classification results from 
scenario 4 were sufficiently poor, the total accuracy 
and kappa coefficient were only 57.59% and 0.44, 
respectively. The classification accuracy of cropland 
was the lowest in all the scenarios. The total accuracy 
from scenario 5 was 22.54% higher than that of 
scenario 4, and the kappa coefficient was 0.30 higher. 
Comparing scenario 4 to scenario 5, the producer’s 
accuracy of building increased from 74.02% to 

95.36%, and the user’s accuracy increased from 
71.41% to 94.61%, respectively. The improvement in 
producer’s accuracy exceeded 29.01% for grass, 
30.21% for tree, 60.03% for shadow and 69.44% for 
cropland, while the producer’s accuracy for road class 
decreased by 18.20%. The improvement in user’s 
accuracy exceeded 18.50% for road, 33.44% for tree, 
35.30% for shadow and 38.46% for cropland, however, 
the grass class accuracy decreased sharply, from 100% 
to 50.81%. 

The total accuracy and kappa coefficient for 
scenario 3 was higher than that for scenario 5. 
Comparing scenario 5 to scenario 3, the total accuracy 
increased from 80.13% to 83.33% and kappa 
coefficient increased from 0.74 to 0.79, respectively. 
Increases in the producer’s and user’s accuracies were 
realized for road, grass, cropland and shadow classes. 
However, building and tree classes showed decreases 
in the producer’s and user’s accuracies.  

Scenario 6 produced a higher total accuracy 
(89.97%), improving on scenarios 2 and 4 by 12.87% 
and 32.38%, respectively. The kappa coefficient 
showed increase of 0.16 and 0.43, respectively. The 
producer’s accuracy and user’s accuracy at the class-
level were greater than 80% except for grass class, 
where the producer’s accuracy was 75.69 %. 

Scenario 7 resulted in better performance than 
scenario 6, with 3.35% and 0.05 increases in total 
accuracy and kappa coefficient, respectively. The 
producer’s accuracy and user’s accuracy for building, 
road, tree, cropland and shadow classes were greater 
than 90%, which was an improvement compared to 
scenario 6. While grass was less than 85%, the 
producer’s accuracy increased by 7.97%, the user’s 
accuracy decreased slightly 1.16%. Scenario 7 was 
applied to a RF model for land cover mapping (see 
Figure 2). 

Figure 2 Land cover mapping based on the RF 
classifier 
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4 DISCUSSIONS 

A comparison of the results listed in Section 3 showed 
that GF-2 multispectral data or fusion of GF-2 data 
and others sources can provide relatively good 
classification mapping accuracy in complex urban 
environments, where such data had the advantage to 
discriminate spectral difference among land covers, in 
particular distinguish shadow from cropland and grass. 
Compared to other VHR optical satellite sensors, for 
example, Chen et al. (2009) estimated urban land 
cover classification accuracy using QuickBird imagery 
only based on pixel-based classification method, 
resulting in a total accuracy and kappa coefficient of 
69.12% and 0.6219, respectively. Hamedianfar et al. 
(2014) assessed the classification of urban areas based 
on both LiDAR data and WorldView-2 imagery using 
the support vector machine (SVM) and maximum 
likelihood (ML) methods. The ML and SVM 
classifications yielded overall accuracies of 72.46% 
and 75.69%, respectively. Besides, fusing nDSM data 
and its texture features exhibited the performance for 
discriminate classes that vertical difference was 
obvious, such as building and tree. 

The GLCM texture significantly improved the 
classification performance when using in GF-2 
satellite data or LiDAR height data. This finding was 
consistent with those of other studies, where texture 
features are commonly adopted in satellite remote 
sensing to improve the classification accuracy (Yan, 
Shaker, and El-Ashmawy 2015). 

Compared to the other scenarios, LiDAR data alone 
yielded poor classification results. For example, 
cropland was not completely separable from other 
classes. The reason may have occurred because the 
structural differences were not distinct when the 
LiDAR data was collected in February. Therefore, we 
may conduct a further comparative study if LiDAR 
data are acquired during the growing season in future. 
The results also highlighted the importance of 
integrating optical remote sensing data (Singh et al. 
2012); the results obviously showed that cropland was 
precisely identified in scenario 1 and 2 while 
achieving a producer’s accuracy and user’s accuracy 
of 100%. It demonstrated that GF-2 performs 
extremely well in distinguishing cropland from other 
classes. 

The classification accuracy from using GF-2 
satellite and LiDAR fusion data exceed that from 
using GF-2 or LiDAR data alone, resulting in a total 
accuracy and kappa coefficient of 89.97% and 0.87, 
respectively, and in classification accuracies on most 
classes above 80%. The use of LiDAR data was 
complementary for land-cover classification 
applications and improved classification accuracy 
(Singh et al. 2012; Yan, Shaker, and El-Ashmawy 
2015; Wu et al. 2017). In addition, as seen in Table 3, 

large net increases in producer’s and user’s accuracies 
were realized for most classes, this demonstrated that 
nDSM can efficiently help in differentiating between 
classes in which vertical features are relatively 
obvious (Singh et al. 2012).  

The fusion of the GF-2 multispectral data, NDVI, 
LiDAR data and texture features results in the best 
classification accuracy in all scenarios. The producer’s 
accuracy and user’s accuracy of all classes (except for 
grass) were greater than 90%. This result seems to 
indicate that multi-source data fusion is a feasible 
solution for improving land cover classification. 
However, it also involves greater dimensionality and 
increased data volume. This phenomenon was also 
found in previous studies (Singh et al. 2012; Gao et al. 
2015). Further studies should quantify the 
computational time and assess the efficiency of using 
increased amounts of data in urban classification. 

5 CONCLUSIONS 

In this study, we first estimated the potential 
classification accuracy of GF-2 satellite data using a 
RF classifier, found that GF-2 multispectral data or 
fusion of GF-2 data and other sources result in 
relatively good classification mapping accuracy in 
complex urban environments. Then, we compared 
classification accuracies for nDSM alone and fusion 
data of nDSM and its texture features, found that the 
latter performed better than the former. The total 
accuracy of both were poorer than fusion data of GF-2 
data and its texture features. However, fusion data of 
nDSM and its texture features enhanced the ability to 
discriminate between classes with obvious vertical 
difference: in particular, building and tree. Meanwhile, 
our results suggested that GLCM textures can 
significantly improve land cover classification 
performance whether using in GF-2 satellite data or 
LiDAR height data. The fusion of GF-2 data and 
nDSM yielded higher results than either GF-2 or 
LiDAR height data alone. Fusing GF-2 data, nDSM 
and their texture features produced the highest total 
accuracy (93.32%), improving on fusion data of GF-2 
data and nDSM by 3.35% and resulting in a producer’s 
accuracy and user’s accuracy on most classes of 
greater than 90%. 
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The aim of this work is to evaluate the MODIS daily snow albedo product MOD10A1 at a site on Livingston 
Island, Antarctica. Although there are albedo maps of Antarctica, they have a spatial resolution of 5 km. In 
addition, the daily MOD10A1 snow product has not been tested on Antarctica yet. The MOD10A1 daily product 
provides: cover type (snow, ice, land, cloud), snow cover fraction, snow albedo and a quality factor, at 500-m 
spatial resolution. The cloud mask of MOD10A1 was compared to in-situ cloud index data, and to data obtained 
from the NDSI of Landsat 7 and Landsat 8 images and assessed using four quality indices: proportion correct, 
false alarm ratio, hit rate and frequency bias. Finally, the temporal evolution of the albedo was analysed, based 
on the daily values and the monthly maximum values, comparing MOD10A1 albedo data to in-situ data. The 
results show that MOD10A1 on Livingston Island has a similar behaviour to that described for Greenland. 
MOD10A1 cloud mask can be used for the detection of clouds, although it does not always provide optimal 
results. As for the temporal evolution of the albedo, MOD10A1 on Livingston Island shows the expected increase 
of albedo during winter and a decrease of albedo during summer, but exhibits a greater variability than in-situ 
data.  

1 INTRODUCTION 

Permafrost is one of the elements most affected by 
global warming. The permafrost active layer thickness 
functions as an essential element in the formation of 
various forms of periglacial landscapes (de Pablo, 
2016). The PERMASNOW project (Characterization 
of snow cover and its effects on the thermal evolution 
of frozen soils on Livingston and Deception Islands 
(Antarctica)) studies the influence of the snow cover 
on the permafrost active layer thickness. We intend to 
characterize the snow cover using satellite data, in 
particular, albedo data. The albedo is one of the key 
factors in climate change, especially in polar areas. 
The albedo decrease causes an increase of solar 
radiation absorption, and therefore a heat absorption 
increase and ice layer decrease (Moritz, 2002). The 
snow albedo depends on the snow state: when the 
surface of snow or ice begins to melt, the albedo 
decreases. In addition, the range of albedo values may 
indicate differences between sea ice types (Seo, 2016). 
Also, snow albedo generally decreases with snow 
aging, which allows to snowfall events. Although the 
research on snow albedo in the North hemisphere is 
abundant, few studies have focused on Antarctica, 

probably because of its extreme climatic conditions. 
Monthly and annual albedo changes between 1982 and 
1998 in the Arctic Ocean, the Kara and Barents Seas, 
the Greenland Sea, the Labrador Sea, Hudson Bay, and 
the Canadian archipelago have been analyzed using 
NOAA AVHRR data (Laine, 2004). The albedo has 
also been used to evaluate the energy balance (Foley, 
2005). MODIS data have been available since 2000 
and there have been numerous terrestrial, oceanic and 
atmospheric studies based on the data. However, 
MODIS snow products accuracy should be studied to 
optimize their use (Hall, 2007). A snow albedo 
algorithm has been developed (Klein, 2002), which 
was incorporated in the processing of Terra and Aqua 
MODIS snow products (MOD10A1 and MYD10A1, 
respectively). MODIS snow albedo products have 
been compared to in-situ data over Greenland: 
(Stroeve, 2005; Moustafa, 2015). It has been shown 
that MODIS MOD10A1 albedo product over 
Greenland exhibits the same seasonal variability as in-
situ data although it presents occasional problems with 
the detection of clouds (Stroeve, 2006). Snow depth 
and snow duration have been investigated in Colorado, 
USA, comparing MODIS data with in-situ data 
(Malik, 2012). Moreover, an albedo database for the 
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Arctic Archipelago Svalbard has been created for the 
period 1979-2015 with MODIS albedo values (Möller, 
2014). The albedo spatial and temporal variation has 
also been investigated on the Arctic with Melt Pond 
Detection (MPD) for MERIS (Medium Resolution 
Imaging Spectrometer) satellite data (Istomina, 2015). 

Regarding Antarctica, the albedo has been 
analyzed in five sectors around Antarctica (Laine, 
2008): the Weddell Sea, the Indian Ocean, the Pacific 
Ocean, the Ross Sea and the Bellingshausen-
Amundsen Sea. The study of the long-term variability 
of albedo and its correlation with climatic variables on 
this polar zone has also been carried out (Seo, 2016), 
and different trends have been found depending on the 
region: positive in the eastern zone but negative in 
most part of the west. All these studies were carried 
out using AVHRR data of 5 km spatial resolution. 

As a summary, previous results show that, first, 
there are albedo maps of Antarctica at 5 km resolution, 
and secondly, there is a MODIS daily snow albedo 
product with a spatial resolution of 500 m, but it has 
not been evaluated on Antarctica yet. It is our aim to 
investigate if this product can be used over Antarctica. 

2  MATERIALS AND METHODS 

2.1 Study area 

The study area is located on Livingston Island, in the 
South Shetland Islands (SSI) Archipelago in 
Antarctica. Livingston Island (974 km2) is 110 km 
northwest of Cape Roquemaurel in Antarctica, 90 % of 
the island surface is permanently covered with ice and 
only the west region and some coastal areas are snow 
free during the summer.  There are two Spanish 
Antarctic stations on Livingston Island: Juan Carlos I 
(JCI) and Johnson Glacier (JG). Both stations are 
1500 m apart, Juan Carlos I is 50 m from the coastline, 
Johnson’s Glacier is inland. JCI was opened in the 
summer of 1987-88 and is currently located at 62 ° 39 
'48' 'S, 60 ° 23' 19 '' W, 13 m above sea level (Bañón, 
2016). JG is provided with an automatic weather 
station (AWS) Campbell CR3000 and was installed in 
December 2006 at the Johnson Glacier. It was initially 
located at 62º 40 '16''S, 60º 21 '51''W, 178 m altitude. 
In January 2015 this AWS was transferred to the Hurd 
Glacier. JCI data indicates an average annual 
temperature of -1.2 ° C, with maximum values 
exceeding 0 ° C throughout the year, and minimum 
temperatures of -22.6 ° C in winter. The mean annual 
relative humidity is 83%, the average pressure is 
relatively low (988.7 hPa) and the average rainfall 
days (mainly solid, in the form of snow or granular 
snow, although in the summer liquid precipitations 
may be frequent) per year is 162. This conditions 
make Livingston Island a favorable environment for 
monitoring the permafrost active layer in Antarctica.  

2.2 In-situ data 

Average daily albedo was measured by a KIPP-
ZONEN CNR-1 pyranometer. In-situ radiation data to 
determine cloud cover were obtained from JCI, which 
provides diffuse, direct and global radiation every 30 
minutes. This station is equipped with KIPP-ZONEN 
CM11 sensors (for global and diffuse radiation) and 
KIPP-ZONEN CH1 (for direct radiation). JG provides 
only global radiation values. Solar zenith angle (SZA) 
filter was applied to the data: days for which SZA > 
75º were eliminated (Wang, 2011). Diffuse and direct 
radiation data have already been used to study daily 
and annual albedo variations in Antarctica and the 
Arctic (Wang, 2011). In the present study, the mean 
daily cloud index was calculated using daily mean 
values of dif and dir using the equation:  

clr=dif / (dif + dir) (1) 

In previous studies, a day was classified as cloud-
covered if clr > 0.7 (Wang, 2011). In this work we 
assume that the cloud index calculated with JCI data 
can be used to characterize the JG location (Manuel 
Bañón García, private communication). 

2.3 Satellite data 

MODIS MOD10A1 product data was downloaded 
from the Google Earth Engine page. The data used in 
this work corresponds to the pixel on which JG is 
placed, since the pixel where JCI is located includes 
water surface, providing misleading results. A total of 
1546 snow albedo values were obtained from 
December 2006 to January  2015. We also obtained 22 
Landsat 7 and 62 Landsat 8 whose dates coincided 
with the days in which MODIS data were available. In 
this work we are concerned with the daily snow 
product MOD10A1 evaluation. This product provides 
type of cover (snow, cloud or other), snow cover 
fraction, snow albedo value and a quality factor of the 
product generated. Two filters were applied: 
MOD10A1 quality filter (Snow_Spatial_QA Field) 
and the SZA filter as in the in-situ data. All the data 
with QA ≠ 0 were eliminated. With the resulting data, 
the albedo daily behavior is represented and analyzed. 
In order to evaluate the MOD10A1 cloud mask, the 
results obtained were compared to the standardized 
method based on the NDSI (Normalized Difference 
Snow Index) using Landsat 7 and Landsat 8 images. 
Landsat 7 and Landsat 8 were converted to TOA 
reflectance. Subsequently, the DOS (Dark Object 
Substraction) algorithm was applied. Dark pixels were 
selected from the Drake Pass or Hoces Sea, because 
they have depths above 4000 m in several areas. Then, 
the (NDSI) was calculated (Dozier, 1989; Hall, 1995). 
This index is based on the fact that snow is highly 
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reflective in the visible, but it reflects very little in the 
SWIR. For Landsat 8 data, the mean value of the 
NDSI was calculated on a 17×17 window centered at 
the Landsat pixel where JG was located in order to 
obtain the same pixel size as MODIS (500 m). It was 
not possible to calculate the mean value in the case of 
Landsat 7, due to the presence of the well-known no 
data stripes. NDSI threshold values have been used to 
discriminate cloud and snow. A threshold of 0.4, above 
which the pixel is classified as snow, has been 
proposed (Hall, 1995). Other authors (Park, 2016) take 
0.6 as a threshold based on the fact the optimal 
threshold of the snow cover varies depending on the 
season of the year in a range between 0.4 and 0.6 
(Vogel, 2002). Landsat's official website indicates that 
pixels with NDSI < 0.7 should be classified as cloud. 
In this article, for the comparison of the MODIS cloud 
mask versus Landsat 7 and Landsat 8, two thresholds 
were selected: 0.4 and 0.7.  

2.4 Data processing 

Four quality indices used for the cloud mask 
performance (Jolliffe, 2003). Proportion correct, False 
alarm ratio, Hit rate, and Frequency bias. Regarding 
the albedo, a 16-day window moving average was 
applied on both satellite and in-situ data. We also 
calculated MOD10A1 and in-situ data standard 
deviation, as previously done in the evaluation of 
MOD10A1 product on Greenland (Stroeve, 2006). In 
our work, the standard deviation was calculated every 
15 days. We also calculated monthly maximum values. 
We selected the maximum value and not the mean 
value, because the data showed a great dispersion 
when approaching winter. Two temporal series were 
then obtained: MOD10A1 monthly maximum values  
and in-situ monthly maximum values. Subsequently, 
temporal series components were analyzed. For this 
article we analyzed the trend, which shows the 
movement of the series in the long term, and seasonal 
variations or seasonality, which indicate the 
fluctuations contained in the series with a duration 
equal to or less than one year. 

3 RESULTS AND DISCUSSION 

3.1 Cloud mask performance 

Quality indices for MOD10A1 vs in-situ data are 
given in Table 1. From the total number of days 
between December 1, 2006 and January 25, 2015 
(2978) there are 1546 with MOD10A1 data, 557 days 
with in-situ data and 464 days with both in-situ and 
MOD10A1 data. The best MOD10A1 hit rate is 
obtained for the threshold values 0.5 and 0.7. 
However, 0.5 threshold is also the highest false alarm 
ratio. The false alarm ratio diminshes when increasing 
clr. On the other hand, the probability of MODIS 

detecting clouds is in all cases above 75%, so we 
conclude that MOD10A1 cloud mask can be used for 
the detection of clouds on Livingston Island, although 
the results are not optimal, as already noted in 
Greenland (Stroeve, 2006). The best clr threshold 
seems to be 0.5, in agreement with the value used 
before by other authors (Wang, 2011). 

Table 1: Cloud mask quality indices results for 
MOD10A1 vs in-situ measurements. 

Quality Indices clr thresholds 
0.5 0.7 0.9 0.99 

Proportion correct (%) 78.2 72.8 58.8 40.1 
False alarm ratio 0.85 0.74 0.59 0.39 
Hit rate 80.7 81 80.1 76.8 
Frequency bias 0.85 0.95 1.26 2.2 

Quality indices for MOD10A1vs Landsat 7 are 
shown in Table 2.  

Table 2: Cloud mask quality indexes results for 
MOD10A1 vs Landsat 7. 

Quality index NDSI threshold 
0.4 0.7 

Proportion correct (%) 59.1 63.6 
False alarm ratio 0.2 0.8 
Hit rate 90 76.5 
Frequency bias 1.7 1.0 

The results indicate that the hit rate for a NDSI 
threshold of 0.4 is higher than for 0.7, although in both 
cases this index exceeds 75. The false alarm rate 
approaches 0. The proportion correct is around 60% 
for both threshold values. In summary, these results 
show that cloud detection on Livingston Island using 
the MOD10A1 cloud mask is very similar to cloud 
detection using Landsat 7 NDSI, especially for a NDSI 
threshold of 0.4. 

Quality indices for MOD10A1 vs Landsat 8 are 
shown in Table 3. 

Table 3: Cloud mask quality indices results for 
MOD10A1 vs Landsat 8. 

Quality index NDSI threshold 
0.4 0.7 

Proportion correct (%) 67.7 74.2 
False alarm ratio 0.4 0.6 
Hit rate 82 78 
Frequency bias 1.2 0.9 

. 
The proportion correct is higher than 60 % for both 
thresholds, exceeding 70 % for 0.7 threshold. In 
contrast, the 0.4 threshold gives a higher hit rate and a 
lower value in the false alarm ratio. Although the 
frequency bias is close to 1 for 0.7 threshold, the 
difference with the 0.4 threshold is only 0.1. For a 
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NDSI threshold of 0.4, cloud detection using 
MOD10A1 cloud mask produces nearly the same 
results as using Landsat 8 NDSI.  

3.2 Albedo time series 

The temporal evolutions of in-situ and MOD10A1 
daily albedo are show in Fig. 1. There are long time 
spans without data. In addition to the missing data in 
the original series, the application of the quality filter 
and the SZA filter increased the number of days 
without data significantly, especially in the winter 
season, making the analysis even more difficult. In 
fact, there are no data from the months of May, June 
and July. It can be observed that both in-situ and 
MOD10A1 show an increase in albedo values when 
approaching winter, which are usually above 80% and 
a decrease in summer, where they are usually below 
70%. We analyzed the time series from the monthly 
maximum values, and the trend and the seasonality 
components were obtained (Fig. 2). The in-situ data 
show monthly maximum albedo values in the range of 
60% to 100%. The trend does not show a clear pattern, 
while seasonality shows a decline in albedo in the 
summer, with values ranging from less than 5% to 
more than 10% below the annual average. In the 
winter there is an increase of up to 5% above the 
annual average. It is worth noting that MOD10A1 
albedo exhibits a similar behavior to in-situ data. 
Monthly values also fluctuate between 60% and 100%, 

but more dispersion is observed than in the in-situ 
data. The trend of MOD10A1 albedo does not show 
any apparent pattern, and seasonality shows the same 
pattern as in-situ data: a decrease in albedo values in 
the summer, and an increase in winter. 

To complete the albedo daily behavior analysis, 
the standard deviation was calculated, in order to 
determine the variability. As can be seen in Fig. 3, the 
standard deviation is higher when we approach winter 
while it decreases in the summer. The lowest average 
values of standard deviation are found in the period 
from October to March.  In addition, the average 
standard deviation of MODIS albedo values is 7.3 
while in-situ albedo values show an average standard 
deviation of 5.0, which shows that MOD10A1 
presents greater variability than in-situ data, a result 
similar to that obtained on Greenland (Stroeve, 2006), 
where it was found that MOD10A1 tracks the seasonal 
variability in the albedo but presents a greater 
variability than that observed in the terrestrial stations. 
Moreover, the results obtained in the albedo analysis 
on Livingston Island show a behavior similar to that 
obtained in the Arctic (Wang, 2011). However, for 
both in-situ and MODIS data, it is important to 
emphasize the marked influence of the large number 
of missing values in the analysis. We conclude that 
MODIS daily snow albedo product MOD10A1 can be 
used on Livingston Island to characterize the time 
evolution of the snow albedo. 

Figure 1. Snow daily albedo (open symbols) and the 16-window moving average (solid line) for in-situ 
measurements (top) and MOD10A1 product (bottom).  
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Figure 2. In-situ and MOD10A1 maximum monthly albedo (top), trend (middle) and seasonal (bottom) 
components.

Figure 3. Albedo standard deviation calculated every 
15 days for in-situ measurements (top) and MOD10A1 
(bottom). 

4 CONCLUSIONS 

We have carried out an assessment of MODIS 
MOD10A1 daily snow albedo product at a site on 
Livingston Island, Antarctica, for the period 2006-
20014. The cloud mask output has been compared to 
the classification obtained using the in-situ cloud 
index and to cloud masking output from NDSI data 
from Landsat 7 and 8. The results show that the 
MOD10A1 cloud mask performance is comparable to 
that obtained over Greenland and that, although it 

provides acceptable results, it must be used with 
caution. The albedo temporal behaviour was also 
analysed. The trend and the seasonal time series of 
MOD10A1 were compared to those obtained in-situ. 
The trend does not show a clear pattern, and the 
seasonal component exhibits in both cases the same 
regular pattern consisting of an increase of albedo in 
winter and a decrease in summer. Moreover, the 
standard deviation of albedo increases in winter in 
both MOD10A1 and in-situ data, a fact that needs 
further investigation. As a summary, we conclude that 
MOD10A1 snow albedo shows a temporal behaviour 
similar to that of in-situ albedo, and it can be used to 
study the time evolution of albedo on Livingston 
Island.  
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ABSTRACT – Clouds play an important role in the Earth’s energy budget and water cycle. The cloud-radiation 
interaction, through scattering or absorption, modifies the amount of radiation that reaches the Earth’s surface 
or that goes out to space. The cloud cover is one the most important parameters regarding to the energy budget 
at regional or planetary level. Observations of the cloud cover are routinely made by satellites and from ground-
based measurements. However, in most cases satellite and surface observations do not agree with the desired 
confidence level. Therefore, the aim of this work is to compare ground-based and satellite results of the cloud 
cover over Valencia (Spain). To do this we use two different methodologies to estimate the cloud cover from 
ground-based measurements: a) The automatic partial cloud amount detection algorithm (APCADA) using the 
terrestrial radiation and; b) The automated method presented by Long et al. (2006) using shortwave radiation. 
Ground-based estimates of the cloud cover have been compared against the determination provided by the Clouds 
and the Earth’s Radiant Energy System (CERES) instrument. Different spatial windows, for the satellite data, and 
temporal windows around the satellite overpass, for ground-based measurements have been tested in the 
comparison. All datasets used in the study show similar cloud cover distributions. The correlation between 
ground-based and satellite cloud cover is always higher than the 90%, although the best coincidence is found from 
the pyranometer and Aqua comparison. 

1 INTRODUCTION 

Clouds cover an appreciable portion of the sky and have 
an important impact on the Earth’s energy budget and 
on the hydrological cycle (Chen et al, 1999; Lin et al., 
2000). The magnitude of their impact is related to their 
interaction with radiation through the scattering of 
shortwave radiation and the absorption of longwave 
radiation. Typically, clouds interaction with radiation 
can produce cooling (shortwave effect) or warming 
(longwave effect) of the Earth-atmosphere system.  

For all this reasons, it is essential to know their 
distribution in the sky. Several techniques have been 
developed using ground-based instruments as: 
pyranometers (Long et al., 2000; Long et al., 2006), 
pyrgeometers (Marty and Philipona, 2000; Dürr et al., 
2004) and all-sky cameras (Calbó and Sabburg, 2008; 
Wacker et al., 20015).  

Nowadays, satellites represent a powerful tool that 
help to have a better spatial description of the Earth 
surface and atmosphere conditions. The Clouds and the 
Earth’s Radiant Energy System (CERES) instrument, 
on board Terra, Aqua and TRMM, provide information 
about cloud cover, cloud properties and radiation fluxes 
around the world.  

In this work, the synergies between ground-based 
and satellite estimates of the cloud cover are analyzed. 
In section 2, the data used is described, while in section 
3 the methodology followed is explained. Section 4 
show the results obtained and, finally, section 5 
contains the conclusions of this study. 

2 DATA 

2.1. GROUND-BASED 

Ground-based data are registered by a series of 
instruments placed on the roof of the Faculty of Physics, 
on the Burjassot campus at the University of Valencia 
(39º30’N, 0º25’W). Longwave radiation measurements 
are taken by a CGR4 Kipp & Zonen pyrgeometer 
working in a spectral range between 4.5 and 42 µm. On 
the other hand, the components of the shortwave 
radiation are measured by two CMP21 Kipp & Zonen 
pyranometer (for global and diffuse, from 0.285 to 2.8 
µm) and a CHP1 Kipp & Zonen pyrheliometer (for the 
direct within the 0.28-4 µm spectral range). All 
instruments are mounted in a SOLYS-2 sun-tracker and 
the data are stored with 1-minute resolution. 

2.2. SATELLITE 

The Clouds and the Earth’s Radiant Energy System 
(CERES) instrument, on board of Terra and Aqua 
satellites, was developed to improve the understanding 
of the Earth’s energy budget and the role of clouds in it. 
CERES has three detectors working in different spectral 
ranges: total (0.3-100µm), shortwave (0.3-5µm) and IR 
window (8-12µm). The spatial resolution at nadir is 20 
km. The Single Scanner Footprint (SSF) product 
provided by CERES is used (Wielicki et al., 2006; 
Minnis et al, 2011). This is a Level 2 product that 
provides measurements of longwave, shortwave and 
window radiation and also includes cloud and aerosols 
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properties measured by the Moderate Resolution 
Imaging Spectroradiometer instrument (MODIS) on 
board of Terra and Aqua satellites too. Considering that 
CERES is on board of two platforms and both overpass 
our site twice a day, four satellite measurements are 
usually available every day. 

3 METHODOLOGY 

3.1. GROUND-BASED TECHNIQUES 

The automatic partial cloud amount detection algorithm 
(APCADA) was developed by Dürr and Philipona 
(2004) to obtain the cloud cover using measurements of 
longwave downward radiation, temperature and 
relative humidity. To calculate the cloud cover, 
APCADA uses the variation of the longwave radiation 
during an hour and the cloud free index (CFI). The CFI 
is the quotient between the apparent emittance and the 
apparent cloud free emittance of the sky. It allows to 
distinguish clear sky situations (CFI≤1) from cloudy 
skies (CFI>1). Authors present a set of rules using the 
CFI and the longwave radiation variation to obtain the 
cloud cover in octas. APCADA provides continuous 
results 24 hours a day. This technique have some 
limitations detecting high clouds because of their low 
temperature and thus their longwave emission. 

Long and Ackerman (2000) presented and 
automated method to identify cloudy and clear skies 
using global and diffuse radiation. To do this, they 
apply four tests to radiation data. The tests are based on 
the magnitude and variation of the radiation and allow 
the identification of clear skies. Then, overcast skies are 
identified through their effects on diffuse radiation and 
the ratio between diffuse and global radiation (Long et 
al., 2006). Finally, the fractional cloud cover is 
calculated with the remaining cases using a power law 
equation. Thin clouds present at large solar zenith 
angles are not detected by this method. 

This technique provides the cloud cover values 
between 0 and 1. A conversion to octas is done 
following the rules shown in Table1: 

Table 1 - Unit conversion of cloud cover 
Fraction Octas 

0 0 
0 < Cloud cover < 0.1875 1 

0.1875 ≤ Cloud cover < 0.3125 2 
0.3125 ≤ Cloud cover < 0.4375 3 
0.4375 ≤ Cloud cover < 0.5625 4 
0.5625 ≤ Cloud cover < 0.6875 5 
0.6875 ≤ Cloud cover < 0.8125 6 

0.8125 ≤ Cloud cover < 1 7 
1 8 

Figure 1 - Number of coincidences between Aqua and 
ground-based cloud cover for a temporal window of 60 
minutes as a function of the spatial window. 

3.2. SATELLITE 

The CERES instrument provide the cloud cover up to 
two cloud layers. Independently of the layer height, the 
first layer is the lowest and the second the highest. In 
this work the low layer cloud cover and the total cloud 
cover are used, obtained as the sum of the low layer and 
high layer minus its overlap. These two datasets are 
used in order to analyse some limitations of the ground-
based techniques related with the detection of high 
clouds.  

CERES cloud cover is presented in percentage. To 
do the comparison, cloud cover values are converted to 
octas using the intervals included in Table 1, but 
multiplied by 100.  

3.3. COMPARISON OF THE DATA 

To do the comparison, a temporal and spatial window 
are defined. The temporal window defines the time 
interval used to average the ground-based data around 
the satellite overpass time. The spatial window sets the 
area (or number of pixels) around the ground-based site 
to average the satellite data used in the comparison. 
Spatial and temporal windows of different sizes are 
used to analyse which windows give the best results. 
The sizes for the spatial window are 20km x 20km, 
30km x 30km, 40km x 40km and 50km x 50km around 
the site. On the other hand, the time intervals used as 
temporal windows are 15min, 30min and 60min, 
centered on the satellite overpass time. 

4 RESULTS 

4.1. SPATIAL AND TEMPORAL AVERAGES 

First of all, an analysis is done to determine which 
spatial and temporal window are the most appropriate 
for the ground-satellite comparison. The number of 
coincidences (0 octas differences) between satellite and 
ground-based cloud cover is determined. All the 
datasets available are used: pyrgeometer, pyranometer, 
CERES total cloud cover and CERES low layer cover 
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from TERRA and AQUA. Figure 1 shows the number 
of coincidences as a function of the spatial window 
using CERES data on board Aqua. The four cases 
studied here show the same results. The best satellite 
and ground-based agreement is achieved when a spatial 
window of 20km x 20km is used.  
Different sensitivities to the spatial window are 
observed in the comparison for the pyranometers and 
pyrgeometres methodologies. Pyrgeometers show a 
higher sensitivity to the spatial window than the 
pyranometer. The same results are obtained using Terra 
data (not shown).  

Figure 2 - Number of coincidences between Aqua and 
ground-based cloud cover for a temporal window of 60 
minutes as a function of the temporal window. 

The same procedure followed with the spatial 
window is now used with the temporal window. Fig. 2 
presents the number of coincidences between ground-
based cloud cover and CERES Aqua cloud cover in 
percentage. All four comparisons exhibit the same 
behaviour: the maximum number of coincidence 
appears always when a spatial window of 60 min 
selected. The same conclusion is obtained using Terra 
data (not shown). 

4.2. CLOUD COVER DISTRIBUTION 

After the results obtained in the previous section, 
ground-based and satellite cloud cover is compared 
using a spatial window of 20km x 20km and a temporal 
window of 60 minutes around the satellite overpass 
time. 

Figure 3 represent the distribution of the cloud 
cover determined by the pyrgeometer, the pyranometer 
and the total and low layer cloud cover provided both 
by CERES Aqua. The four datasets present their 
maximum in 1octa and similar distribution for the rest 
of cloud cover values. The only exception is found in 7 
octas for the total cloud cover. At this cloud cover 
value, Aqua total cloud cover presents a frequency 
higher than the other datasets in more than a 10%. 
Considering that this difference is not present in Aqua 
low layer cloud cover, it has to be a consequence of high 
clouds that are not identified by ground-based 

techniques. Figure 4 represent the same that Fig. 3 but 
using CERES Terra data. The results shown are the 
same that using CERES Aqua data. 

Figure 3 - Distribution of the cloud cover obtained by a 
pyrgeometer, pyranometer and the CERES instrument 
on board Aqua satellite. 

Figure 4 - Distribution of the cloud cover obtained by a 
pyrgeometer, pyranometer and the CERES instrument 
on board Terra satellite. 

4.3. RELATIONSHIP BETWEEN GROUND-
BASED AND SATELLITE CLOUD COVER 

A linear regression analysis has been done to evaluate 
the agreement between ground-based and satellite 
determination of the cloud cover. All the available data-
pairs have been used in the linear fit and the correlation 
coefficient, slope and intercept are shown in Tables 2 
and 3. Mean ground-based cloud cover is calculated for 
each satellite cloud cover value. 

Table 2 show the relationship between the 
pyrgeometer cloud cover and the Aqua total, Aqua low 
layer, Terra total or Terra low layer cloud cover. A 
correlation higher than the 90% between the two 
datasets considered is observed in all cases. So 
indicating a good agreement between pyrgeometer and 
satellite cloud cover. However, the slope is around the 
70% in all cases, the intercept is never higher than 1 
octa. As an example, Fig. 5 shows the linear fit obtained 
when pyrgeometer cloud cover is compared with Terra 
low layer cloud cover. 
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Table 2 - Relationship between pyrgeometer and 
satellite cloud cover. 

Pyrgeometer Slope Intercept r2

Aqua Total 0.62 ± 0.04 0.3 ± 0.2 0.97 
Aqua Low 

layer 0.73 ± 0.05 0.6 ± 0.3 0.96 

Terra Total 0.67 ± 0.05 0.2 ± 0.2 0.96 
Terra Low 

layer 0.79 ± 0.06 0.5 ± 0.3 0.96 

Table 3 contains the same information that Table 2 
but using the pyranometer cloud cover. In this case, the 
slopes are closer to 1 than in the pyrgeometer 
comparison. The intercept values are similar to the 
values presented in Table 2. The correlation between 
pyranometer and satellite cloud cover is always higher 
than the 90%. This confirms the good agreement 
between the two datasets. In Fig. 6 is plotted the 
relationship of the pyranometer and the Terra low layer 
cloud cover. 

Besides, the results presented in Table 2 and 3 show 
that ground-based techniques have a better 
correspondence with satellite low layer cloud cover 
than with the total cloud cover. This effect is a 
consequence of the limitations of the ground-based 
techniques to identify high and thin clouds. 
Furthermore, high clouds are better detected by satellite 
instruments than by ground-based instruments, which 
are more influenced by low clouds. 

Table 3 - Relationship between pyranometer and 
satellite cloud cover. 

Pyranometer Slope Intercept r2

Aqua Total 0.79 ± 0.11 -0.5 ± 0.5 0.87 
Aqua Low 

layer 0.90 ± 0.06 -0.2 ± 0.3 0.97 

Terra Total 0.80 ± 0.13 -0.5 ± 0.6 0.84 
Terra Low 

layer 0.93 ± 0.07 -0.1 ± 0.3 0.96 

Figure 5 - Relationship between pyrgeometer and 
Terra total cloud cover. 

Figure 6 - Relationship between pyrgeometer and 
Terra low layer cloud cover. 

Table 2 and 3 show that some differences exist between 
CERES Aqua and CERES Terra cloud cover, although 
both platforms carry the same instrument. As noted in 
(Minnis et al., 2004), these differences are related to 
diurnally dependent changes in clouds.  

5 CONCLUSIONS 

Synergies between satellite and ground-based cloud 
cover are analysed in this work. The satellite data used 
is provided by CERES, and the ground-based data 
registered by a pyrgeometer and a pyranometer.  

The highest coincidence between ground-based and 
satellite cloud cover is obtained when a spatial window 
of 20km x 20km and temporal window of 60 minutes 
around the satellite overpass time are used. 

All datasets present similar cloud cover 
distributions except the total cloud cover (Terra and 
Aqua). This data present a frequency of almost 20% that 
does not appear in the other datasets, probably caused 
by high clouds. 

Results show a high agreement between satellite 
and ground-based cloud cover, although the best 
correlation is found for the pyranometer and Aqua low 
layer cloud cover. Pyrgeometer and Aqua (Terra) cloud 
cover coincide on a 40% (35%) of the data analysed, 
approximately. On the other hand, pyranometer present 
a 38% of coincidence with both Aqua and Terra. 
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ABSTRACT - The EUMETSAT LSA SAF service generates and disseminates a suite of vegetation products 
(LAI, FAPAR and FCOVER) derived from SEVIRI/MSG observations for the whole Meteosat disk at two 
different time resolutions (daily products and 10-day products). LSA SAF service has recently reprocessed the 
entire MSG archive with the recent version of the several retrieval algorithms in the processing chain in order to 
obtain a continuous and homogeneous Climate Data Records (CDR) of Land-SAF suite of land products suitable 
for many environmental and climate application. This paper presents the validation of the CDR of vegetation 
parameters (LAI, FAPAR and FCOVER) from 2004 to 2016. The analysis is focused on the assessment of spatial 
and temporal consistency, precision, accuracy and stability of the time series. As validated references, the 
MODIS/TERRA C5 and the Copernicus Global Land SPOT/VGT V1 were used. Likewise, as ground references, 
the CEOS DIRECT (2000-2011) and the FP7 ImagineS ground databases (2013-2016) were used.  

1. INTRODUCTION

The LSA SAF service has recently reprocessed the 
entire SEVIRI/MSG archive (2004-2012), with the 
latest version of the several retrieval algorithms in the 
processing chain (VEGAv3.0 for daily LAI, FAPAR 
and FVC and v2.0 for the equivalent 10-day products) 
in order to obtain a continuous and homogeneous 
dataset of Climate Data Records (CDR) of vegetation 
products. These products are produced in near real 
time at a spatial resolution of 3 km at nadir in the 
geostationary grid (see more details in García-Haro et 
al., this issue). 
The CDR dataset includes only 10-day VEGA 
products. However, a similar dataset of reprocessed 
daily products has been produced as "internal 
products". Although the daily products are not 
foreseen to be distributed as CDR, they may be made 
available upon request.  It is worth mentioning that the 
VEGA algorithms of the daily products and the 10-day 
products are identical, differing only in the 
composition window of the BRDF input. 
The 2004-2012 period has been considered for the 
temporal analysis and stability of the time series. Inter-
comparison exercises have been performed using as 
reference SPOT/VGT V1 products and NASA MODIS 
C5 LAI, FAPAR products using a two year period 
(2008-2009). Finally, the accuracy assessment is 
achieved against matchups with ground-based 
reference maps coming from the OLIVE tool hosted at 
CEOS cal/val portal, and the ImagineS ground 
database. For this test, the whole period (2004-2016) 
was used to increase the number of observations. 

The objective of this work is to validate the CDR of 
vegetation parameters (LAI, FAPAR and FCOVER) 
derived from SEVIRI/MSG data in the LSA SAF 
service. 

2. METHODOLOGY

Several criteria of performance were assessed in 
agreement with previous global LAI validation 
exercises (Camacho et al., 2013), the OLIVE (On Line 
Validation Exercise) tool hosted by CEOS cal/val 
portal (Weiss et al., 2014), the recent CEOS LPV 
Global LAI product validation protocol (Fernandes et 
al., 2014) and additional metrics proposed to validate 
similar products in the Copernicus Global Land 
Service. First, an intercomparison with the existing 
global validated products was conducted to examine 
the spatial and temporal consistency, the precision and 
the stability of MSG VEGA products. Second, a direct 
validation approach was conducted using ground 
reference maps to quantify the overall uncertainties of 
the products. 

2.1. Validation protocol 

The reference global satellite products used are the 
Copernicus Global Land SPOT/VGT V1 observations 
(Baret et al., 2013), produced at 1 km spatial 
resolution and 10-days temporal frequency (using a 
temporal window of 30 days), and Terra MODIS 
LAI/FAPAR (MOD15A2) collection 5 (Knyazikhin et 
al., 1998), with 1 km spatial resolution and 8 days step 
over a sinusoidal grid.  
The products were intercompared over the MSGVAL 
network composed of 478 sites that represents globally 

  191

Recent Advances in Quantitative Remote Sensing - RAQRS 2017

mailto:beatriz.fuster@eolab.es


the variability of land surface types (Figure 1): 239 
BELMANIP-2.1 (Weiss et al., 2014) sites covering the 
MSG disk, 120 EUVAL sites located over Europe and 
North of Africa (Camacho et al., 2017a), 29 African 
validation sites used by JRC NARMA (Natural 
Resources Monitoring for Africa) user during geoland-
2 project, 8 Enviro-Net sites (www.enviro-net.org/) 
across South of America, 63 sites coming from OLIVE 
DIRECT (http://calvalportal.ceos.org), and 19 coming 
from ImagineS.

Figure 1: Location of the 478 MSGVAL sites. 

The following criteria of performance and metrics 
were assessed: 
• Product Completeness: corresponds to the absence

of spatial and temporal gaps in the data. Temporal
variations of missing values for SPOT/VGT V1 and
MSG SEVIRI VEGA 10-day products have been
computed.

• Spatial Consistency: can be quantitatively assessed
by comparing the spatial distribution of a reference
validated product with the product biophysical maps
under study. Histograms of differences at a monthly
basis were analyzed.

• Temporal Consistency: The consistency of temporal
variations of the vegetation variables are compared
to reference validated products.

• Precision: Intra-annual precision (smoothness)
shows temporal noise assumed to have no serial
correlation within a season. In this case, the anomaly
of a variable from the linear estimate based on its
neighbours can be employed as an indicator of
smoothness or intra-annual precision. It can be
characterized as suggested by Weiss et al., (2007):
for each triplet of consecutive observations, the
absolute value of the difference between the centre

P(dn+1) and the corresponding linear interpolation 
between the two extremes P(dn) and P(dn+2) was 
estimated: 

(1) 

Histograms of the smoothness are presented adjusted 
to a negative exponential function and the 
exponential decay constant is used as quantitative 
indicator of the smoothness value. 
Inter-annual precision (i.e., dispersion of FAPAR 
values from year to year) was evaluated providing a 
box-plot of the median absolute deviation of 
anomalies versus product per bins until the 
maximum product value (Fernandes et al., 2014) 
using the upper 95th and lower 5th percentiles over 
MSGVAL sites. Note that cultivated sites were not 
considered in this analysis due to the large inter-
annual variability in this land cover type. Broadleaf 
Evergreen Forest sites were also removed from this 
computation to avoid noisy temporal trajectories. 

• Stability of the time series: can be investigated
displaying Hovmöller plots (Hovmöller, 1949) of the
bias between two products, providing the temporal
evolution of bias and their latitudinal variation.

• Overall statistical consistency: The inter-comparison
of products offers a means of assessing the relative
uncertainties (systematic or random) between
products. The global statistical analysis is performed
over MSGVAL sites considering all dates available.
Note that VEGA pixels with estimated error higher
than 1.5 in case of LAI and higher than 0.15 in case
of FVC/FAPAR have been discarded from this
computation in order to avoid unreliable estimations.
In case of GEOV1 and MODIS C5, only good
quality pixels according to the Quality Flag were
used.

2.2. Direct Validation 

For the Accuracy Assessment, MSG VEGA daily 
products instead of MSG VEGA 10D were used as 
these products are more suitable to compare with 
ground values in terms of temporal frequency. 
The accuracy assessment of MSG VEGA daily 
satellite products was performed against ground truth 
data processed according to CEOS LPV guidelines for 
validation of LAI products.  
The data used to validate from 2004 to 2013 comes 
from the OLIVE DIRECT database (Camacho et al., 
2013b), available at CEOS Cal/Val portal 
(http://calvalportal.ceos.org). Those forest DIRECT 
sites were understory was not characterized were 
discarded (Camacho et al., 2013). Finally, for the MSG 
coverage and the period under study, 22 LAI ground 
references over 16 sites were available. 
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Furthermore, from 2013 to 2016 were used references 
from the FP7 ImagineS project (http://www.fp7-
imagines.eu/) over the MSG disk. Specifically, 44 LAI 
ground references over 18 new sites. Ground data was 
up-scaled by EOLAB using either SPOT-5 Landsat or 
imagery. Field data collection and up-scaling 
procedures for all the sites were done according to 
well-established guidelines (Camacho et al., 2014) in 
agreement with the VALERI protocols and the CEOS 
LPV recommendations. Only mean values compatible 
with MSG pixel resolution were used (see Camacho et 
al., 2017).   
In addition, 3 sites coming from BELMANIP2.1 
network were selected over the Sahara desert in order 
to increase the sampling over this specific biome type. 
Finally, note that pixels of MSG VEGA Daily with 
error higher than 1.5 for LAI, and higher than 1.2 for 
FAPAR or FVC are discarded. In the same way, pixels 
of GEOV1 and MODIS C5 flagged as 'low quality' 
were also removed. 

3. RESULTS

3.1 Product Completeness 

The temporal evolution of the fraction of missing 
values for the two products under study is showed in 
Figure 2. Over the 2008-2009 period, SPOT/VGT V1 
and VEGA 10D provided consistent results, with 
VEGA 10D showing generally better slight fraction of 
valid observations, mainly during summer time 
(around 3% better). The larger fraction of missing 
values for VEGA 10D (around 14%) was found for the 
end of January whereas the lower fraction (around 5%) 
was found during the period of June to September. In 
conclusion, VEGA 10D improves the completeness 
mainly in summer period. 

Figure 2: Percentage of missing values for MSG 
MTLAI and SPOT/VGT V1 products. 

3.2 Spatial consistency 

Histograms of differences between VEGA 10D and 
reference products are displayed monthly during the 
whole 2009 year in Figure 3. Just LAI and FAPAR 
results are shown as example. 
For LAI differences, a good spatial consistency was 
found between VEGA 10D and SPOT/VGT V1 
products with around 85% of cases lower than ±0.5 

LAI units, and only 7% of pixels shows differences 
larger than ±1 LAI units. VEGA 10D and MODIS C5 
LAI differences are larger with around 71% of 
differences ranging between ±0.5 and around 82% 
between ±1 LAI units, which means also good 
consistency in most cases, but showing an histogram 
with a slight tendency towards positive values (larger 
values in MSG). 

Figure 3: Distribution of differences between VEGA 
10D and SPOT/VGT V1 (Top) and between VEGA 
10D and MODIS C5 (Bottom) for LAI (Left side) and 
FAPAR (right side) products. 

For FAPAR, larger discrepancies were observed in 
both cases. The histograms between VEGA 10D and 
SPOT/VGT V1 products are centered at zero for all 
dates, but a clear tendency to provide lower values in 
MSG VEGA was observed. Between VEGA 10D and 
MODIS histograms of differences are centred on -0.08 
for all dates showing a systematic negative bias 
between both products, partly explained by the 
different definition of FAPAR in the satellite products. 
The accuracy assessment will provide further insight 
on the quality of the FAPAR product.  

3.3. Temporal Consistency 

Temporal consistency of MSG VEGA (10D and daily), 
as compared to SPOT/VGT V1 and MODIS C5 
products over the 2004-2012 period was shown on 
Figure 4. In general, good consistency of MSG VEGA 
temporal variations was found for all the different 
biomes as compared to reference products. 
On the other hand, similar temporal variations were 
observed for all biome types between MSG VEGA 
10D and daily products, showing smoother trajectories 
in case of 10D due to the monthly composites as 
compared to daily products which are NRT products 
with a temporal compositing window (semi-Gaussian) 
of 5 days (see Camacho et al., 2017 for more details).  
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Figure 4: Temporal profiles of LAI (top), FAPAR 
(middle) and FCV (bottom) values of each product 
(SPOT/VGT V1, MODIS C5, MSG VEGA (10D and 
Daily) for selected sites.

3.4. Precision 

3.4.1. Intra-Annual Precision 

Figure 5 shows the histograms of smoothness for LAI 
and FAPAR products during the 2008-2009 period. 
The histograms fit a negative exponential function, 
showing the best results for MSG VEGA 10D and 
SPOT/VGT V1 (almost the same), with lower decay 
constant (τ) than MODIS for LAI and FAPAR. 

Figure 5: Histograms of the delta function 
(smoothness) for LAI and FAPAR products for 
MSGVAL sites during the 2008-2009 period. The 
curves are adjusted to an exponential function and the 
exponential decay constant is presented in the figure. 

3.4.2. Inter-Annual Precision 

Figure 6 shows the box-plots of absolute inter-annual 
anomalies (year 2009 versus 2008) of MSG VEGA 
10D and SPOT/VGT V1 products. Just LAI and 
FAPAR results are shown as example, with FVC 
showing similar results to LAI. 

Median absolute anomalies (95th and 5th percentiles) 
match the GCOS stability requirements for all 
variables. Good results were found for MSG VEGA 
10D mainly for LAI products, with median absolute 
anomalies of 3.5%, improving the performance of 
SPOT/VGT V1 and MODIS C5 (around 4.5%). 
However, for FAPAR, is the opposite, due to the 
larger uncertainties in the BRDF k2 input data. 

Figure 6: Box-plots of inter-annual absolute anomalies 
(2009 versus 2008) per bin. Red bars indicate median 
residuals; blue boxes stretch from the 25th percentile to 
the 75thpercentile the data; green line corresponds to 
the median absolute anomaly including all ranges. 

Figure 7: Hovmöller diagrams of the Bias between 
MSG VEGA 10D and reference products for LAI 
during the 2004-2012 period. 
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3.5. Spatio-Temporal Consistency 

Figure 7 shows the Hovmöller plots during the 2004-
2012 period. Only LAI diagrams are shown as 
example. 
Very stable patterns of differences between MSG 
VEGA 10D and references products (SPOT/VGT 
GEOV1 and MODIS C5) were found along the whole 
time series. No trends are observed which indicates the 
good stability of the MSG CDR. Main differences are 
observed around the equatorial belt and northern 
latitudes. 

3.6. Overall Statistical Consistency 

The consistency of MSG VEGA 10D with the 
reference products was evaluated over MSGVAL sites 
during the 2008-2009 period. Uncertainty metrics are 
shown in Table 1. 

R2 RMSE Bias 
LAI 

MSG VEGA 10D vs 
SPOT/VGT V1 0.8 0.72 0.005 

MSG VEGA 10D vs 
MODIS C5 0.6 1.1 0.062 

FAPAR 
MSG VEGA 10D vs 

SPOT/VGT V1 0.87 0.16 -0.102 
MSG VEGA 10D vs 

MODIS C5 0.74 0.16 -0.104 

FVC 
MSG VEGA 10D vs 

SPOT/VGT V1 0.91 0.09 0.003 

Table 1: Performance between the different products 
over MSGVAL sites for 2008-2009 period. 

MSG VEGA 10D and SPOT/VGT V1 are good 
correlated, with R2 better than 0.8 for LAI, FAPAR 
and FVC. Low bias and RMSE is observed for LAI 
and FVC, for FAPAR a larger RMSE= 0.16 and 
Bias=-0.10 is found. On the other hand, the 
performance between MSG VEGA 10D and MODIS 
C5 is similar for FAPAR, but a little worse for LAI 
with R2 of 0.6. Note that FAPAR shows negative bias 
in both cases, partly explained because SPOT/VGT 
V1 is based on MODIS C5 products (Baret et al., 
2013). 

3.7 Direct Validation 

Scatter-plots between ground data and MSG VEGA 
are displayed to show the accuracy assessment (Figure 
8). Scatter-plots between ground data and SPOT/VGT 
V1 are also shown for comparison. 
MDLAI shows an overall accuracy (RMSE) of 0.98, 
and a low positive mean bias (0.126). Compared to 
reference products, MDLAI presents better overall 
accuracy than MODIS (1.02) but slight worse than 
SPOT/VGT V1 (0.84). Also, note that more than 56% 
of the samples are within the optimal level (Table 2). 

Figure 8: Comparison of satellite LAI, FAPAR and 
FVC products (MSG VEGA and SPOT/VGT V1) with 

the ground-based maps. Forest refers to Broadleaf 
Evergreen, Broadleaf Deciduous and Needle-leaf 

Forests; Crops stands for Cultivated; Grass stands for 
Herbaceous, Shrubs and Sparse; and Desert refers to 

Bare Areas. 

MDFAPAR shows an overall accuracy (RMSE) of 
0.17, a bit larger than SPOT/VGT V1 (RMSE=0.12) 
and MODIS C5 (RMSE=0.14). That could be 
explained mostly due to the estimations in Albufera 
rice site (#53, #54 and #55) which tend to 
underestimate largely FAPAR measurements during 
the peak of the season. Nevertheless, for the remaining 
of the cropland sites, MDFAPAR shows accurate 
measurements, whereas SPOT/VGT V1 tends to 
overestimate the ground measurements, and MODIS 
C5 presents large scattering because of its noisier 
retrievals. Also, MDFAPAR has 43% of the estimates 
within the GCOS requirements, better than the two 
reference products (Table 2). 
Better overall accuracy was observed for MDFVC 
(RMSE=0.17) as compared to SPOT/VGT V1 
(RMSE=0.2). Also, MDFVC provides a mean bias of 
0.106 with a trend to overestimate croplands and to 
underestimate forest measurements, whereas 
SPOT/VGT V1 provides more accurate estimations 
over forest sites but larger bias over croplands. Just 
13.2% of the samples are within the optimal level 
(Table 2). 
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LAI FAPAR FVC 
MSG 

VEGA 
Daily 

vs 
Ground 

Data 

N 53 40 38 
R2 0.59 0.65 0.74 

Bias 0.126 -0.061 0.106 
RMSE 0.98 0.17 0.17 

% GCOS 56.6 42.5 13.2 

SPOT/VGT 
V1 
vs 

Ground 
Data 

N 52 43 36 
R2 0.82 0.88 0.81 

Bias 0.41 0.088 0.145 
RMSE 0.84 0.12 0.2 

% GCOS 55.8 30.2 13.9 
MOD15A2 

C5 
vs 

Ground 
Data 

N 53 43 N/A 
R2 0.66 0.75 N/A 

Bias -0.022 0.012 N/A 
RMSE 1.02 0.14 N/A 

% GCOS 60.4 37.2 N/A 
Table 2: Performance of MSG VEGA Daily, 

SPOT/VGT V1 and MOD15A2 C5 products against 
ground data. 

4 CONCLUSIONS 

In this paper, a validation of MSG/SEVIRI VEGA 
LAI, FAPAR and FVC V3.0 Climate Data Record of 
VEGA 10D products, for the period 2004-2012 
(extended to 2016 for accuracy assessment), was 
performed. The methodology used follows the 
guidelines proposed by the CEOS LPV group for 
validation of remote sensing vegetation products. 
In summary, the validation results of the MSG VEGA 
CDR products show overall good results, with good 
spatial and temporal consistency as compared to 
validated satellite products. It is noticeable the good 
inter-annual precision of the products and the stability 
of the time series. The main discrepancy was found for 
the FAPAR product where MSG provides lower values 
than both references products but more accurate 
results for croplands, which is explained by the 
different definition of the FAPAR. Most of the criteria 
evaluated shows in overall positive results, with some 
limitations in the accuracy of FVC product. 
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ABSTRACT- The Satellite Application Facility on Land Surface Analysis (LSA SAF) aims to provide land 
surface variables for environmental and meteorological purposes from EUMETSAT constellation satellites. The 
suite of LSA SAF vegetation products includes two different data sets, one from SEVIRI/MG geostationary 
satellites, and other from AVHRR/METOP polar orbit EPS data. The vegetation products are distributed in near 
real time from the LSA SAF website hosted at IPMA (http://landsaf.ipma.pt). Furthermore, the uncertainty of 
each retrieval is also provided to users in the form of error bars along with a quality flag and other relevant 
information. The LSA SAF vegetation products are routinely validated against in situ data and through 
comparisons with similar products such as those provided by the Copernicus Global Land Service and MODIS. 
This work provides detailed information on the suite of LSA SAF vegetation products. Furthermore, it provides 
updated validation results as well as evaluation of their temporal and spatial consistency.

1  INTRODUCTION 

The Satellite Application Facility on Land Surface 
Analysis (LSA SAF) is part of the SAF Network, a set 
of specialised development and processing centres, 
serving as EUMETSAT (European organization for the 
Exploitation of Meteorological Satellites) distributed 
Applications Ground Segment. The main purpose of 
the LSA SAF is to take full advantage of remotely 
sensed data, particularly those available from 
EUMETSAT sensors, to measure land surface 
variables.  
      The SEVIRI instrument onboard MSG has a 3 km 
resolution at nadir, 12 spectral channels and an 
imaging-repeat cycle of 15 minutes. On the other 
hand, the EUMETSAT Polar System (EPS), with the 
series of three Meteorological-Operational (MetOp) 
satellites, is Europe’s first polar orbiting operational 
meteorological satellite.  
      The LSA SAF Team has a set of consolidated 
algorithms, used to generate Land Surface Products in 
an operational mode, archived and disseminated in 
near real time or off-line. These include retrievals of 
surface radiative components, vegetation parameters 
and snow cover (Trigo et al. 2011). Product 
distribution policy is wide open to the users 
community. The LSA SAF system is fully centralized 
at Portuguese Institute for the Ocean and Atmosphere 
(IPMA), which generates and disseminates the 

operational products by EUMTETCast and off-line 
from LSA SAF website (http://landsaf.ipma.pt) that 
contains products as well as updated information. 
    Although the LSA SAF is primarily targeted to 
meteorology applications, it addresses a wide 
community, ranging from surface processes modelling 
to agriculture and forestry applications. This 
community greatly benefits from products generated 
from a reliable observation system designed to ensure 
long-term operations.  
     The LSA SAF generates and disseminates daily and 
10-day Fractional Vegetation Cover (FVC), the Leaf 
Area Index (LAI) and the Fraction of Absorbed 
Photosynthetically Active Radiation (FAPAR) derived 
from SEVIRI/Meteosat BRDF data for the whole 
Meteosat disk.  More recently, the LSA SAF has 
developed a set of global 10-day FVC, LAI and 
FAPAR products from AVHRR/Metop. All LSA SAF 
vegetation products are distributed with quality control 
information and an error bar, indicative of the 
expected accuracy of the retrieved fields, on a pixel-
by-pixel basis, supported by sensitivity studies and 
product validation. 
    The aim of this work is two-fold. Firstly, it presents 
detailed information on the suite of LSA SAF 
vegetation products, which in turn will also be of 
interest to assist the successful use of the data in 
research and applications. Secondly, it provides 
updated validation results as well as evaluation of their 
temporal and spatial consistency. 
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2. REFERENCE SATELLITE PRODUCTS 
 

Validation activities consist basically on inter-
comparison of LSA SAF products with ground 
observations obtained through international initiatives 
(e.g., OLIVE, IMAGINES) and with similar 
parameters retrieved from other satellite data (e.g., 
vegetation parameters from SPOT, PROBA-V or 
MODIS), which are briefly described as follows: 
(i) The first version of global biophysical products 
(i.e., LAI and FCOVER), namely GEOV1, developed 
in the framework of Copernicus Global Land Service 
from SPOT/VGT and PROBA-V data at 1 km spatial 
resolution and 10-days temporal frequency (using a 
temporal window of 30 days). GEOV1 products have 
reached a validation stage level of 2 according to 
CEOS LPV criteria. Full validation results can be 
found in Camacho et al. (2013; 2014a). 
(ii) Terra MODIS LAI/FAPAR (MOD15A2) is 
produced at 1 km spatial resolution and 8 days step 
over a sinusoidal grid. The MODIS LAI products have 
been extensively validated (Yang et al., 2006; 
Garrigues et al., 2008). 

3  THE SEVIRI/MSG VEGETATION PRODUCTS  

3.1 Product content  

The current SEVIRI/MSG vegetation products are 
FVC, LAI and FAPAR. These products are produced 
in near real time from the MSG/SEVIRI observations 
at a spatial resolution of 3 km at equator (~5 km over 
central Europe) on a daily and 10-day basis, in the 
geostationary grid. The high rate of acquisition 
provided by the SEVIRI instrument guarantees the 
availability of spatially consistent cloud-free data for 
adequately monitoring both the seasonality of 
vegetation and the long-term trends in the state of 
vegetation. 

The characteristics of SEVIRI based FVC, LAI 
and FAPAR products provided by the LSA SAF are 
summarized in Table 1. The coverage of the products 
is the MSG disk. The technical properties of final 
products (spatial and temporal resolution, thematic 
accuracy, etc.) depend on the input data, and the 
retrieval algorithms. For a detailed description we 
refer to García-Haro et al. (2016). 
The products are spatially and temporally consistent 
and present practically no missing data except for 
areas that are usually covered by snow. The 
SEVIRI/MSG vegetation products have been 
reprocessed, in order to obtain a long time series of 
homogeneous Climate Data Records (2004-present) 
suitable for many environmental and climate 
applications.  

During the current phase, a 10-day MSG based 
Gross Primary Production (GPP) related to the carbon 

uptake of terrestrial vegetation by photosynthesis will 
be will be operationally delivered (ORR foreseen for 
early 2018). We refer for details to Martinez et al. 
(2017, this issue). 

 
a)                                 b) 

Figure 1 – MSG Daily LAI (top), FVC (middle) and 
FAPAR (bottom) LSA SAF VEGA corresponding to 
mid April 2014. A) products; B) respective error 
estimates. 

 
Table 1. Main characteristics of the SEVIRI/MSG 
vegetation products 
Products LAI, FVC, FAPAR, GPP(*) 
Coverage MSG full disk (Continental pixels 

over land) 
Spatial 
resolution 

3km×3km (at nadir) 

Projection SEVIRI instrument projection 
(MSG-Disk) 

Size (col, row) 3712 x 3712 
Format HDF signed integer 

16 bits: products & errors 
8 bits: Quality Flag 

Frequency Daily and 10-day 
Temporal 
coverage 

2004-present 

Accuracy(**) 0.5 (LAI) 
0.10 for FVC/FAPAR 

(*) GPP is currently in development 
(**) achieved in about 70-75% of land pixels 
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3.2 Product validation 

The SEVIRI/MSG products are continuously validated 
using a limited number of ground measurements 
available from international initiatives such as 
CEOS/OLIVE, IMAGINES FP7 and ESA validation 
campaigns (Weiss et al. 2014; Camacho, 2014b). 
Indirect validation includes inter-comparison with 
equivalent satellite products from different sensors 
(MERIS, VGT, MODIS), as well as evaluation of their 
temporal and spatial consistency.  

Figure 2. Comparison between SEVIRI LAI version 
3.0 and Copernicus Global Land (SPOT/VGT 
GEOV1).  Top: Image difference on mid June, 2009. 
Bottom: Histograms of products difference for all 
month during year 2009. 

The validation exercises have shown the 
consistency of spatial and temporal FVC, LAI and 
FAPAR distributions per main biomes, with values 
within the baseline of equivalent reference products 
(see examples of validation results in figures 2 and 3). 
The SEVIRI products have shown to be temporally 
more stable regarding polar orbit products (e.g. 

MODIS, VGT), which often present considerable 
multi-temporal noise and gaps over large areas and 
long temporal periods. The validation results are 
highly significant and allow concluding that 
SEVIRI/MSG vegetation products have reached a 
validation stage level 2 according to CEOS LPV 
criteria (e.g., Camacho et al., 2010; Martínez et al., 
2013; García-Haro et al., 2016). 

      The fraction of valid pixels (i.e. processed with 
reliability) for LSA SAF FVC and LAI products over 
Africa zones is nearly 100% through the whole year 
which is clearly one of the main advantages of using 
MSG data, instead of polar-orbiting satellite products 
thanks to the high-frequency of observations that 
allows getting a much higher number of cloud-free 
observations.  

Figure 3. Temporal profiles of LSA SAF v3.0, 
Copernicus GEOV1 and NASA MODISC5 LAI (top), 
FAPAR (middle) and FVC (bottom) products over two 
sites representative of Broadleaved deciduous forest 
(BDF) and cultivated areas. 

4  THE EPS VEGETATION PRODUCTS 

4.1 Product content 

The LSA SAF has recently developed a set of global 
10-day FVC, LAI and FAPAR products from 
Advanced Very High Resolution Radiometer 
(AVHRR) instrument onboard MetOp, which permits 
a global coverage of the surface, being the 
complement of SEVIRI at high latitudes (see 
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characteristics in Table 2). Examples of the EPS 
product are given in figure 4. Product provide error 
uncertainty estimates. Completeness is good except for 
areas usually covered by snow. For a detailed 
description of EPS products we refer to García-Haro et 
al. (2017b). 

The algorithm relies on a hybrid method 
through the generation of a reflectance radiative 
transfer model simulations to train powerful machine 
learning methods (García-Haro et al. 2017a). This 
emphasizes the use of physically based methods for a 
joint retrieval of vegetation variables. Future work is 
to assess the feasibility of including a new 
AVHRR/MetOp Canopy Water Content (CWC) 
product, targeted for fire risk monitoring and drought 
monitoring.  

Table 2. Main characteristics of the AVHRR/MetOp 
vegetation products 

Products LAI, FVC, FAPAR, CWC(*) 
Coverage EPS global (Continental pixels 

over land) 
Spatial resolution EPS/AVHRR full resol. (0.01°) 
Projection EPS/AVHRR sinusoidal 
Size (col, row) 36001 x 18000 
Format HDF signed integer 

16 bits: products & errors 
8 bits: Quality Flag, Z_Age 

Frequency Daily and 10-day 
Temporal 
coverage 

Now: 2015-present 
Foreseen: 2008-present 

Accuracy(**) 0.5 (LAI) 
0.10 for FVC/FAPAR 

(*) CWC is currently in development 
(**) (achieved in about 60% of land pixels) 

Figure 4 – EPS 10-daily LAI (top), FVC (middle) and 
FAPAR (bottom) LSA SAF products corresponding to 
mid June 2015. A) products; B) respective error 
estimates. 

4.2 Validation of EPS vegetation products 

The preliminary validation results of LSA SAF 
EPS vegetation products have shown in overall 
good performance of the EPS products as 
compared with both references (PROBA-V 
GEOV1 and MODIS C5) in terms of the 
statistical analysis over the network, with little 
systematic trends as compared to GEOV1 (see 
examples of validation results in figures 5 and 6).  

Figure 5. Histogram of differences for the main global 
biomes between EPS LAI and two reference products, 
Copernicus Global Land (PROBA-V GEOV1 and 
MODIS C5).  

Figure 6. Temporal profiles of LSA SAF v3.0, 
Copernicus GEOV1 and NASA MODISC5 LAI (top), 
FAPAR (middle) and FVC (bottom) products over two 
sites representative of Herbaceous cover and cultivated 
areas. 
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5. CONCLUSIONS

The LSA SAF vegetation products are distributed 
in near real time from the website hosted at IPMA. 
Furthermore, the uncertainty of each retrieval is also 
provided to users in the form of error bars along with a 
quality flag, which provides information on the 
product expected performance, taking into account the 
retrieval conditions 

The LSA SAF disseminates daily and 10-day 
FVC, LAI and FAPAR products derived from 
SEVIRI/MSG BRDF data for the whole Meteosat 
disk. The products are spatially and temporally 
consistent and present practically no missing data 
except for areas that are usually covered by snow. The 
availability of long time series of homogeneous MSG 
vegetation products (since January 2004 to present) 
offers new tools for a broad range of environmental, 
climate and weather applications. 

The LSA SAF project recently entered its 
Continuous Development and Operational Phase-3 
(CDOP-3), which will last until 2022. The validation 
activities will be continued during CDOP3 to 
consolidate the quality of products and extend them to 
a longer period. It is foreseen that the suite of 10-day 
FVC, LAI and FAPAR products from AVHRR/MetOp 
be reprocessed (from January 2008 onwards) during 
CDOP3. Future work will also include reprocessing 
from 2008 onwards of global EPS vegetation products 
in order to obtain a long time series of homogeneous 
Climate Data Records.  
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New MODIS LST product for the monitoring of Amazonian tropical 
forests 

Gomis-Cebolla, J., Jiménez-Muñoz,J.C., Sobrino, J.A., Soria, G., Julien, Y., Skokovic, D. 
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ABSTRACT Amazonian tropical forests including approximately 50% of global tropical forests play a crucial 
role in the global water and carbon cycle. Additionally, these forests host about the 25% of world’s terrestrial 
species. Taking into account the importance of this biome and the current global warming scenario the 
monitoring of the changes in these forests becomes of special importance. In this context, the use of satellite 
imagery is presented as the only viable means to observe the Amazon in a spatially comprehensive and 
temporally frequent fashion. Particularly, the use of optical imagery derived from medium resolution sensors 
such as MODIS, has been the most widely adopted solution. In addition to the use of vegetation indexes derived 
using VIS and NIR information, recent studies highlight the role of vegetation temperature in the understanding 
of the changes produced in these forests. Nevertheless, the use of thermal data still has some limitations being of 
special importance the possible cloud contamination effect in the estimation of LST. In this work a MODIS 
daytime LST product is presented aimed at reducing the current limitations of its MODIS counterparts. This 
product encompasses the benefits of updated split-window coefficients for the region and the use of MAIAC 
cloud mask. This alternative MODIS LST has been validated using in-situ data and has been compared to 
current MODIS LST products. The results obtained prove the utility of this new product in the monitoring of the 
Amazonian tropical forests. 

1 INTRODUCTION 

In the current global warming scenario, the monitoring 
of forestry is of special importance. In this context 
globally forests are showing signs of stress that can be 
directed link to the combination of drought and/or 
high temperatures. (Allen et al., 2010) Additionally 
recent studies have highlighted the potential of warmer 
temperatures in the exacerbation of forest stress and 
die-back. (Williams et al., 2013) For the Amazonian 
tropical forests several studies have investigated the 
relationship between this variable and the CO2 
absorption capacity, showing that an increase in 
temperature could result in a negative impact on 
tropical forest CO2 uptake and productivity (Clark et 
al., 2003). Additionally, anomalous high values have 
been proved to be more important than precipitation 
deficits in causing losses of biomass during drought 
periods (Galbraith et al., 2010) 
In spite the vegetation temperature being a variable 
linked with plant physiology that can be routinely 
estimated from satellite imagery there is still scarce 
literature about the use of surface temperature 
products derived from satellite data over the 
Amazonian tropical forests. In particular, the studies of 
Toomey et al. (2011) and Jiménez-Muñoz et al. (2013-
2015) were the major contributions. In their studies a 
significant and sustained warming was revealed from 
an analysis of land surface temperatures anomalies 
using MODIS LST products (MOD11) and climatic 
data. This helps to prove the valuable information that 

could be derived from monitoring LST anomalies over 
the region. Nevertheless, the use of thermal data for 
monitoring of tropical forests has some limitations 
regarding the estimation accuracy and the possible 
temperature alteration introduced by cloud-
contamination effect. In particular, for the MODIS 
sensor, recent studies have shown how a land cover 
bias in the MODIS cloud mask and how it could 
interfere in the derived LST products (Wilson et al., 
2014). Additionally, cloud contamination for MOD11 
were reported in the literature, although for different 
biomes (Otsby et al., 2014). Recent efforts have been 
done in order to quantify this effect and provide 
accurate cloud filtered LST data (Gomis-Cebolla et al., 
2016) 
In the current work a daytime LST product which 
could help to refine the LST estimations over the 
region is presented. This product benefits for the 
development of updated split-window coefficient and 
the introduction of MAIAC cloud mask. This cloud 
mask has shown promising results in comparison with 
MODIS cloud mask over the tropical forests. 
Additionally, this product has been validated using in-
situ data and compared with current MODIS LST 
products in order to report the existing differences.  
The paper is organized as follows: in section 2 data 
and methods used are presented. In section 3 results of 
validation and comparison are resumed. And finally in 
section 4 the discussion and conclusions derived from 
the results are presented.  
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2 DATA AND METHODS 

2.1 Data 

Ground in-situ LST was derived from a permanent 
validation station situated in a relatively homogeneous 
tropical forest area at Tambopata (12.818 S, 69.281 W) 
in the Peruvian Amazon. The time period of data 
recording considered in this work is from December 
2014 since October 2016. 
Satellite data is resumed in Table 1. In particular, 
MYD07_L2 was used for the derivation of the LST 
algorithm (creation of simulated brightness 
temperatures database). MODIS Brightness 
temperatures for bands 31 and 32 were extracted from 
the MYDTBGA product. MAIAC cloud mask was 
extracted from the Status QA layer of MAIACATBRF 
product. Additionally, in order to ensure the validity of 
the algorithm over the region a vegetation mask was 
created in order to delineate the tropical forests. This 
was obtained by the intersection of a geographical and 
the class 2 of the IGBP classification in the MCD12Q1 
product.  

Table 1. MODIS products and layers used. 
MODIS 
Products Layers used 

MYD07_L2 Temperature, Dew Point and 
Geopotential Height Profiles 

MYDTBGA Band 31,32 
MAIACATBRF Status QA 

MCD12Q1 Land Cover Type 1 (IGBP) 

2.2 LST algorithm 

In this study in order to test an alternative LST 
retrieval algorithm we suggest the use of the 
theoretical Split-window model developed by Sobrino 
et al. (1996). For the particular consideration of 
tropical forests two assumptions are being considered: 
1) dependence on emissivity terms results in a
constant value which can be integrated in the c0 term 
(tropical forests with dense green vegetation are well 
represented by typical vegetation emissivity), and 2) 
dependence on water vapour is considered implicitly 
in the derivation of c1 and c2 terms, thus eliminating 
the need of introducing water vapour information in 
the algorithm. Doing this, the mathematical structure 
results in: 

Ts=Ti + c0+c1(Ti – Tj)+c2(Ti-Tj)2 (1) 

where Ti and Tj are the brightness temperatures of 
MODIS bands 31 and 32 respectively and ci are 
derived from simulated data. The Split-Windows take 
the following values: 1.461 (K), 1.638 and 0.774 (K-1) 
for c0, c1 and c2 respectively.  

In particular the Split-Window coefficients were 
derived by statistical linear regression of a simulated 
dataset of brightness temperatures (Ti,Tj) over 
different surface and atmospheric conditions. For the 
surface conditions three different vegetation spectra 
from the ASTER (Baldrige et al., 2009) spectral 
library were considered. For the atmospheric 
conditions MYD07 cloud-free profiles were collected 
from 1118 spatial reference points within the study 
area for the 2014-2016 time period. These atmospheric 
profiles were input to the MODTRAN (v5.20) 
radiative transfer code (Berk et al., 2008). The 
simulated database was generated by forward 
simulations driven by the Radiative Transfer Equation 
(RTE), the emissivity spectra and MODTRAN 
atmospheric outputs. All the spectral magnitudes were 
convolved to the spectral response functions of 
MODIS bands.  

3 RESULTS 

3.1 Validation results 

Ground LST was derived by correcting the 
downwelling sky irradiance and the surface emissivity 
effects in the radiometric temperatures. The ground 
LSTs was compared against MODIS LSTs extracted 
for the pixel located at the test site using both standard 
products (MYD11) and the SW based product. Such 
comparison was performed at three different levels of 
cloud masking: i) the MOD35 cloud mask as included 
in the MYD11 without any additional QA 
discrimination (LST not produced due to clouds), ii) 
the MOD35 cloud mask and the additional filter based 
on the QC layer (LST not produced due to clouds + 
LST other quality), iii) the MAIAC cloud mask. For 
simplicity, we will refer to these three cases as 
MOD35, QC and MAIAC respectively.  
Validation results are presented in Figure 1 for the 
three cases. These results are complemented with basic 
error metrics (bias, standard deviation and Root Mean 
Square Error) included in Figure 2. Error metrics were 
derived considering (Ts – Talg).  
The Split-Window LST algorithm is able to reduce the 
bias metric in comparison to MODIS (Figure 2, left). 
In particular, with values closer to 0 when considering 
an additional cloud filtering. The difference (MODIS 
minus SW) is of 1.36 K, 1.55 K, 1.61 K for the 
MOD35, QC and MAIAC case respectively. In terms 
of standard deviation SW is able to provide similar 
results when considering the additional cloud filtering. 
In terms of RMSE, SW is able to provide similar 
values to MOD35, and to improve them in the QC and 
MAIAC case with a difference of 0.7 and 0.6 K 
respectively. And finally, the combination of SW and 
MAIAC is able to reduce the RMSE in 0.2 and 2.4 K 
when compared to QC and MOD35 respectively.  
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3.2 Spatial analysis 

For the spatial comparison analysis seasonal mean 
LST values together with number of clear sky days per 
season for the year 2014 are considered. Seasons 
included in the analysis were JFM (January-February-
March), AMJ (April-May-June), JAS (July-August-
September) and OND (October-November-
December). Comparison was performed at the same 
three different levels of cloud masking than section 5.1 
(MOD35, QC and MAIAC). 

In Figure 3 and Figure 4 the boxplot diagrams for the 
LST and number of clear sky days representing the 
spatial mean values over the Amazon tropical forests 
(as denoted by the vegetation) are presented. In Figure 
3 it can be appreciated the importance of properly 
address the cloud-contamination effect as it can 
introduce temperature alterations (colder-than-true 
values) (Otsby, 2014).  

Figure 3. Boxplot diagrams for the seasonal LST values over the Amazon tropical forests considering the 
seasons JFM (January-February-March), AMJ (April-May-June), JAS (July-August-September) and OND 
(October-November- December) and for the three cloud mask stages of comparison: MOD35, QC and MAIAC.  

Figure 1. Ground measured Ts against TMODIS (cross) and TSW (filled circle) for the three cloud mask stages of 
comparison: left column (LST not produced due to clouds), middle column (LST good quality), right column 
(MAIAC cloud mask) and for the LST products considered: MYD11A1. The line 1:1 is also represented.  

Figure 2. Error metrics for the three stages of comparison, LST not produced due to clouds (MOD35), LST 
having good quality (QC) and MAIAC cloud mask (MAIAC) considering the LST values derived from the 
MODIS LST products (MYD11) (lighter) and split-window algorithm (darker). Error metrics were calculated 
considering the difference Ts-Talg. 
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In particular mean LST are shifted to higher 
temperatures (>1K) after applying the additional cloud 
filtering (for both QC and MAIAC).  However, the use 
of an additional cloud filtering however considerably 
reduces the number of available clear-sky-days (Figure 
4). Additionally, MAIAC is able to provide more 
cloud-free data for the different seasons (Figure 4). 
These results agree well with previous studies (Hilker 
et al, 2012) in which MAIAC was shown to provide 
about 20-80% more cloud-free pixels depending on 
season than MYD09 surface reflectance product. 
For the comparison of QC and MAIAC we see that 
MAIAC provide similar values to QC (high rate of 
intersection in comparison with MOD35 and QC). 
However, MAIAC LST spatial values are shifted 
towards hotter values in comparison to QC (1-1.5K). 
Nevertheless, due to the low number of available data 
the possible discrepancies are difficult to properly 
being addressed.  

4 DISCUSSION AND CONCLUSIONS 

In this work a comparative analysis between a MODIS 
daytime LST product resulting from the combination 
of updated split-window coefficients and the 
introduction of MAIAC cloud mask, and current 
MODIS LST products version 6 (MYD11A1), was 
presented. MODIS LST product (MYD11A1) was 
found to be severely cloud contaminated when 
additional QC is not considered, with overall RMSEs 
around 4 K. The deficient cloud detection is partly 
solved when using two alternative cloud filtering 
approaches: the QC layer and the MAIAC cloud mask. 
However, the accuracy is improved at expenses of the 
reduction in data amount. Validation against in situ 
measurements showed a decrease of the RMSE for 
MODIS LST products (MOD11) when additional QC 
filtering or MAIAC is considered, with RMSEs 
around 2-3 K. The combination of the LST product 
presented in this paper with the MAIAC cloud mask 
was able to improve the RMSE, with RMSE 
differences in the range 0.2-2 K. 
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ABSTRACT In this work we present results of an early validation of the Land Surface Temperature (LST) 
product retrieved from the Sea and Land Surface Temperature Radiometer (SLSTR) on board the Sentinel-3 
satellite (S3/SLSTR). Validation results were obtained from comparison of S3/SLSTR retrievals against in situ 
measurements of surface temperature collected over different instrumented sites in Spain and Chile. The test sites 
include agricultural and marshland land covers. The validation exercise was performed on the standard 
S3/SLSTR Level-2 LST product as well as on a dedicated LST split-window algorithm with an explicit 
dependence on surface emissivity. Methods for LST retrieval from the synergy between SLSTR and Sentinel-2 
Multispectral Scanner Imager (S2/MSI) data are also discussed. For this purpose, surface emissivity maps 
obtained from the high spatial resolution of S2/MSI are presented over some test areas. 

1 INTRODUCTION 

Sentinel-2 (S2) and Sentinel-3 (S3) missions were 
developed by the European Space Agency (ESA) to 
support the European Copernicus programme. The S2 
missions was designed to provide systematic global 
acquisitions of high-resolution multispectral imagery 
with a high revisit frequency through the Multi 
Spectral Instrument (MSI) with 13 spectral bands. 
MSI covers the Visible and Near Infra-Red (VNIR) 
and the Short Wave Infra-Red (SWIR) spectral ranges 
with a spatial resolution ranging from 10 m to 60 m. 

The S3 mission provides continuity to ENVISAT’s 
capabilities to cover ocean and land applications. Its 
main instruments are the Ocean and Land Colour 
Imager (OLCI) and the Sea and Land Surface 
Temperature Radiometer (SLSTR). OLCI operates in 
the 0.4-1 µm range at 300m spatial resolution, whereas 
SLSTR extends the spectral range to the Thermal 
Infra-Red (TIR) with two spectral bands roughly 
located at 11 and 12 µm.  

In this context, ESA funded the project “Synergistic 
Use of The Sentinel Missions For Estimating And 
Monitoring Land Surface Temperature (SEN4LST)”, 
which had the main objective to develop a SLSTR 
based LST algorithm that benefits from synergy 
between SLSTR and other Sentinels instruments (e.g. 
S3/OLCI and S2/MSI) to improve the atmospheric 
correction and the surface emissivity characterization. 
A LST algorithm based on the split-window technique 
with explicit dependence on emissivity was developed 

in the framework of the SEN4LST project (Sobrino et 
al., 2016), as well as a toolbox denoted as LST 
Processor (Ruescas et al., 2016). 

On another level, ESA implemented a different LST 
algorithm to generate the S3 Standard LST level-2 
product. This algorithm was based on the heritage of 
the LST algorithm used to generate the Standard LST 
product from ENVISAT imagery. The level-2 LST 
algorithm uses a set of coefficients for different land 
covers, so it is not including an explicit dependence on 
the surface emissivity. 

The main objective of this work is twofold: an early 
validation of the S3 level-2 LST product over different 
test sites and land covers is presented, and level-2 LST 
retrievals are compared to LST retrievals from the 
algorithm developed in the framework of the 
SEN4LST project. Additionally, we explore the 
feasibility of surface emissivity characterization from 
high resolution S2/MSI data and uncertainties linked 
to this characterization. 

2 TEST SITES 

2.1 Spain: Doñana and Almería 

Doñana test site (36.998N, 6.434W) is located in the 
south west of Spain near the Atlantic Ocean coast. 
Approximately half of its area is marshland. The 
marshes undergo a yearly cycle of inundation in 
autumn and drying out during the spring season. The 
topography of the marshes is extremely flat, with a 
maximum elevation difference of 2.5 m. Continuous 
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radiometric temperatures are measured with a 
Campbell Scientific IR120 radiometer. 

Almería test site (36.939N,2.034W) is located in Cabo 
de Gata, south Spain near the Mediterranean Sea. This 
region is characterized by a semi-arid climate with low 
rainfall, and the surface is covered mainly by soil and 
perennial vegetation. Radiometric temperatures are 
continuously measured by Apogee SI-120 radiometer. 

Figure 1 shows the location of the two Spanish test 
sites, including also RGB compositions from Sentinel-
2. More information about the sites can be found in
Sobrino and Skokovic (2016). 

DOÑANA 

ALMERIA 

Figure 1. Doñana (triangle) and Almería (square) test 
site in Spain. 

2.2 Chile: Oromo 

Oromo test site is located over a pasture grass field 
(40º53’6.07’’S,73º6’31.41’’W) in southern Chile. The 
land cover of this area is characterized by its greenness 
and wet soils during the whole year. The LAB-net 
station in this site is configured to store 5 min 
averages of the different variables, including surface 
radiometric temperature with an Apogee SI-111 
instrument (Mattar et al., 2016).  Figure 2 shows the 

location of the test site and RGB compositions from 
Sentinel-2. 

Figure 2. Oromo test site in Chile. 

3 SENTINEL 2/3 IMAGERY 

Sentinel-3 imagery was downloaded via the Sentinel 
Data Hub for the period July-August 2017. Sentinel-3 
data included Brightness Temperatures from the 
SLSTR instrument (level 1 RBT) and the level 2 LST 
product. L1/RBT data was used to apply the SW 
algorithm to brightness temperatures. Pixels located at 
the test sites coordinates were identified to extract the 
L1/RBT and L2/LST values.  

Sentinel-2 MSI imagery was also downloaded via the 
Sentinel Data Hub only for single dates for each test 
site (2017-07-31 for Doñana, 2017-08-04 for Almería, 
and 2017-05-09 for Oromo). Acquisitions dates were 
selected based on the cloud cover over the scenes to 
guarantee clear sky conditions at least over the test 
site. S2/MSI images were atmospherically corrected 
using the Sen2Cor module. At-surface reflectances 
were then used to estimate surface emissivity. 

4 LST ALGORITHMS 

The SW LST retrieval algorithm developed in the 
framework of the SEN4LST project is based in the 
mathematical structure suggested by Sobrino et al. 
(1996):  

Ts = Ti + c1(Ti-Tj) + c2(Ti-Tj)2 + c0 + (1) 
+ (c3+c4W)(1-ε) + (c5+c6W)∆ε 

where Ti and Tj are the brightness temperatures of 
SLSTR bands 8 and 9, respectively, W is the total 
column atmospheric water vapour, ε the mean 
emissivity and ∆ε the emissivity difference. Algorithm 
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coefficients ci are derived from simulated data, and its 
values are provided in Sobrino et al. (2016). 

The LST algorithm used in the SLSTR level 2 product 
is a heritage of the LST algorithm used in the Envisat’s 
AATSR level 2 product: 

Ts = a0 + b0(Ti-Tj)n + (b0+c0)Tj (2) 

This algorithm does not include W and ε in the 
formulation, but they are indirectly included in the 
coefficients a0, b0, c0 which depend on the land cover, 
vegetation fraction and water vapour (Prata, 2002). 

Doñana 

Almería 

Oromo 

Figure 3. Validation results over the three test sites 
(Doñana, Almería, Oromo).  

5 VALIDATION RESULTS 

Figure 3 shows the results obtained in the comparison 
between LST retrievals using the two algorithms (Eqs. 
1 and 2) and LST measured in situ over the three test 
sites (Doñana, Almería, Oromo). Overall, the SW 
(SEN4LST) algorithm provided better results than the 
Level-2 product, especially over Almería and Oromo, 
where the bias was reduced by more than 1 K. In the 
case of the Doñana test site, the bias was slightly 
lower for the Level-2 product, but the standard 
deviation was reduced by 0.7 K in the case of the SW 
algorithm. 

The highest variability was observed over Doñana and 
Oromo, with standard deviation values ranging from 2 
to 3 K for both algorithms. This result may be 
attributed to the high thermal heterogeneity over the 
Doñana test site in summer, when the surface is 
covered by dry vegetation and dry soil. In the case of 
Oromo, the surface is permanently covered by green 
grass, but the site has a high cloud cover occurrence. 
Therefore, it may be possible that some validation 
results were affected by the presence of clouds.  

Figure 4 includes some illustrative examples of the 
spatial patterns observed in the S3 LST product over 
the Iberian Peninsula and northern regions of Africa, 
and South America (Chile and Argentina). 

Figure 4. Visualization of the Sentinel-3 Level 2 LST 
product over the Iberian Peninsula (top) and South 
America (bottom). 
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6 SURFACE EMISSIVITY FROM S2/MSI 

In order to explore the feasibility of estimating surface 
emissivity at high spatial resolution, the NDVI 
thresholds method (NDVI-THM) (Sobrino et al., 
2008) was applied to S2/MSI data. For this purpose, 
S2 images were atmospherically corrected with the 
Sen2Cor module, which also provides a basic 
classification and cloud identification.  

The NDVI-THM identifies pixels of bare soil, 
vegetation, and mixed pixels (soil+vegetation) using 
specific NDVI values for soil and vegetation surfaces, 
NDVIs and NDVIv, respectively. These values are also 
used to compute the Fractional Vegetation Cover 
(FVC) from the scaled NDVI. Pixel emissivities are 
estimated using a weighted mean between soil and 
vegetation emissivities (εs and εv, respectively): 

NDVI<NDVIs: 
ε = mρred + n (3) 

NDVIs<NDVI<NDVIv: 
ε = εs(1-FVC) + εvFVC + C (4) 

NDVI>NDVIv: 
ε = εv+C (5) 

where C is a term that takes into account the cavity 
effect (multiple reflections over a rough surface). For 
bare soil pixels (NDVI<NDVIs), an empirical 
relationship between emissivity and reflectance in the 
red band is proposed, although the red band can be 
replaced by other band combinations to improve the 
statistical fit. 

Pixel emissivity uncertainty was also estimated 
through propagation of individual uncertainties using 
partial derivatives.  

Maps of surface emissivity and uncertainty for S3 TIR 
band 8 (10.8 µm) are illustrated in Figure 5 over the 
three test sites. 

7 CONCLUSIONS 

The S3 Level-2 LST product was validated over three 
test sites using in situ measurements. Results show an 
optimal performance of the L2 product, but LST 
retrievals were improved when using a SW algorithm 
with explicit dependence on the emissivity, especially 
over semi-arid areas. Surface emissivity maps at high 
spatial resolution were also derived from S2 MSI data, 
thus showing the potential synergy between S2 and S3 
data. Validation results presented in this work refer to 
a limited period of time. Longer validation periods are 
required to obtain robust statistics. 

RGB composition 

Emissivity band 8 

Emissivity band 9 

Uncertainty band 8 

Uncertainty band 9 

Figure 5. Surface emissivity maps at Sentinel-3 
SLSTR bands 8 (10.9 µm) and 9 (12 µm) derived from 
Sentinel-2 MSI data over the Doñana test site. 
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ABSTRACT - An automated radiometric calibration system was established on the Baotou Cal&Val test site in 
China to provide an operational high-accuracy and high-stability vicarious calibration and validation site for high 
resolution remote sensing instruments. The composition of the system is described in this paper, which provides 
bottom-of-atmosphere (BOA) reflectance in 30 minute intervals in 10 nm steps over the spectral range from 
400 nm to 1000 nm. The paper also provides an initial uncertainty analysis of the automated radiometric 
calibration considering three aspects: uncertainty associated with the spectrometer (ground viewing instrument) 
measurements; uncertainty associated with the BOA reflectance calculation; and the uncertainty associated with 
averaging this to the requirements of the Radiometric Calibration Network, RadCalNet. Preliminary analysis 
shows that the combined uncertainty associated with RadCalNet BOA reflectance would be approximatively 3.0 
% within the spectral range 500 nm ~ 900 nm. The uncertainty associated with the TOA reflectance propagated 
from BOA reflectance measured by single observation is approximatively estimated as 4 % ~ 4.5 %, ignoring the 
influence of the surrounding pixels. 

1  INTRODUCTION 

Satellite-derived Earth observation data provide 
information about environmental and climate changes 
that is of immense value to society. However, the 
analysis of long term trends requires high accuracy 
data that can be reliably compared across time. This 
increasing need for high accuracy remote sensing data 
and information products in turn creates the need for 
reliable, stable ground references that can be used for 
the in-orbit characterisation, calibration and validation 
of satellite radiometric instrumentation.  

Field vicarious calibration is a classic on-orbit 
calibration method, which provides field references for 
sensor full-chain calibration and performance 
evaluation, and is an effective way to compare satellite 
observations with a laboratory measurement standard 
(Naughton, et al., 2011). The principles of field 
calibration can be summarized as: simultaneously 
measuring the reflectance of the ground target and the 
atmospheric profile when the satellite overpasses; 
simulating the top-of-atmosphere (TOA) spectrally-
resolved reflectance through a radiation transfer model 
based on the observing geometry of the sensor and 
measured surface & atmosphere characteristics; and 
finally comparing the simulated TOA radiance and the 

satellite observation value to determine the radiometric 
calibration coefficients. However, normal field 
calibration campaigns are expensive and require 
cooperation of ground observations by teams of 
scientists with the satellite overpass, along with clear 
weather conditions and expensive field equipment. In 
general, the radiometric accuracy of field calibration at 
solar reflective bands is approximately 5 % ~ 7 %. 
Automating the process of field observations increases 
the number of satellite overpasses that can be matched, 
is cheaper and has the potential for higher accuracy. 

To realise automatic high frequency satellite 
radiometric (and geometric) calibration and validation, 
the Academy of Opto-Electronic (AOE), Chinese 
Academy of Sciences has designed the automated 
radiometric calibration system, and deployed it on the 
Baotou Cal&Val site (Li, et al., 2015). The system 
comprises operational ground-viewing radiometers, 
operational atmospheric measurement real-time 
transfer of measured data, data processing and 
radiation transfer modelling. It can obtain dynamic 
information of target surface reflectance, aerosol 
optical thickness, water vapour content, etc. The 
system can provide sensor-independent TOA spectral 
reflectance product with a 2 nm spectral interval every 
2 minutes. This TOA spectral radiance product can be 
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combined with the sensor-specific spectral 
responsibility to obtain the band-integrated radiance of 
the sensor, which can be directly compared with the 
sensor observation. The automated radiometric 
calibration system can effectively improve both the 
frequency and stability of on-orbit radiometric 
calibration for those optical remote sensing sensors. 

In this paper the Baotou Cal&Val site will be 
briefly introduced in section 2, and after that the 
system and methodology of the automated radiometric 
calibration are described in section 3. Emphasis is laid 
on the uncertainty analysis to the automated 
radiometric calibration in sections 4. And a 
preliminary analysis applied to the Sentinel-2A sensor 
is given in section 5. 

2  DESCRIPTION OF THE BAOTOU CAL&VAL 
SITE 

2.1 General Information 

The Baotou Cal&Val site (“Baotou site” in brief) is 
located at the Ming’an township, Urad Front Banner, 
Bayannur prefecture, Inner Mongolia Autonomous 
Region, China. The city of Baotou is about 50 km 
away from the Baotou site. The geographic coordinate 
of the permanent target area in the site is 40.85°N, 
109.6°E and the overall Baotou site extends over a 
region up to 35 km along the east-west axis, and 
16 km along the north-south axis, with total area 
292.5 km2 and is about 1270 m above sea level. 

A series of targets and infrastructure has been built 
in the Baotou site in order to provide effective support 
for sensor aerial test flight, satellite sensor on-orbit 
calibration & performance evaluation, and RS product 
validation (Li, et al., 2015). 

In 2014, the Baotou site was chosen as one of the 
four prototype sites for the new RadCalNet 
(radiometric calibration network of automated 
instruments, sponsored by the Committee on Earth 
Observation Satellites) (Czapla Myers, et al., 2016). 

RadCalNet has its own data processing system and 
requires ground reflectance data in 10 nm intervals 
every 30 minutes along with atmospheric conditions. 
The data are processed to provide TOA reflectance 
products with the same spectral and temporal 
resolution. 
2.2 Permanent Target Region and Desert Area 

To meet the requirements of a wide dynamic range and 
stability of the ground targets in sensor radiometric 
calibration, multi-greyscale permanent artificial 
optical targets and a flattened desert area were built in 
the Baotou site (see Fig.1). 

Fig.1 Google image of the permanent target region and 
desert area (marked in circles) 

In the permanent target region, the gray-scale 
artificial target is composed of 2 white, a gray and a 
black uniform gravel squares, each of which covers an 
area of 48 m × 48 m. There are three reflectance levels 
for the four squares, i.e. approximately 10 %, 20 % 
and 60 %. For the automated radiometric calibration 
and validation of moderate/high resolution satellite 
sensors, a desert area (300 m × 300 m) was established 
in October 2015. It is 1.8 km away from the permanent 
target region to the north-west and has been flattened. 

3  METHODOLOGY OF AUTOMATED 
RADIOMETRIC CALIBRATION 

3.1 Automatic Observation System of Ground 
Reflected Radiance (AOSGRR) 

At the Baotou site, the surface-reflected radiance is 
measured by several automatic observation systems of 
ground reflected radiance (AOSGRR) developed by 
AOE (Academy of Opto-Electronics), CAS (Chinese 
Academy of Sciences); Fig. 2. Each system consists of 
a spectrometer unit, a control and data transfer unit, 
and a support and protective shell. The current system 
uses CR series spectrometers which cover the spectral 
region from 380 nm to 1080 nm, with a spectral 
resolution of 2 nm. The system can directly record the 
radiance in W m-2 sr-1 μm-1 and adjusts the integration 
time to ensure a high signal to noise ratio. The 
spectrometer has a 3o field of view (FOV) and was 
mounted at a height of 1.5 m. It observes the ground at 
nadir. 
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Fig.2 AOSGRR set on the white target and desert area 
3.2 CE318 Sun Photometer 

A sun photometer, the CIMEL CE318, has been fixed 
on the Baotou site. The CE318 instrument is a member 
of AERONET (Aerosol Robotic Network). The 
scanning model includes direct sun and sky 
measurements. Direct measurements of the sun and the 
sky can be made with several programmable 
sequences. The direct sun measurement is made in 
eight spectral bands and the measurement sequence 
takes approximately 10 s. 
3.3 Reflectance Inversion Method from AOSGRR 
Measurement 

The surface reflectance of the target can be derived 
from the following equation: 

scat
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sky

direct
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g

EEE
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++
=

π
ρ

 (1)
Where, the 

gL  is the measured surface reflected 

radiance of the target by AOSGRR. direct
solarE is the direct 

solar radiance arrived at ground, diffuse
skyE  and scat

skyE  are 

the total sky irradiance reaching the ground. Both of 
the solar and sky irradiance reaching the ground are 
estimated with MODTRAN code (Berk, et al., 2011), 
with the observed atmospheric parameters provided by 
the Baotou AERONET station. 

4 UNCERTAINTY ANALYSIS OF THE 
AUTOMATED RADIOMETRIC CALIBRATION 

4.1 Uncertainty Associated with Spectrometer 
Measurements 

The first step in obtaining the TOA reflectance of the 
Baotou targets is the measurement of the surface 
reflectance by the AOSGRR. During the actual 
operation of AOSGRR, the measurement is affected by 
several factors such as the uncertainty of spectrometer 
calibration and change of spectrometer working 
environment. 

(a) Spectrometer Calibration. The spectrometer 
used in AOSGRR was calibrated by the National 
Institute of Metrology (NIM), China. The radiometric 
calibration was performed using a reference lamp and 
reflective diffuser (Dai, et al., 2017). The uncertainties 
associated with several sources were estimated 
through laboratory measurements. These sources are 
repeatability of spectrometer, lamp, lamp aging and 
current set, alignment for lamp, distance, diffuser 
panel, uniformity, nonlinearity of spectrometer, and 
stray light. The total uncertainty of spectrometer 
calibration was estimated by NIM, ranging in the order 
of 1.19 % ~ 2.3 % within the spectral range 500 nm ~ 
1000 nm. 

(b) Change of spectrometer working environment. 
Since rigorous measurements have not yet been 
conducted, it is estimated that the uncertainty 
associated with the change of the working 
environment (e.g. temperature sensitivity, 
transportation to the site) for the spectrometer is 0.5 %. 

The total uncertainties associated with 
spectrometer measurements are summarised in Table.1. 

Table.1 Uncertainties associated with measurements 
Uncertainty 
Contributor 

(%) 

Wavelength/nm 

400 500 600 700 800 900 1000 

Spectrometer 
Calibration 28.40 2.30 1.19 1.20 1.25 1.32 1.41 

Change of 
working 

environment 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Total 
uncertainty 28.40 2.35 1.29 1.30 1.35 1.41 1.50 

4.2 Uncertainty associated with BOA reflectance 
calculation 

The bottom-of-atmosphere (BOA) reflectance is 
calculated from the ground-reflected radiance 
measured by AOSGRR, the direct solar irradiance, and 
the total sky irradiance reaching the ground. The solar 
and sky irradiances are simulated by MODTRAN. In 
the simulation, several factors will increase the 
uncertainty of BOA reflectance, such as uncertainty of 
the solar irradiance model, uncertainty of the radiative 
transfer model, measurement uncertainties for the 
atmospheric parameters and other factors. 

(a) Uncertainty of the solar irradiance model. The 
uncertainty of exoatmospheric solar irradiance model 
used in MODTRAN is estimated to be (standard 
uncertainties) 1.5 % at 450 nm, 0.9 % at 650 nm, 
1.1 % at 850 nm, and 0.8 % at 1550 nm (Thuillier, et 
al., 1998, 2003). These values were linearly 
interpolated to provide intermediate wavelength 
uncertainties.   (b) Uncertainty of the radiative transfer 
model. According to the MODTRAN user manual 
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(Berk, et al., 2011), the uncertainty associated with the 
radiative transfer code MODTRAN-5 is 2 % for 
radiance predictions. 

(c) Uncertainty of the atmospheric parameter 
retrieval. To estimate the uncertainty associated with 
the BOA reflectance due to uncertainties in the 
atmospheric parameters, Monte Carlo simulations 
were performed, adding errors of 12 % and 0.01 to the 
water vapour content and aerosol optical thickness 
respectively (Holben, et al., 1998; Sinyuk, et al., 2012). 
The corresponding direct solar and total sky 
irradiances were simulated 1000 times by MODTRAN. 
The standard deviation of the 1000 sets of simulated 
irradiance is determined to be caused by measurement 
errors of water vapour content (WVC) and aerosol 
optical thickness (AOT). This process was repeated for 
different standard conditions, e.g. for a summer 
condition and a winter condition. Fig.3 shows the 
determined uncertainty caused by measurement error 
of the water vapour atmospheric parameter for 
summer and winter conditions. Similar analyses were 
carried out for AOT. 

Fig.3 Uncertainty caused by error of WVC 
(d) Other factors. The MODTRAN-5 radiative 

transfer model also requires classification, e.g. of 
aerosol type or atmospheric model. Some analysis was 
performed varying the classification and the 
uncertainty associated with the model choices was 
estimated conservatively to be within 1 %. 

The separate uncertainties shown in Table.2 are 
calculated by assuming that the aerosol is rural, the 
atmospheric model is mid-latitude summer, the water 
vapour content is 0.5 g cm-2, the aerosol optical 
thickness is 0.2, the solar zenith angle is 30, and the 
view zenith angle is 0. 

The BOA reflectance computed from the surface-
reflected radiance measured by AOSGRR is provided 
in 2 nm steps over the spectral range 380 nm ~ 
1080 nm every 2 minutes. To generate the standard 
RadCalNet product with 10 nm spectral intervals and 
every 30 minutes, temporal averaging and spectral 
resampling processes are used. The uncertainties 
caused by this process should also be considered. 

Table.2 Uncertainties associated with BOA reflectance 
calculation (Measured radiance from Table 1) 
Uncertainty 
Contributor 

(%) 

Wavelength/nm 

400 500 600 700 800 900 1000 

Measured 
radiance 28.40 2.35 1.29 1.30 1.35 1.41 1.50 

Solar 
irradiance 

model 

1.50 1.35 1.05 0.95 1.05 1.08 1.04 

MODTRAN 2 2 2 2 2 2 2 

AOT 0.28 0.23 0.20 0.17 0.16 0.15 0.13 

WVC 0.001 0.001 0.027 0.18 0.12 0.80 0.03 

Other factors 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Total 
uncertainty 28.53 3.52 2.79 2.77 2.82 2.97 2.89 

4.3 Uncertainty Associated with BOA Reflectance at 
10 nm, 30 Minute Intervals 

 (a) Temporal average. To obtain BOA reflectance 
every 30 minutes, the reflectance averages of 15 
minutes before and after a given time (i.e. 9:00, 9:30, 
10:00, etc.) are used as the final BOA reflectance. 
Since the measurement interval of AOSGRR is 2 
minutes, fifteen BOA reflectance values are averaged. 
The uncertainties caused by temporal average process 
is estimated by the standard deviation of the fifteen 
BOA reflectance values. The value thus obtained 
ranged from 0.32 % at 700 nm to 11 % at 400 nm. 
This will be caused by several factors, including 
instrument noise, and the motion of the sun and 
changes in environmental condition. The average of 15 
values will have a smaller uncertainty than any 
individual reading but it is unlikely to be a purely 
random effect. Therefore, we determined the 
uncertainty associated with the average of the 15 
readings by dividing the standard deviation by the 
square root of 15 and then adding, in quadrature, a 
base level of 0.3% to account for common errors 
between the different measurements. 

(b) Spectral resampling. AOSGRR uses a 
hyperspectral spectrometer with 2 nm spectral 
sampling interval. There is no spectral resampling 
process in generating nadir BOA Reflectance at 10 nm 
intervals, the data are simply subsampled. So, the 
uncertainty caused by spectral resampling process is 
estimated to be zero. 

Total uncertainties associated with nadir BOA 
reflectance at 10 nm, 30-minute intervals are shown in 
Table.3. 
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Table.3 Uncertainties associated with nadir BOA 
reflectance at 10 nm, 30-minute intervals 
Uncertainty 
Contributor 

(%) 

Wavelength/nm 

400 500 600 700 800 900 1000 

BOA 
reflectance 28.53 3.52 2.79 2.77 2.82 2.97 2.89 

Temporal 
average 2.97 0.34 0.31 0.31 0.32 0.42 1.33 

Total 
uncertainty 28.68 3.54 2.81 2.79 2.84 3.00 3.18 

4.4 Final Uncertainty Associated with BOA 
Reflectance 

The total uncertainty associated with BOA reflectance 
is shown in Fig.4, which is calculated by assuming 
that the aerosol is rural, the atmospheric model is mid-
latitude summer, the water vapour content is 0.5 g cm-2, 
the aerosol optical thickness is 0.2, the solar zenith 
angle is 30º, and the view zenith angle is 0º. 

Fig.4 Total uncertainty associated with RadCalNet 
BOA reflectance 

5 UNCERTAINTY ANALYSIS APPLIED TO 
SENTINEL-2A/MSI SPECTRAL BANDS 

The aim of the analysis is to determine the spectral 
reflectance for comparison with satellite sensors. As an 
example of the uncertainty associated with the ground 
measurements in such a comparison, we obtained an 
average uncertainty for the bands of Sentinel-2 
multispectral imager (MSI) (Martimort, et al., 2012); 
Table.4 weighted by the spectral response function of 
the Sentinel-2 bands. The weighted average is 
calculated using the higher spectral resolution product 
directly from the Baotou site processing, rather than 
the 10 nm data of RadCalNet.   

Table.4 Uncertainties associated with the bands of 
Sentinel-2A/MSI 

Uncertainty 
Contributor (%) 

Channels 

Blue Green Red NIR 

Spectrometer 
measured radiance 2.84 1.31 1.29 1.37 

Simulated solar and 
sky irradiance 2.63 2.53 2.42 2.50 

Temporal average 0.34 0.31 0.31 0.35 

Total Uncertainty 3.88 2.87 2.76 2.88 

6 FUTURE WORK 

This paper described the automated radiometric 
calibration system deployed on the Baotou site, and 
the uncertainty analysis which has been undertaken for 
the BOA reflectance.  In future we will further explore 
the uncertainty associated with TOA reflectance, 
considering the propagation to TOA. We will also 
include a model, under development, for correcting the 
spectrometer for thermal effects. The uncertainty 
associated with the non-uniformity and bi-directional 
reflectance distribution function (BRDF) effect of the 
targets should be analysed. In addition, due to the 
adjacency effect in estimating the TOA reflectance, the 
uncertainty associated with the adjacency effect 
correction will be also estimated. More detailed 
analysis work is in progress, and the corresponding 
joint manuscript between AOE, NPL and NIM is in 
preparation and will be published in future. 
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ABSTRACT - We aggregate the Advanced Along-Track Scanning Radiometer (AATSR) land surface 
temperature (LST) 1 km dataset to the 10 km High Asian Refined analysis (HAR) surface temperature (TSK) 
and 2-meter air temperature (T2) grid to avoid the cloud effect and data sampling gap on the satellite 
observations. Meanwhile, we use the diurnal temperature cycle (DTC) model to fit the HAR datasets time to the 
AATSR overpassing time. Then, we investigate seasonal trend, spatial variability and elevation dependent of 
LST and T2 over TP for 2003-2011 by the independent simultaneously AATSR and HAR datasets over Tibetan 
Plateau (TP) region. The common used linear regression method is applied to both the AATSR data and the HAR 
data for the temperature trend and variability analysis over the study area. The consistent results from both 
satellite observations and numerical outputs show that the warming trend over the entire TP is not obvious during 
last decade, especially at the areas higher than 4000 m. The temperature of the region around Namco is warming 
during last decade. The results at site Qomolangma show clearly cooling trend, especially during day. 
Meanwhile, the discrepancy between the different datasets show that the simulation outputs warming trend is 
higher than the observation trend, especially in autumn and winter. Moreover, the increase of air temperature+ 
was more distinct than that of the surface temperature over TP for the last decade.  

1 INTRODUCTION 

The place of Tibetan Plateau (TP) is always treasured 
due to its significant geography and climatology 
position in Asia as well as the whole world. The 
research on the warming trend of the TP region is one 
of the main challenges in regional and global climate 
studies. However, the ground stations in TP are very 
limited and patchy, especially in the western TP region 
and elevations higher than 4,800 m (Qin et al., 2009). 
Meanwhile, thermal remote sensing satellite 
observations and numerical simulations can give the 
chance of broad spatial coverage of the land surface 
temperature (LST) product independently (Li et al., 
2013). The elevation dependency on temperature 
trend, owing to its beneficial to understand mountain 
environmental variations, has been paid more 
attentions during global climate change studies in 
recent years (Fyfe and Flato, 1999; Liu and Chen, 
2000; Qin et al., 2009). 

Several studies have been carried out in the 
temperature trend analysis on both global mean 
surface temperature and regional high mountain areas. 
Some of them show the clearly warming trend in their 
studies. For example, Fyfe and Flato (Fyfe and Flato, 
1999) discovered an elevation dependency of the 

simulated surface screen temperature increase over the 
Rocky Mountains in the winter and spring seasons. 
Liu et al. (Liu and Chen, 2000) used a linear 
regression model to detect the temperature trend over 
TP and confirmed the warming trend increasing with 
elevation. Over the TP regions, the warming trend is 
also observed. Oku (Oku et al., 2006) analysed the 
hourly LST geostationary observations over TP during 
the period of 1996 to 2002 and concluded an 
increasing trend. Qin et al. (Qin et al., 2009) 
investigated the recent warming trend in TP with 
respect to the altitude using monthly MODIS LST data 
of 2000 – 2006 and concluded that no increasing trend 
was observed for elevations higher than 5000 m. Wu et 
al. (Wu et al., 2013) revealed a statistically warming in 
ground surface temperature during 1980-2007 from 16 
meteorological stations over central TP region. Zhang 
et al.(Zhang et al., 2014) showed the increase surface 
temperature of warming lake in TP during 2001-2012 
is caused by the increase of land and air temperature ; 
meanwhile, the temperature change of cooling lakes, 
most of which located at elevations higher than 4200 
m, results from cold water from melted glacier.  By 
analysing surface air temperature, Gao et al. (Gao et 
al., 2014) showed a significant warming trend over the 
TP in the period of 1979-2010. 
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However, the probability of warming hiatus on 
global temperature trend is also reported by recent 
studies (Mears et al., 2003; Fyfe et al., 2013; An et al., 
2017). Mears et al. (Mears et al., 2003) discovered the 
trend discrepancy between satellites based temperature 
and in situ observations. Fyfe et al. (Fyfe et al., 2013) 
also found that recent observed global warming trend 
is significantly less than that of climate models 
simulation. An et al. (An et al., 2017) detected a 
warming hiatus over the TP regions lower than 4000 m 
since the late 1990s as well as a delayed warming 
hiatus higher than 4000 m from mid-2000s. 

Although various studies on the surface 
temperature trend analysis over the world using these 
two data sources have been done for the last decades, 
it is still controversial whether it is a warming trend or 
a warming hiatus over the earth due to the estimation 
and integration bias of different data sources. 
Meanwhile, the satellite based LST datasets are 
seldom used in the global climate change studies due 
to some limitations, such as the lack of high quality 
long-term climate record (Good et al., 2017), satellite 
sampling and impact from the clouds (Jin and 
Dickinson, 1999; Vinnikov et al., 2012). Although the 
integration of satellite observations and numerical 
simulations could intimidate the limitations to a 
certain extent, the merged processes and uncertainty of 
representation of LST still caused unprecedented 
discrepancies (Karl et al., 2006; Good et al., 2017). 

In recent years, we have thoroughly investigated 
the potential usage of the quality-assured Advanced 
Along-Track Scanning Radiometer (AATSR) derived 
land surface temperature (LST) performance with 
ground measurements and numerical weather 
simulations (Ouyang et al., 2017) over Heihe river 
basin and TP. In this paper, we first time use the 
AATSR dataset and High Asian Refined analysis 
(HAR) simulations to study the temperature trend over 
TP region from 2003-2011. We make a revision on the 
AATSR spatial aggregation from 1 km to 10 km to 
avoid the cloud effect and data sampling gap on the 
satellite observations. Meanwhile, we use the diurnal 
temperature cycle (DTC) model to fit the HAR 
simulations and the AATSR observations passing time. 
We then give an independent overview of the surface 
temperature trend over TP region for the last decade. It 
is an attempt analysing the temperature trend of both 
LST and T2 air temperature over TP region and could 
guarantee avoiding the integration of differences data 
sources. 

2 DATA AND METHODOLOGY  

2.1 Data  

The study area of the TP region is between 26º-40ºN, 
74º-101ºE. The TP region is always referred as the 

region above 3000 m and the average elevation of TP 
is 4000 m. We analyse two independent data sources 
including AATSR LST products, HAR TSK and HAR 
T2 datasets from TP region for 2003-2011 in this study 
for the seasonal analysis. The three datasets are 
validated using a systematic evaluation framework 
proposed by our previous work. AATSR derived 1 km 
LST is one of the most accurate satellite LST data 
produced by GlobTemperature project of European 
Space Agency (ESA) Data User Element (DUE) 
(Ghent, 2012; Good et al., 2017) which is derived 
using the “split-window” method from the AATSR 
sensors. AATSR and its precedents ATSR series could 
provide over twenty years’ precise observation over 
the earth surface. HAR outputs are hourly 10 km 
gridded datasets dynamically downscaled from the 
global analysis data using the Weather Research 
Forecasting (WRF) model (Maussion et al., 2014). 
HAR outputs provide over 10 years of high resolution 
atmospheric datasets including surface skin 
temperature (TSK) and 2 meter above ground air 
temperature (T2) over TP region. Elevation data used 
for the discrimination for the area higher than 4000 m 
are also from HAR datasets. Table 1 gives a general 
idea of the three datasets. 

2.2 Methodology 

We use the independent AATSR observation data and 
HAR simulation data to analyse the surface 
temperature trend of 2003-2011. The AATSR overpass 
the TP region at around 11:30 a.m. /p.m. Beijing Time. 
The hourly HAR datasets are normalized to the 
AATSR overpassing time by the DTC model. 
 

Table 1. The temporal and spatial details of the three 
datasets original information. 

Dataset 
name 

Temporal 
resolution 

Spatial 
resolution 

Time 
Period Source 

AATSR 
LST 

Twice 
per day 1 km 2002-

2012 
GlobTempe

rature 
HAR 
TSK Hourly 10 km 2001-

2014 WRF HAR 
T2 Hourly 10 km 2001-

2014 
Meanwhile, the AATSR 1 km datasets are 

aggregated to 10 km HAR grid by the aggregated 
weighting method. Note that the AATSR and HAR 
datasets are all processed to the same clear-sky spatial 
and temporal conditions, which could guarantee that 
these datasets are all in the same temporal and spatial 
resolutions conditions although they are compared 
independently. After the data preparation processes of 
temporal and spatial matching, a linear regression 
model is used in the trend analysis (Ouyang et al., 
2017). The trend is also calculated at different 
elevation range. The following equation is used to 
detect the temperature trend: 
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y=a+bx (3) 

where y denotes the surface temperature 
(LST/TSK/T2); x is the time in years; a is the 
intercept; b is the slope i.e., the warming rate. 

We investigate both seasonal trend and spatial 
variability of LST and T2 over TP for 2003-2011 by 
the day and night AATSR and HAR datasets. In 
addition, the LST and T2 trends at two specific sites 
are analysed to figure out the trend variations in 
different land surface type and different surface 
elevation. 

The main processes in this paper are based on the 
linear regression model of equation 1. The calculation 
basis x is 9 years and each calculation is based on the 
four different seasons. We give an independent 
analysis of TP surface temperature trend from four 
aspects: first, we give an annual seasonal average 
temperature trend slope 1 on each 10 km grid in the 
whole study area for 2003-2011 to give a spatial 
variation on each season. Second, we consider the 
study area as a whole and give 9-year regression. 
Third, we choose the grid higher than 4000 m and 
calculate the grid of which slope is higher than 0 
(warming). Finally, we compute the two specific 
validation sites statistics on the average temperature 
trend. 

3 RESULTS 

3.1 Spatial warming trend variation on each grid in the 
study area 

Fig.1 shows the spatial seasonal variations result from 
both satellite observations (AATSR LST) and 
numerical outputs (HAR TSK/T2). For simplify, only 
the spring and winter day seasonal trend variations are 
shown. For the following results analysis, we only 
show the most representative figures to give a general 
idea of the trend. In general, the trend from AATSR 
LST is similar to that from HAR TSK/T2. Both of the 
two datasets show that the warming trend over the 
entire TP is not distinct during 2003-2011, especially 
for the satellite observations during autumn and 
winter. In fact, the simulations outputs are warmer 
than the observations for all the seasons except a little 
colder in the summer day. The overestimate of the 
simulation outputs has also been found by Jin et al. 
(Jin et al., 1997) in low and mid-latitude and Fyfe et 
al. (Fyfe et al., 2013) in global mean surface 
temperature analysis.  Note that, the satellite observed 
spring and winter day trends are similar to the 
numerical outputs. Moreover, the Namco area and 
surroundings (around 30ºN, 92.5ºE) show the warming 
trend for all the seasons from all the datasets. 

(a1) 

(a2) 

(a3) 

(b1) 

(b2) 

(b3) 
Figure 1. The spatial seasonal variations result from 
AATSR LST and HAR TSK/T2 warming trend over 
the entire during 2003-2011. Spring day average trend 
from (a1) AATSR LST, (a2) HAR TSK, (a3) HAR T2; 
winter day average trend from (b1) AATSR LST, (b2) 
HAR TSK, (b3) HAR T2. Some texture is evident for 
the swath of the AATSR is 500 km and the HAR 
sampling is also the same path as AATSR.  
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3.2 The whole study area averaged trend 

Further studies are also conducted for the total average 
temperature trend over TP region both at day and night 
during last decade (Fig.2). From our former studies, 
the night AATSR LST trend is more similar to the 
HAR T2 than HAR TSK. The exception occurred at 
autumn night, where the AATSR LST shows no 
warming trend, while both HAR TSK and T2 show 
warming trend of 0.20 and 0.31 (b value), respectively. 
These results match the results in section 3.1 (not 
shown in figure), where the warming is clear from 
HAR datasets, especially in the HAR TSK. Except this 
inconsistent, the simulations and observations show 
nearly the similar results: the warming trend is not 
distinct, where the largest b value is 0.15 (excluded the 
autumn night. Both AATSR and HAR datasets even 
show the minus value for during spring night. In 
consideration of the unprecedented extreme climate 
events, cloud contamination, satellite noise and 
simulation bias in the computation, the rate is not 
distinct at all. 

(a) 

(b) 
Figure 2. The total average temperature trend over TP 
region both at night during 2003-2011. (a) spring 
night, (b) autumn night. 

3.3 Warming trend of areas higher than 4000 m 

The area higher than 4000 m with a warming rate 
higher than 0 (warming trend) is analysed and shown 

in Fig.3. The results show that in these areas the 
frequency of warming rate higher than 0 (warming 
trend) is less than 50% except for the autumn day from 
HAR datasets. The HAR datasets show a more distinct 
warming trend than AATSR observations, especially 
for the HAR T2 datasets. The frequencies of warming 
trend from HAR T2 datasets are higher than that from 
AATSR observations and HAR TSK for almost all 
seasons except winter night. It means the increase of 
air temperature is more distinct than that of surface 
temperature over TP region for the last decade. 

(a) 

(b) 
Figure 3 The area higher than 4000 m warming rate 
higher than 0 (warming trend) during 2003-2011. (a) 
day average, (b) night average. 
3.4 Warming trend of two typical sites 

We choose two typical ground sites for the different 
land surface type warming trend analysis: Namco 
(4730 m) for the near lake alpine steppe land surface 
type and Qomolangma (4293 m) for the riverbed 
gravel land surface type. The Namco site show clearly 
warming trend at both day and night for the 
observations and numerical outputs (Fig. 4). The 
results that the area around Namco is warming for all 
the datasets during all seasons are consistent with the 
results from Section 3.1. During spring and summer, 
the pattern of day and night for all datasets are similar.  
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(a) (b) 

(c)      (d) 
Figure 4 Two typical ground sites for the different land surface type warming trend analysis during 2003-2011. 
Day average trend for (a) Namco, (c) Qomolangma; Night average trend for (b) Namco, (d) Qomolangma. 

The discrepancy is that the trend observed from 
AATSR show a little cooling (-0.1) during autumn 
night, whereas the warmer trend (0.5) is observed by 
AATSR during winter day than HAR outputs (~0.3). 

In contrast, the Qomolangma site show a distinct 
cooling trend, especially from simulation outputs 
during day. During day, the HAR TSK show a cooling 
trend of higher than -0.5 for spring, summer and 
autumn. Although the trend of autumn and winter 
night is not distinct, the Qomolangma site is warming 
during last decade in general. 

4 CONCLUSION 

This study first time uses independent and 
simultaneous quality assured satellite observations and 
numerical datasets to analyse the temperature trend 
over TP for the last decade. We analysed the seasonal 
and spatial TP region temperature trend independently, 
as well as the characteristics of areas higher than 4000 
m. 

The results include two parts: the first part is the 
consistent results from different datasets and the 
second part is the discrepancies among them. The 
consistent results from both satellite observations and 
numerical outputs show that 1) the warming trend over 
the entire TP is not distinct during last decade, 
especially at the areas higher than 4000 m. 2) The 

spring day average AATSR LST trend is consistent 
with the HAR TSK and T2 trend. 3) The temperature 
of the region around Namco is actually increasing 
during last decade in all seasons from all the datasets. 
4) The results at site Qomolangma show distinct
cooling trend, especially during day. 

Meanwhile, the discrepancy between the different 
datasets shows that the warming trend from simulation 
outputs is higher than that from observation, especially 
in autumn and winter. Moreover, the increase of air 
temperature is more distinct than that of surface 
temperature over TP for the last decade.  

The limitation of the studies also includes two 
parts: First, the clear-sky satellite observations 
sampling without cloudy-sky temperature information 
might mask the true LST trends (Wang and Key, 2003; 
Westermann et al., 2012); Second, the 9-year trend 
comparison is not enough for the climatic change 
studies. In the future studies, we will focus on the 
long-term temperature analysis from different sources 
of datasets under all sky conditions. The urgent need 
for the inclusion of long-term remote sensing-based 
LST data in the global change studies has been 
mentioned in the Intergovernmental Panel on Climate 
Change (IPCC) (Change, 2001; Oku et al., 2006). This 
work gives a clearer picture of climate change patterns 
through satellite derived LST data. 
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ABSTRACT The OLCI sensor of Sentinel-3 satellites is the successor of MERIS sensor aboard Envisat 
(2002-2012). Although primarily designed for Ocean applications, OLCI data are very valuable for global and 
regional Land applications, lands being systematically acquired in Full Resolution mode (300 m).  
During the geoland FP7 project, a production chain of Land biophysical parameters at 300 m from MERIS data 
was developed and demonstrated by producing a full year of 10-days fCover, FAPAR and LAI maps over Europe. 
Such products are input to regional Agriculture applications, like the service helping to insure farmers against 
pastures drought in France, developed with an Insurance company partner; this service is based on a Forage 
Production Index (FPI) computed from the full-year time series of the fCover maps. The loss of Envisat in 2012 
led to use MODIS data as a back-up solution, plan being now to migrate back to the S3 OLCI data.  
Integration of OLCI data started as soon as first S3 products were made available; specific features implemented 
to best process the OLCI data are described, the set of 21 VNIR spectral bands making it highly powerful to get 
robust biophysical information on vegetation.  
Results of the qualification of S3 OLCI data for the FPI service are presented here. This consists in performing 
comparison of the fCover maps produced from OLCI and MODIS on a 10-days periods and checking the 
achieved consistency and precision between these 2 data sets, which is needed in order to make near-perfect 
continuity between MODIS-based historic data and the new Copernicus based service. 

1 INTRODUCTION 

1.1 Context 

The OLCI sensor aboard the Sentinel-3 satellites is the 
successor of MERIS sensor of the Envisat mission 
(2002-2012). In the frame of geoland2 FP7 project and 
in preparation to Copernicus, a processing chain was 
developed to produce 300 m biophysical maps from 
MERIS Full Resolution (FR) data. It was initially 
demonstrated by providing a full year of fCover, 
FAPAR and LAI 10-days products over Europe. In 
2012, the sudden loss of Envisat forced to switch to 
MODIS Level 1 data as a back-up solution; for that 
sake, multi-resolution techniques were applied to 
generate similar 300 m products from bundle MOD02 
250 m and 500 m products.  

1.2 Operational applications 

Since 2012, the 10-days fCover maps produced by this 
processing line were used to develop the Forage 
Production Index (FPI) and the associated service 
(Roumiguié, 2015), the FPI being used as a reference 
index for insurance of farmers against grassland 
drought. 
FPI has been validated at national level by an 
independent experts committee acting on behalf of 
French Ministry of Agriculture; it is now used by the 
main insurance companies in France. In order to build 
up the FPI from long-term history, the whole series of 

MODIS and MERIS images were processed over 
France, since 2000 and 2003 respectively. 

1.3 Copernicus and the Sentinel-3 constellation 

With the start of Copernicus operational phase and the 
availability of OLCI products from the first S3 
satellite since early 2017, objective is now to migrate 
this processing chain back to the OLCI data.  
Although OLCI was primarily designed for Ocean 
applications, characteristics of the OLCI sensor (21 
spectral bands in the VNIR domain, 300 m spatial 
resolution, 1270 km swath width, with bands perfectly 
registered and data precisely calibrated and geo-
located) make this EO data source highly valuable for 
global and regional Land applications. Once 
completed the constellation of 3 Sentinel-3 satellites 
will provide a system with unrivalled performances. 

2 PROCESSING METHODS AND TOOLS 

2.1 Biophysical processing 

In geoland2 project, the processing chain to produce 
300 m vegetation maps from the MERIS data was 
based on Overland, a biophysical processing suite 
developed by Airbus and applicable to a wide range of 
optical sensors. Overland integrates widely proven 
core models, such as the SAIL/PROSPECT models for 
canopy reflectance and the LOWTRAN model for 
atmospheric transfer, and applies advanced techniques 
that inverse the coupled scene-atmosphere models. 
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This approach is especially efficient with rich spectral 
data such as the OLCI images, with allows pixel-wise 
correction of aerosols, water vapour column and of 
cloud veils when present in the scene. To cope with the 
large pixel size (300 m) which makes that the pixel 
often combines different landscape elements, a 
composite canopy model was specifically developed to 
simulate mosaic conditions of agricultural landscapes. 

Main components of the used vegetation model are 
presented in Figure 1, and the overall process to 
generate the vegetation maps from the source TOA 
image is illustrated in Figure 2. Detailed description of 
the processing algorithms developed for these MERIS 
biophysical products is given in (Poilvé, 2010). 

Figure 1 – Core vegetation models used in the S3 OLCI processing line to retrieve LAI, FAPAR, and fCover 

Figure 2 – Principle of biophysical processing from TOA reflectance to vegetation parameters maps by inversion 
of the coupled scene/atmosphere models 

  224

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Figure 3 – Visual comparison of FAPAR 300 m maps produced from MODIS and S3 OLCI data for the same 10-
days period 

2.2 Processing line 

The geoland2 MERIS/MODIS processing line was 
designed to routinely provide 10-days 300m 
vegetation maps over Europe and made fully 
automatic: 
• it imports individual images, project them to LAEA

projection and clip to target ROI (e.g. France or 
Europe) and merges images on same orbit pass when 
necessary 

• then it performs automatic cloud masking and
processes each image up to the biophysical level. 
This generates a whole set of maps, including 
fCover, FAPAR and LAI maps plus some more 
prospective parameters: fraction of non-photo-
synthetic vegetation (fNPV), Canopy Shade Factor 
(CSF) and Chlorophyll maps. 

• finally it applies an optimized compositing
algorithm to generate the 10-days seamless products.

2.3 Integration of OLCI data 

Integration of the OLCI data in the existing MERIS 
/MODIS chain was rather straight forward: 
• The format of the OLCI products (using NetCDF) is

convenient and fully descriptive; it includes precise 
pixel-wise geo-location (no more need of post-
correction like the AMORGOS tool that was used 
for the MERIS data). Visual assessment of the 
consistency between OCLI and MODIS images 
(MODIS being projected with the MRTSwath tool) 
shows a correct co-registration, better than 1 pixel. 

• all 21 bands of the OLCI data except band #01 (<
400 nm) are exploited by the Overland processor; 
band #13 (O2 absorption) is not used in the 

MODIS FAPAR 10-days map (01-10/07/2017)

S3A FAPAR 10-days map (01-10/07/2017)

0 1
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reflectance model inversion but for estimating 
apparent O2 altitude/pressure through a dedicated 
processing. Thanks to the high quality of S3 
radiometric calibration, a strong agreement was 
immediately found between model-based  and OLCI 
measured reflectance 

• tilt of the 5 OLCI cameras set (to stay clear of sun
glint as recommended by the Ocean community) is
not favourable to the Land applications. To avoid the
too much degraded resolution of the extreme West
camera,  ultimately the image part acquired with
viewing incidence  beyond 40° will not be exploited
here for target 300 m products, this will thus reduce
usable swath to 900 km but will be soon
compensated by the additional data from S3-B and
S3-C data.

The full set of the 21 spectral bands enables to have a 
highly robust atmospheric correction and detection of 
clouds and cloud veils. Thanks to spectral richness we 
can even produce vegetation pigments maps 
(chlorophyll and secondary pigments) that can be 
interpreted as far as canopies are homogeneous 
enough at the size of OLCI pixel. 

3 VALIDATION 

3.1 Methods 

Several 10-days periods of year 2017, with contrasted 
vegetation development conditions (i.e. post-winter, 
green peak of vegetation during spring, and summer) 
were selected for the first tests between OLCI and 
MODIS. 10-days consolidated fCover and FAPAR 
maps were produced from both sensors and compared, 
both visually to check spatial consistency, and by 
measuring the parameters RMS differences on values 
aggregated on 3km × 3km meshes (to minimize effects 
from residual mis-registration), this being performed 
on whole France (about 60 000 plotted values). 

3.2 Results 

High visual consistency was found between maps 
from the two sensors, as illustrated on Figure 3. 
Quantitative analysis (illustrated in scatter plots of 
Figure 4) showed that RMS difference is close to the 
3-5% performance objective. 

4 CONCLUSION AND PERSPECTIVES 

First validation results confirmed the high capabilities 
of OLCI data. 
For the FPI service, objective is now to operate a 
progressive transfer to Sentinel-3 as a higher quality 
and a long-term secured data source, once having 
ensured seamless transition with the historical record 
that was produced from MODIS. 
Another major evolution of the processing is the 
migration to a Cloud-based processing line, using 

direct access to Sentinel-3 images on the Cloud 
infrastructures and a dockerized version of the core 
biophysical processor (Overland). This should be 
operational by year 2018. 

Figure 4 – Scatter plots comparing fCover values of 
MODIS (x-axis) and S3 (y-axis), extracted on 3 km ×3 
km meshes for whole France from same 10-days 
periods; fCover range is 0-1 for both axes 
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In the framework of the PERMASNOW project, we are comparing MODIS-LST data (1 km of spatial resolution) 
with in situ temperatures obtained at the AEMET meteorological stations, and our team’s stations in the Hurd 
Peninsula, Livingston Island (Antarctica). This article shows the first results obtained for Ta at the AEMET 
stations: Juan Carlos I (JCI), Johnson Glacier (JG) and Hurd Glacier (HG) in the period between March-
2000/July-2002 and February-2016. The daily LST data were compared with the daily mean values of Ta. A 
slightly decreasing linear trend of Ta in the studied period was confirmed. LST data only exist in cloud-free days 
(∼1/3 of the studied days), but the main problem is the quality of these data: those with no “good quality” 
usually underestimate LST and are not reliable. The daily MODIS-albedo product (500m) was also used for 
eliminating the data with “other quality” and “cloud”, besides of classifying the cover. Filtering reduced the 
LST data at JCI and JG (<10% of the studied days), and eliminated all in HG. A simple linear fit did not explain 
well the relationship Ta-LST (R2≤0.4), appealing to multiple linear regressions to take into account the 
annual/seasonal variations in this relationship. Thus, R2 went up to 0.4-0.6, being better at JCI (R2=0.6 and 
RSE∼2◦C). It is concluded that the MODIS-LST data are useful for estimating long-term trends in Ta at a global 
level in the Livingston Island. Improving the quality of the LST data in this type of cold environments is 
essential.  

1  INTRODUCTION 

Antarctic Peninsula (AP) climatic variability is 
extremely complex both at a spatial and temporal 
scale. Turner et al. (2005) showed that AP suffered a 
strong warming between 1950 and 2000, obtaining the 
maximum increase of Ta at the Faraday/ Vernadsky 
station (at the south of the western AP; +0.56 ◦C 
decade-1). This warming extended, but decreasing, 
from Faraday to the South Shetland Islands (SSI) 
(+0.35 ◦C decade-1 at the Bellingshausen station, at the 

King George Island). Steig et al. (2009) used Ta 
measurements from stations but also NOAA-AVHRR 
Land Surface Temperature (LST) data for concluding 
that both types of data showed similar results: a West 
Antarctic´s warming that exceeded 0.1◦C decade-1 
between 1957 and 2006. O’Donnell et al. (2011) found 
that the warming in the same period was more 
concentrated in the AP (≈ +0.35 ◦C decade-1) than in 
the West Antarctic. However, recent studies show that 
the Ta temporal trend at the AP has changed, and that 
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the most of the stations have suffered a cooling during 
the first decades of this century. Turner et al. (2016) 
observed that the change of trend in the northern AP 
started between 1998 and 1999, obtaining a cooling of 
−0.47 ◦C decade-1 in the period 1999-2014. Oliva et al. 
(2017) studied the Ta trends from ten stations 
distributed across the AP in the period 1950-2015, 
obtaining that the cooling initiated in 1998/1999 was 
more significant in the N and NE of the AP and the 
SSI (>0.5 °C between the two last decades), and 
absent in the SW of the AP. 

The Ta variations (and those in the permafrost or 
frozen ground, snow cover, etc.) in and around the AP 
must follow being monitored for understanding the 
occurred changes and prevent the future ones. For the 
monitoring, both in situ data and data from satellites 
are necessary, because both have advantages and 
disadvantages. Under this perspective, we work in the 
PERMASNOW research project (de Pablo et al., 
2016) in the Livingston and Deception Islands, where 
the team of the University of Alcalá have been 
working since 1991, and in particular after 2006, with 
the inclusion of several stations that belong to the 
International Permafrost Association (IPA) networks. 
These islands belong to the SSI, archipelago at 120 km 
of the western side of the AP. The team works on and 
around the Spanish Antarctic Stations (SAS) Juan 
Carlos I (in the Hurd Peninsula on Livingston) and 
Gabriel de Castilla (in Deception). In particular, the 
monitoring sites in Livingston are in the Hurd and 
Byers Peninsulas. In all these areas, there are also 
Spanish meteorological stations of Agencia Estatal de 
Meteorología (AEMET, meaning State Meteorological 
Agency in English). In the PERMASNOW project 
(between 2015 and 2019) new in situ data will be 
analysed, but also radar (as in Mora et al., 2017), 
optical, and thermal data. This article focuses on the 
thermal data and, in particular, we will use MODIS-
LST data, available since 2000/2002. Our team 
measures Ta and soil temperature in our stations, 
whereas the AEMET´s Antarctic stations (Bañón y 
Vasallo, 2015) only have Ta. This work only shows the 
first results related to the comparison between the 
AEMET Ta and the MODIS-LST data.    

There are few studies in which a comparison 
between Ta and MODIS-LST data in polar areas is 
performed, especially in the Antarctica. The majority 
of these studies found correlation between both 
temperatures, although it is variable depending on the 
stations. For example, in the East Antarctica, Wang et 
al. (2013) found a stronger correlation in the East 
stations (R2=0.83-0.98) than in the West stations 
(R2=0.41-0.83). They used diurnal and nocturnal Terra 
images, observing that the R2 values were similar for 
both type of images. They obtained errors between 
SD=1.3-8.5◦C, with LST< Ta. At our best knowledge, 

studies of comparison between Ta and MODIS-LST 
data have not been done in the SSI, hence the interest 
of this work. No MODIS-LST data exists in the 
Deception Island, neither in the Byers Peninsula, so 
that our comparison will be restricted to the Hurd 
Peninsula of the Livingston Island.    

The aim of this work is to obtain algorithms that 
allow the estimation of Ta from MODIS-LST data in 
cold environments, as it has been possible in warner 
areas, for example, in Spain (Recondo et al., 2013; 
Peón et al., 2014). It would allow to obtain Ta in the 
whole of the Livingston Island, or even in other nearby 
islands, and to perform Ta temporal maps at 1 km of 
spatial resolution. Other objective is to study in detail 
the utility and limitations of the MODIS-LST data in 
so cold areas, to learn how future sensors can be 
improved.   

2  STUDY AREA 

Our study area is the Hurd Peninsula of the Livingston 
Island, one of the areas where we work in the 
PERMASNOW project (Figure 1; area D). 

Figure 1. PERMASNOW project´s study areas: Byers 
(Area C) and Hurd (Area D) Peninsulas, Livingston 
Island, and Deception Island (Area E). The image is 
courtesy of de Pablo et al. (2016). 

3  DATA 

The Ta data used in this work were those obtained in 
the AEMET stations in the Hurd Peninsula of the 
Livingston Island: Juan Carlos I (JCI), Johnson 
Glacier (JG) and Hurd Glacier (HG), in the period 
between January of 2000 and February of 2016. The 
JCI station is the oldest, with data since 1988. The JG 
station was located in the Johnson Glacier more than 
eight years ago, being after moved to the Hurd lobule 
and called since then HG station. The geographical 
coordinates, altitude and dates of operability of each 
station are shown in Table 1. The Ta data are collected 
in JCI each 10 minutes (10m) along all the year, 
whereas those from JG and HG are obtained every 10m 
in the Antarctic summer (December-February) and 
every half an hour (0.5h) the rest of the year. 
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Table 1: Name, location, height about sea level (h) and 
dates of operability of the AEMET stations used in 
this study. 

Ta is measured in these AEMET stations at two 
different heights over the ground, 1.8 m and 20 cm. In 
order to avoid confusion, along this article the first 
temperature will be called simply Ta (because it is the 
most usual at the meteorological stations) and the 
second one, Ts (because it was measured close to the 
soil).      

The MODIS data used were the daily MODIS-
LST data (1 km of spatial resolution) from Terra and 
Aqua (MOD11 and MYD11 standard products, 
respectively; version 5), and both diurnal and 
nocturnal data. The quality control (QC) assessments 
of these data were also collected. These LST data were 
available in our study area since 5 March 2000 for 
Terra and since 8 July 2002 for Aqua. The daily 
MODIS-snow albedo data (MOD10/MYD10 products; 
500 m of spatial resolution) were also used and its 
quality assessment (QA) data as well. These products 
include a classification of the cover type for each 
pixel, allowing the distinction among snow, land (no 
snow), water and cloud. This information has been 
used to improve the discrimination of the clouds (500 
m is better resolution than 1 km) and to test if the 
cover has influence on the results.  

The Ta-LST comparison was done until 21 
February 2016, when the Spanish Antarctic summer 
campaign 2015/2016 finished. Thus, we have 
compared 16/14 years of Ta and MODIS-LST data.   

4  METHODOLOGY 

The daily mean Ta (and Ts) was performed using the 
data from each station only if all the daily data were 
taken (n=144 for the 10m data, and n=48 for the 0.5h 
data). The MODIS data were extracted in the location 
of each AEMET station using the Application 
Programming Interface (API) of Google Earth Engine 
(http://earthengine.google.org). The statistical analyses 
and most of the graphics were constructed using the 
free software R (http://www.r-project.org/). Most of 
the analyses were based on linear regressions (simple 
or multiple). In all cases, we used robust regressions, 
with the MASS library in R. The parameters used for 

quantify the goodness of the models were the 
coefficient of determination (R2) and the residual 
standard error (RSE). The models have not been 
validated yet.  

5 RESULTS 

5.1 Comparison between the AEMET air temperatures 

The comparison between Ta (air temperature measured 
at 1.8 m over the ground) and Ts (air temperature 
measured at 20 cm over the ground, i.e., T measured 
near the soil) has been made to prove that they are 
correlated, as expected, and to decide which is better 
for the comparison with the MODIS-LST data. The 
comparison showed that both have a similar behaviour 
of sinusoidal type, varying both in phase and with 
similar amplitude (see example for JCI in Figure 2). 

Figure 2: Daily mean Ta and Ts temporal variation for 
the study period in JCI station. 

Ta and Ts also show a slightly decreasing linear 
trend along the studied period in most of the stations 
(see example for Ta in Table 2). This confirms the 
decreasing trend observed by our team in previous 
projects, and the general trend of cooling observed 
since 1998/1999 in the northern AP and the SSI by 
Turner et al. (2016) and Oliva et al. (2017).     

Table 2: ∆Ta for the study period in the AEMET 
stations. 

Ta and Ts are strongly correlated (R2=0.80 for JCI 
and HG, and R2=0.66 for JG), with a linear slope (α) 
∼1 and RSE ∼1◦C in all the stations (see example for
JCI in Figure 3). However, it is clear of Figure 3 that 
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the difference between both temperatures exceeds up 
to 10 ◦C some days. In these days, the sensor at 20 cm 
is probably covered of snow, maintaining Ts stable 
whereas Ta varies. These Ts data should be eliminated 
because they are not reliable (Bañón, private 
communication). Thus, for the purpose of our work, 
we will use Ta in the comparison with MODIS-LST. 

Figure 3: Linear regression between daily mean Ta and 
Ts in JCI in the period 1 January 2000 and 21 February 
2016. 

5.2 Comparison between Ta and LST 

The availability of MODIS-LST data in the study area 
is limited, due to the frequent cloud coverage. Thus, 
there are only LST data in a 24-35%, 18-28% and 3-
13% of the studied days in JCI, JG and HG, 
respectively (being the lower values for the nocturnal 
data). However, the main problem is the quality (QC) 
of these data, because those of lower quality according 
to Wan (2006) give LST<< Ta and should be 
eliminated. Therefore, only the LST data with “good 
quality” are reliable and they were the selected ones. 
Besides, the quality (QA) and the classification of the 
product MODIS-snow_albedo help us to filter the data 
with “other quality” and “cloud”. Regarding the data 
classified as “snow-covered land”, “snow-free land” 
and “open water” (melted snow in our case), they were 
taken jointed in the analyses because their relationship 
Ta-LST was found similar. All the applied filters 
(especially the one concerning to the quality of the 
LST data) significantly reduces the number of data 
consider as “good” in JCI and JG (at a 3-8% and 4% 
of the studied days, respectively) and eliminated all of 
them in HG.  

A simple linear regression using the “good” data is 
not enough to explain the relationship Ta-LST 
(R2≤0.4) (see example for JCI and diurnal Terra-
MODIS data in Figure 4). 

Figure 4. Ta versus “good” LST (Terra/Day) data in 
JCI. 

Then, we used multiple linear regressions to take 
into account the annual and seasonal variations in the 
relationship Ta-LST. So, our first models for 
estimating Ta include, besides LST, the time (t) as a 
linear trend, and with two harmonics. Thus, R2 goes 
up to 0.4-0.6, with RSE=2-3◦C. The fits are better for 
JCI (R2=0.5-0.6, RSE=2.1-2.3 ◦C, n=125-355) than for 
JG R2=0.4-0.5, RSE=1.7-2.7 ◦C, n=53-55). There are 
hardly differences in terms of R2 and RSE between the 
Terra and Aqua data, and between the diurnal and the 
nocturnal data, especially for JCI.  

6 CONCLUSIONS 

A moderate correlation (R2=0.4-0.6 and RSE=2-3 ◦C) 
was found between the daily mean Ta and the LST 
from MODIS in the Hurd Peninsula of the Livingston 
Island between 2000 and 2016. Similar results were 
found in other areas within Antarctica West. Better 
results were obtained for JCI (R2=0.6 and RSE∼2 ◦C) 
than for JG.  

Multiple linear regressions (MLR) work better 
than simple linear regressions (SLR), taking account 
annual and seasonal variations in the relationship Ta-
LST.  

The lack of LST data due to cloudiness is an 
important limitation, but more so the fact that most of 
the available data are not of good quality, which 
should be improved.  

Even so, adequate LST data can be used to 
estimate long-term trends and to map globally 
Livingston Island.  
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ABSTRACT- In this paper SALVAL (Surface ALbedo VALidation) tool is introduced. It allows the validation of 
global albedo products derived from satellite in accordance with the international validation standards. It is a 
Matlab-based Graphical User Interface (GUI) with the following  main objectives: (i) to provide transparency 
and traceability to the validation process ;(ii) to integrate the different validation metrics into a tool in which the 
user can analyze the different validation criteria; (iii) to provide consistency in evaluating comparatively the 
new versions and new products; (iv) and finally, to provide a tool to achieve Committee for Earth Observation 
Satellites (CEOS) Land Product Validation (LPV) level 4 of validation. The different quality criteria will be 
assessed over a representative global network of homogeneous sites coming from a database of global reference 
sites to support validation of satellite surface albedo (Loew et al., 2016), desert calibration sites and additional 
sites to complete under sampled areas and biome types (LANDVAL network). The accuracy of the satellite 
products is assessed by direct comparison with ground measurements.  

1  INTRODUCTION 

The land surface albedo is defined as the fraction of 
incident solar irradiance reflected by Earth's surface 
over the whole solar spectrum (Dickinson, 1983); 
moreover, it is one of the terrestrial essential climate 
variables (ECV) introduced by the Global Climate 
Observing System (GCOS). 

It is a potential variable in the control of 
climatology, as well as a sensitive indicator to the 
degradation of the environment, which makes that 
many space agencies, such as ESA, NASA, NOAA, 
and earth observation programs (e.g. Copernicus or 
LSA SAF) are interested in monitoring albedo derived 
from several sensors including VEGETATION/SPOT, 
MODIS/TERRA+AQUA, VEGETATION/PROBA-V, 
and many others. 

Satellite products need to be evaluated and their 
uncertainties have to be well characterized for a proper 
exploitation. Thus, the products need to be validated to 
ensure that they meet user requirements on accuracy 
and stability ( e.g. GCOS-154, 2016). Validation for 
the land product domain is defined as " the process of 
evaluating by independent means the accuracy of 
satellite-derived land products and quantifying their 
uncertainties by analytical comparison with reference 
data "  (Justice et al, 2000).  

The work described in this paper, is framed under 
the context of Copernicus Climate Change Service 
(C3S) and Copernicus Global Land Service (CGLS). 
The objective of this work is to develop a tool 
(SALVAL), that allows the validation of Albedo 

products derived from satellite data in accordance with 
the international validation standards CEOS-LPV and 
Quality Assurance for Earth observation (QA4EO). 
The aims of SALVAL are: 
• To provide transparency and traceability to the

validation process. 
• To integrate the different validation metrics,

allowing the user to analyze the different 
validation criteria as well as the requirement 
assessment in order to verify whether the results 
fit for purpose.  

• To provide consistency when comparing either
new versions or new albedo products. 

• To provide a tool able to achieve CEOS LPV
level 4 validation that defines an operational 
component to ensure that land product time-series 
are systematically validated (Nightingale et al, 
2011). 

2  FUNCTIONALITIES 

SALVAL has three main functionalities implemented: 
(i) to configure the validation exercise by selecting a 
set of  the given products, user's requirements, spectral 
region, spatial domain as well as temporal domain; (ii) 
run a validation exercise according to the previously 
set configuration; and (iii) the ability to import either a 
new product dataset or a new ground reference data 
in order to be included within the tool.  
Figure 1 shows a diagram of SALVAL as a conceptual 
view.
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Figure 1. Conceptual view of SALVAL 

2.1 Configuration  of  the validation exercise 

The validation exercise has many parameters to be 
configured in order to allow a customized validation 
exercise according to the user. 

SALVAL allows the configuration of the user 
requirements ( accuracy and stability ) within three 
different levels: optimal, target and threshold  in order 
to verify whether the results fit for purpose. Default 
user requirements are set according to the Global 
Climate Observing System specifications (GCOS-154, 
2016) as an optimal level, and a Key Performance 
Indicator (KPI) defined by the C3S as a target level as 
shown Figure 2 and Table 1. However, those 
requirements are not fixed values since the user is able 
to modify and/or add a new one. On the other hand, 
the user is able to select the reference products as well 
as the product under evaluation. In addition, the tool 
allows to select the spectral region, time period and the 
spatial domain. 

 
 Stability Accuracy 

Optimal Max( 1%,0.001) Max(5%,0.0025) 

Target Max( 2%,0.002) Max( 10%,0.01) 

Table 1. Stability and accuracy default values in regard 
to optimal and target levels. 
 

 
Figure 2. Default stability and accuracy requirements 
within SALVAL tool as a function of albedo values (x 
axis) according to values in Table 1. 
 

2.2 Run validation 

The validation exercise is performed over LANDVAL, 
a network of sites design by EOLAB. In order to 
identify potential reference sites, 2186 sites coming 
from SAVS 1.0 network (Loew et al., 2016) were 
analyzed, and besides, additional sites were included 
to complete under sampled areas and biome types. 
Several selection criteria were applied in terms of land 
cover and topography homogeneity and sites located 
over latitudes higher than 80ºN and 60ºS were 
dismissed due to the lower percentage of land pixels 
over those latitudes. As a result, an amount of 725 
sites is achieved with a good representativeness per 
biome as shown in Figure 3. 

 
Figure 3. LANDVAL site locations map aggregated 
into 7 main biomes. 
 

On the other hand, the products may not be 
spatially and/or temporal consistent which leads to the 
necessity of homogenize the data accomplishing a 
spatial and/or temporal support that is described in 
Table 2. 

Once the configuration of the validation exercise 
has been applied, the user could run the validation 
over LANDVAL sites into two different ways:  
Standard validation: All parameters for all the results 
are assessed with default values. 
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Custom validation: Several parameters such as 
graphical values, file name, file format (.png, .tiff, 
.jpeg) could be customized.  

Spatial/ temporal consistency 

Spatial 
support 

Spatial resolution: 3x3 pixels ( 
1km) 
The median value of the valid 
pixels over the central 3x3 pixels 
window is computed if at least 6 
out of the 9 pixels are valid. 
Projection: Plate Carrée 

Temporal 
support 

Temporal window: centered 

Pair-wise  comparison: 
The closest date to the product to 
be evaluated. 
Independent evaluation of the 
product: 
The original temporal frequency 

Table 2. Spatial and temporal support applied within 
SALVAL. 

2.3 Importing  new data 

Two different data types can be imported within the 
tool: new satellite land products to be validated or to 
be used as reference products and new ground data 
references used for accuracy and stability assessment. 

Import new product: It allows to evaluate the 
performance of new products as compared with 
existing ones in the system. The extracts must be over 
LANDVAL in binary format with the spatial support 
described in Table 2. In addition, product parameters 
such as temporal resolution,  temporal frequency and 
product name are requested.  
Add new ground data reference: The tool described in 
this paper includes ground reference data for accuracy 
assessment, and besides, it allows to add new ground 
data reference in .txt format.   

2.4 Maintenance service 

SALVAL is under supervision in order to provide a 
maintenance service enabling to improve the 
validation process through updating some 
functionalities and enhancing the metrics already used. 

3 ILLUSTRATION OF SALVAL 
FUNCTIONALITIES 

This section shows some of the main results of 
SALVAL tool applied to three available albedo 
products: MODIS C5 (MCD43A3), PROBA-V 
(PROBAV_TDS_V1.5) and SPOT VGT 
(SPOTVGT_V1). The temporal and spatial 
characteristics for each product is shown in Table 3: 

Product Temp. 
Freq. 

Temp. 
Resol. Period Spat. 

Resol. 
MODIS 
C5 

8 days 16 
days 

2013-
2014 

1 km 

PROBA-
V 

10 
days 

30 
days 

Dec2013-
2014 1km 

SPOT-
VGT 

10 
days 

30 
days 

2013-
May2014 

1 km 

Table 3. Temporal and  spatial characteristics of the 
products considered for the validation in order to 
illustrate the functionalities of the tool. 

3.1 The Validation Exercise 

Table 4 shows all metrics included within SALVAL. In 
this section, only few of them are shown for the sake 
of shortness.  

Validation Criteria Metrics 

Completeness 
- Map of gaps 
- Length of gaps (histogram + 
temporal variation) 

Spatial consistency - Residual map 
- Consistency spatial level 

Temporal consistency - Cross correlation (histogram) 
- Temporal profiles 

Precision 

Intra - Smoothness (histogram) 

Inter 
- Median absolute anomaly 
(95%, 5% percentiles) 
- Scatter plot (calibration sites) 

Overall analysis 

- Difference histogram 
- Product histogram 
- Scatter plot 
- Box plot per bin (bias RMSD) 

Stability - Slope of bias 

Accuracy - Scatter plot 
( ground data reference) 

Table 4 Validation criteria defined within the 
validation protocol 

 Completeness
Completeness is assessed as the fraction of gaps as 
well as their spatial distribution, which is represented 
as a map of gaps (Figure 4) . In addition, in order to 
provide temporal information the length of gaps along 
the selected period is assessed (Figure 5). 
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Figure 4. Percentage of gaps during December,2013 
and May,2014 for PROBAV_TDS_V1.5 (AL-DH-BB) 
over LANDVAL. 

Figure 5. Temporal evolution of the percentage of gaps 
during December,2013 and May,2014 for 
PROBAV_TDS_V1.5 (AL-DH-BB) over LANDVAL. 

 Spatial consistency
Spatial consistency refers to the realism and 
repeatability of the spatial distribution  of retrievals 
over LANDVAL.  

This analysis is assessed by residual maps 
between two different products. In addition, the 
percentage of residual values within the accuracy 
requirements defined by the user is quantified (Fig. 6) 
. 

Figure 6. Percentage of values within the optimal and 
target requirement , during December, 2013 and May, 
2014 for the residual values between 
PROBAV_TDS_V1.5 (AL-DH-BB) and 
SPOTVGT_V1(AL-DH-BB) over LANDVAL. 

 Temporal consistency
Temporal variations over the whole LANDVAL 
network can be qualitatively assessed in order to
evaluate the temporal trend of the products.
Figure 7 shows one example of temporal profile,
on which the user can analyze temporal response
of the products against rapid changes in albedo
values and under stable temporal situations.

Figure 7. Temporal profile during December,2013 and 
May,2014 for PROBAV_TDS_V1_5rc9 (AL-DH-BB) 
over a BELMANIP site (37.4891N, 40.9387E). 

 Intra annual precision

The smoothness used as intra annual precision 
measurement  corresponds to temporal noise assumed 
to have no serial correlation within a season (Figure 
8).  In this case, the anomaly of a product value from 
the linear estimate based on its neighbours can be used 
as an indication of intra-annual precision (delta 
function). It can be characterized as suggested by 
(Weiss et al., 2007). 

Figure 8. Smoothness (histograms of delta function), 
during December, 2013 and May, 2014 for 
PROBAV_TDS_V1.5 (AL-DH-BB) over LANDVAL. 

 Inter annual precision
Inter-annual precision aims to measure the error 
between two different years of stable observations. 
Figure 9 shows a box plot graph for the absolute 
anomaly (percentiles 95% and 5% has been used)  per 
bin between two different years, suggested as inter 
annual precision for another land products (Fernandes 
et al., 2014). 
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Figure 9. Median absolute anomaly per bin between 
2014 and 2015 excluding data above 30º latitudes and 
below -30º latitudes as well as crop, including 
percentage of values within the optimal and target 
requirement. 

 Overall analysis
Overall analysis lies in the inter-comparison between 
products in order to estimate the discrepancies 
between those products, as shown in Figure 10 and 11. 
To allow pair-wise comparison , the same temporal 
and spatial resolution has to be used. 

Figure 10. Scatter plot between PROBA_TDS_V1.5 
and SPOTVGT_V1 over LANDVAL 

Figure 11. Product histograms 

 Stability
The temporal stability of satellite data records is a key 
requirement for their applicability for climate change 
studies. It is defined as the property of a measuring 
instrument or data set to provide consistent 
measurements of a geophysical variable which is 

known to remain constant over time (JCGM, 2012). In 
this case of study, Desert Rock site which belong to 
SURFace RADiation network (SURFRAD), is used as 
stable reference measurement. The slope of the bias is 
used as estimator for the stability since the reference 
measurement show changes on timescales as shown in 
Figure 12: 

Figure 12. Temporal profile during 2013 and 2014 for 
MCD43A3_C5 ( Blue-Sky albedo: See Ec.1) vs. 
Ground data retrieval over Desert Rock site ( 
SURFRAD) as well as the bias temporal profile, 
including the bias slope as a temporal stability 
measurement. 

 Accuracy
Accuracy is quantified by several metrics reporting the 
goodness of fit between the products and the 
corresponding ground measurements as shown Figure 
13. 

On the other hand, SALVAL provides the 
functionality  to make ground data reference and 
satellite product data consistent. This functionality is 
bases on the following formula: 

Surface Albedo = D*AL-BH + (1-D) *AL-DH    (1) 

where D corresponds to the ground data reference 
diffuse value adjust to the satellite product temporal 
support; AL-BH is the broad band white-sky albedo 
and AL-DH is the broad band black-sky albedo for 
satellite data. 

Figure 13 Scatter plot between ground observations 
and Surface albedo (MCD43A3_C5) during 2014 
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4 CONCLUSIONS 

In this paper, SALVAL has been propounded as  a 
graphical user interface that allows to provide 
transparency and  traceability to the validation process. 

SALVAL allows the configuration of user 
requirements (accuracy and stability) as well as to 
verify whether the results fit for purpose. In addition, 
it allows to evaluate new products in a robust and 
interactive way, since the  user can define in addition 
to the requirements, the geographical area (global or 
continental) and the temporal domain. 

SALVAL allows the validation results to be 
updated periodically after a temporary extension of the 
product and the reference data, allowing the maximum 
level of validation (Level 4) to be reached in the 
CEOS LPV hierarchy, a level not yet reached in 
albedo products (CEOS). SALVAL has the potential to 
extend to other satellite products such as surface 
reflectivity (TOC-R), or biophysical vegetation 
products (LAI, FAPAR). Finally, it presents a structure 
by modules for each metric in order to facilitate the 
incorporation of new metrics for the validation 
exercise, promoting a continuous updating of both the 
tool and the validation criteria given that there is no 
defined methodology of good practices as if it were for 
LAI (Fernandes, et al. 2014).  
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Abstract - Land Surface temperature is a critical parameter to the studies in geography, resources, agriculture 
and other disciplines. In recent years, with the rapid development of Internet of Things, it is possible to take 
advantage of Internet of Things to verify remote sensing product’s accuracy. Due to the large dimensional 
difference between the satellite pixel and the ground direct measurement, the nonuniform style of upper coverings 
type and the huge temperature difference caused by diverse coverings, it is extremely difficult to verify the 
correctness of the land surface temperature by measuring the surface temperature directly. The existing 
experiments and studies are generally carried out on the surface of the lake, snow or other uniform coverings. 
This paper proposes a method of detecting the correctness of surface temperature remote sensing products based 
on Internet of Things called LSTDIoT to solve this problem. First, the experimental area is divided according to 
its covering’s type, and then measure each puzzle’s temperature and the weights respectively. Then the average 
temperature of the lesser uniform surface type can be calculated, then the crossing validation of these data is 
carried out with the corresponding remote sensing temperature. Furthermore, an experimental model based on 
Internet of Things technology is designed, which significantly saves labor force and material resources, and 
improves the efficiency of the experiment. 

1  INTRODUCTION 

1.1 LST and LST Measurement 

LST is an important parameter in the study of 
geography, resources, agriculture and other disciplines, 
which contributes to the assessment of surface energy 
and hydrological balance, thermal inertia and soil 
moisture (Kalma, 2008). Conventional fixed-point 
measurement of LST is relatively simple, which can be 
completed by ordinary infrared detection equipment or 
even by a thermometer. However, conventional fix-
point measurement cannot obtain LST in regional or 
global scale, and satellite remote sensing will be the 
only possible solution (Li, 2013).  

Satellite inversion of LST needs to be completely 
validated. General methods are Temperature-based, 
Radiation-based and cross-validation (Li, 2016). The 
Temperature-based method is a kind of ground-based 
method. By directly comparing the temperature 
retrieved from satellite data with the one measured at 
the time of the satellite transiting. But due to the 
dimensional difference between immediate 
measurement and remote-sensing, and the huge 
changes in tiny cells of each area, studied areas are 
confined to lakes, grassland and snow-field, which are 
homogeneous areas in some means. 

This paper proposes a method called 
LSTDIoT(Land Surface Temperature Detection based 
on Internet of Things), which can be used for surface 
temperature remote-sensing in lesser heterogeneous 
land. 

1.2 Related Research 

Measuring the LST at the experimental site is a 
complex and difficult task due to the dimensional 
difference between the satellite pixels (several square 
kilometers) and the experimental sensors (several 
square meters or several square centimeters). In 
addition, the natural surface covering and its 
temperature and emissivity values vary widely in the 
kilometer level. As evidence, Snyder pointed out that 
the surface which was uniform and flat, is easy to be 
measured and characterized, and can be used as a 
verification site in 1997 (Snyder, 1997). Also Wan made 
experiments in grassland, rice field and other uniform 
places in 2002 (Wan, 2002); Sobrino measured the 
temperatures in an agricultural region of Spain in 2004 
(Sobrino, 2004). 

2  METHOD DESCRIPTION 

2.1 Internet of Things Technology 

The Internet of things is not only an inevitable part of 
the new generation of information technology, but also 
an important stage of development of the information 
era. By using intellisense, identification technology, 
pervasive computing and other communication sensing 
technology, IoT is widely used in the integration of the 
network. Therefore, IoT is known as the world's third 
wave of information industry development after the 
invention of computer and application of internet. 

With the use of IoT technology in other areas such 
as specific experiments and research, lots of manpower 
and resources could be saved, and it’s more efficient.  
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In this paper, we try to use IoT technology to assist 
in correctness verification of LST remote sensing 
product to steeply improve the efficiency of our 
experiments and research. 

2.2 LSTDIoT 

In order to explore the possibility of verifying 
remote sensing LST of uneven ground surface, this 
paper proposes a method called LSTDIoT(Land 
Surface Temperature Detection based on Internet of 
Things), and try to do an experiment in areas where 
contain several kinds of coverings and each covering’s 
weight can be calculated easily. 

The main idea of LSTDIoT is to find a square area 
a on the ground according to satellite pixel’s latitude 
and longitude, then divide a into several blocks 
according to its covering type and obtain each block’s 
proportion and temperature. Based on the data above, 
we can estimate the covering’s temperature Ta by using 

the following formula: ∑
=

••=
n

1k
TkkkTa ερ . When Pk 

is the covering’s proportion, Ti is the covering’s 
temperature, kε is the covering’s weight. However, kε
needs to be determined by a specific experiment. 
Assuming that Tpe is the temperature value of the 
satellite pixel. Let TaTpe =  we can get the equation 

∑
=

••=
n

1k
TkkkTpe ερ . By this way we can get a 

equation set and then find out ...)3,2,1εk(k = . kε can 
be applied to nearby satellite pixel and calculate nearby 
area’s temperature for cross-validation, compared with 
the actual temperature of said satellite pixel. 

The high resolution images (ASTER images of 
Terra) were used as satellite remote sensing data. We 
selected a large farm in Anhui Yangtze-Huaihe area 
which contains cropland, soil, lawn, river, building and 
other coverings as an experimental site, as shown in 
Figure 2 in Section 3.1. There are three main ways to 
obtain the area of various coverings: farm official data, 
measurement on-site by tools and calculated area using 
satellite surface covering information. While the 
surface temperature of the covering was measured by 
suspending the infrared temperature sensor at each 
location, and each covering was measured by multiple 
times and then the averaged value is taken. 
Unquestionably, in order to avoid the impact of 
sunlight, data collection would be carried out at night. 
The sensor would transmit the acquired temperature 
value to the server via the data base station and 
GPRS/GSM network. Finally, we designed a computer 
program to call these original data and calculate the 
value to obtain the value of each variable. 

According to the method described above, in farms 
with n kinds of coverings, we can select n regions and 

measure for n times, and compare these data with the 
corresponding satellite pixel temperature values to get 
the block weight )n...,3,2,1k(k =ε . Applying kε  to 
other regions and the pixel, the cross-validation can be 
done. 

 
Figure 1: Diagram of data transmission of IoT 

2.3 Construction of Experimental Model  

In order to save manpower and material cost, while 
improve the efficiency of experiment, this paper 
constructs a kind of IoT experiment model to assist the 
experiment described above. 

2.3.1 The Layout of Sampling Points 

Using the latitude and longitude of the pixel on the 
satellite image, we select an experimental area, which 
is about 1km × 1km scale in the farm. The experimental 
area has lawn, cropland, soil, building and river. 
Assuming that it has N blocks and N is more than 5, so 
different blocks may be with the same covering. We 
tried to measure the surface temperature of each block 
separately. To avoid the mistake of incorrect 
temperature, multiple sensors were placed in each block 
and then took its averaged value. The number of sensors 
placed in each block was determined by the weight of 
the area and the shape of the block. 

Assuming that the name of each block is 
)L...,3,2,1i(il = , ...,C)3,2,1ci(i = , ...,S)3,2,1si(i = ,

...,B)3,2,1bi(i =  or ...,R)3,2,1ri(i = , and set the weight 
of each block as ...,L)3,2,1Pli(i = , ...,C)3,2,1Pci(i = ,

...,S)3,2,1Psi(i = , ...,B)3,2,1Pbi(i = , 
...,R)3,2,1i(iPr = . While l, c, s, b and r represent the 

covering type of the blocks of lawn、cropland、soil、
building and river. And L, C, S, B and R represent the 
number of blocks covered with lawn, cropland, soil, 
building and river, and the total of L, C, S, B and R is 
N. 

2.3.2 Infrared Temperature Sensor 

The temperature of the covering surface was 
measured by a suspended infrared temperature sensor. 
The infrared temperature sensor is to detect the infrared 
of the object. 
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As the infrared temperature sensor measures the 
surface temperature of the covering without contacting 
with the covering directly, which can effectively avoid 
the sensor’s influence on the covering’s temperature. 
Additionally, the infrared temperature sensor can be 
powered by lithium batteries for a long time without 
being charged in this networking model. So we don’t 
have to read data after deploying these sensors, which 
effectively avoids the human impact on the temperature 
of the covering. 

2.3.3 Data Transmission 

Data transmission is the process of collecting 
temperature data measured by all infrared temperature 
sensors, and then sending it to the specified server 
(stationary IP address and port). Undoubtedly, the 
server has a corresponding program to receive these 
data. As shown in Figure 1. 

The whole system of data transmission is 
completed by the corporation of infrared temperature 
sensors, data base station and server. And a data base 
station was arranged at the center of the experiment 
area. Communication between infrared temperature 
sensors and data base station uses AM 433MHz band, 
abbreviated as 433M. 

The role of the data base station is to encapsulate 
and transmit data. The data base station mainly consists 
of receiving module, control module, transmitting 
module and power supply system. The receiving 
module can receive data as long as its parameters are 
the same as that of the infrared temperature sensor, such 
as frequency band and baud rate. The function of the 
control module is to control every running process of 
the entire data base station, including listening, 
encapsulating and sending data. The transmitting 
module needs to be connected to the GSM/GPRS 
network, so the data base station requires a SIM card to 
support this function. Generally, power supply system 
is consisted of co-operation of solar and batteries, 
which is one of the best ways for the long-term and 
stable power supply outdoors. 

Infrared temperature sensor broadcasts the 
collected data through 433M module, and the signal 
transmission distance after amplifying can reach to 
800m. The data base station locating at the center of the 
experiment area would keep listening, immediately 
encapsulating it and sending it through the GSM/GPRS 
network to the specified server once it receives the data. 
The format of the data follows the mainstream modbus 
protocol. 

2.3.4 Data Processing 

Data processing includes analysis, warehousing 
entry and classified counting of the data received by the 
server side. 

The server receives data packets sent from data base 
station which are encapsulated according to modbus 
protocol with the information of sensor No., sensor’s 
electric quantity, base station’s electric quantity and the 
CRC check code as well as the temperature data that are 
needed to be deciphered. 

Once the data has been successfully stored in the 
database, it is easy to carry out any calculations. 

Assuming that the average temperature of each 
block is )L...,3,2,1i(iTl = , )C...,3,2,1i(iTc = , 

...,S)3,2,1Tsi(i = , ...,B)3,2,1Tbi(i = , ...,R)3,2,1Tri(i =  
So we can conclude that 

∑
=

∑
== K

1i
Pli

K

1i
Pli·Tli

Tk (1) 

8100
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1i
Pli

k
∑
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here K means the number of each kind of covering 
block, taking L, C, S, B, and R. Then combined with 
the equation  

∑
=

••=
n

1k
TkkkTpe ερ (3) 

in the LSTDIoT method, We can calculate the 
weight of the covering ...)3,2,1i(k =ε . Finally, 
according to ...)3,2,1εk(i =  and formula (1) and (2), we 
can calculate the average temperature of other square 
area after measuring the blocks’ temperature. Then 
compare the average temperature with the 
corresponding value of satellite pixel temperature, so as 
to complete cross validation. 

3  APPLICATION OF THE METHOD 

3.1 Study Area 

We selected a large farm in Jianghuai, Anhui as the 
experimental site, whose name is Long Kang farm 
which locates in Huaiyuan County, Bengbu City, Anhui 
Province. 

Long Kang farm is higher in the northwest, while 
lower in the southeast. The ground is 22.7 ~ 25.9 meters 
higher than the altitude, and the terrains looks like a 
ribbon. The farm is 17.5 km long from east to west, 1.6 
km wide from south to north, and it’s kind of flat as a 
whole. 

The farm contains a small number of coverings 
including cropland, soil, lawn, river and building. The 
distribution of coverings is uniform, and the range of 
every covering is large, which is suitable for our 
experiment. As is shown in Figure 2. 
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Table 1: data collected by infrared temperature sensors 
Sensor 

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Sampling 
data 25.5 29.9 26.4 20.1 31.5 23.5 27.1 23.7 26.8 22.6 30.2 19.9 32.1 25.8 22.9 31.5 23.1 24.0 26.6 20.5 31.0 26.1 

Figure 2: Diagram of sampling in the experimental site 

3.2 Satellite Image Data 

The experiment uses data from ASTER sensor 
carried on Terra satellite as the data source. Five bands 
of ASTER data from 10 to 14 can be used for LST 
inversion, and the resolution from ground of these 5 
bands can reach to 90m. 

3.3 Experimental Data Collection 

According to Figure 2, infrared temperature 
sensors and data base stations are deployed in the 
experimental area. Table 1 shows the data collected by 
infrared temperature sensors at 1:00 am. 

4  RESULTS AND DISCUSSION 

4.1 Experimental Results 

According to formulas (1), (2) and (3) in Section 
2.4, combining with the field data collected in section 
3.3 and the ASTER sensor data, we can get a system of 
quaternion linear equations. After calculating, we 
obtained the weights of lawn, cropland, soil and river as 
follows: εlawn  is equal to 12.2792, oplandcrε  is 
equal to 13.9719, soilε  is equal to 11.9938, riverε  is 
equal to 10.2850. 

4.2 Cross-Validation 

The basic idea of cross validation is to classify the 
original data in a certain sense, and set a part of them as 
training set and the others as verification set. Firstly, 
train the classifier with the training set, and then use the 
verification set to verify the trained model. The result 
will be used as a performance index for classifier 
evaluation. 

Here, we use four of the pixel data as training set, 
the other two pixels’ data as test set. Using the weights 
of the four types of coverings lawnε 、 oplandcrε 、

soilε 、 riverε obtained in Section 4.1 and formulas 
(1), (2) and (3) in Section 2.4, we can figure out the 
average temperature of the other two square areas of 
298.78K and 297.91K. Fortunately, their corresponding 
pixel temperature data are 296.85K and 296.15K. 

4.3 Results Discussion 

In Section 4.2, we derived average temperatures of 
the other two square areas by using parameters 
calculated by equations. And then we figured out the 
difference are 1.93K and 1.76K after comparing the 
average temperature with the corresponding pixel 
temperature data. 

In the experiment, the data error mainly comes from 
three factors: the inevitable error of the infrared 
temperature sensor, the estimation error of the size of 
each block and the inversion error of Terra satellite 
ASTER sensor’s data. 

5  CONCLUSIONS 

This paper proposed a detection method of the 
correctness of surface temperature remote sensing 
products based on Internet of Things called LSTDIoT 
to explore the possibility of verifying remote sensing 
LST of uneven surface types. And we selected a region 
in Long Kang farm located in Anhui Province Bengbu 
City Huaiyuan County for the experiment. 

The experimental results indicate that, the surface 
temperature measured and calculated by LSTDIoT 
method has less than 2K error compared with the 
corresponding remote sensing temperature data. The 
error of the data mainly comes from measurement error 
of the infrared temperature sensor, estimation error of 
the size of blocks and inversion error of Terra satellite 
ASTER sensor’s data. These three aspects, especially 
the resolution of the satellite thermal infrared sensor is 
worth being improved lately. 
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ABSTRACT- This work evaluates the accuracy of the ASTER emissivity product AST05 with field spectral 
radiance measurements by using a handheld portable Fourier transform infrared (FT-IR) spectroradiometer 
Model 102F for several natural surfaces. Considering that the 102F operates in the 2-16 μm spectral domain, 
with spectral resolutions of 4 cm-1, the LST and LSE are decoupled by using a piecewise linear spectral 
emissivity method. The method derives reasonable emissivity spectra for four natural surfaces: sand, bare soil, 
alfalfa, sea water. The channel emissivity are derived by convolving the spectral emissivity with the spectral 
response function of ASTER five TIR channels. Comparisons of channel LSEs from field measurements with 
those from AST05 show that good agreements are obtained for sand and bare soil while big differences are 
existed for alfalfa and sea water with maximum bias up to 0.045 in channel 10 for sea water, which demonstrates 
that AST05 product provides accurate LSEs for higher spectral contrast surfaces but inaccurate LSEs for low 
spectral contrast surfaces. 
Keywords: Emissivity, field measurements, natural surfaces, 102F, ASTER 

1 INTRODUCTION 

Land surface emissivity (LSE) has long been seen as 
an indicator of material composition [1-3]. However, 
different materials in the terrestrial ecosystem (e.g., 
rock, soil, vegetation, water, and snow/ice) have 
different spectral features. The knowledge of LSE 
spectral variation is very important in many 
applications, such as the Earth’s surface energy budget 
estimation, land surface temperature (LST) retrieval, 
land cover types discrimination, and so on [4-10]. It is 
therefore very necessary to analyze the spectral 
variation of LSE in the thermal infrared (TIR) domain 
(8-14 μm window).  

The Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) surface emissivity 
product (AST05) provides five thermal infrared (TIR) 
channels emissivities derived with the Temperature 
Emissivity Separation (TES) method [11]. However, 
many researches reported that the AST05 product 
underestimated the emissivity for low spectral contrast 
surfaces (such as vegetation and water) with uncertain 
up to 7% for channel 10 at 8.3 µm [12]. 

To further evaluate the accuracy of the ASTER 
emissivity product AST05, this work measures several 
natural surfaces with a handheld portable Fourier 

transform infrared (FT-IR) spectroradiometer Model 
102F at a field in-situ site. Section 2 introduces the 
study area and field experimental measurements. The 
method for deriving spectral emissivity from measured 
spectral radiance are described in Section 3. The 
results are presented in Section 4 where the 
verifications of derived spectral emissivity with 
spectral library data for several natural surfaces are 
given. The evaluation of the ASTER emissivity 
product AST05 are also given in this Section. Finally, 
the conclusions are drawn in section 5. 

2 STUDY AREA AND FIELD MEASUREMENTS 

2.1 Study area 

The experimental measurements were conducted at 
Baotou field site, located in Urad Qianqi, Inner 
Mongolia, in northern China, between latitudes 40°
45′ N and 40°54′ N and longitudes 109°15′ 
E and 109°40′E. The location of the study site is 
shown in Figure 1. The study site is approximately 10 
km2, and the average altitude is 1290 m above sea 
level. The site has a semi-arid temperate continental 
climate with a mean annual temperature of 6℃ and a 
mean annual rainfall of approximately 288 mm. Most 
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of the soil in the site is sandy loam and silt loam, and 
the primary vegetation is the shrub Caragana 
microphylla. Plots of 90 m×90 m were established on 
three natural surfaces, sand, bare soil, and alfalfa, in 
the study site. 

Fig.1. Location of the study site. 

2.2 Field measurements 

The spectral radiances for several natural surfaces 
were measured by a handheld portable Fourier 
transform infrared (FT-IR) spectroradiometer Model 
102F, manufactured by the Designs & Prototypes 
Company, Simsbury, USA. It is a rugged and practical 
field instrument weighing less than 7 kg. The 102F 
portable field spectroradiometer operates in the 2-16 
μm spectral domain, with selectable spectral 
resolutions of 4, 8, or 16 cm-1. The overall 
interferometer dimensions are 36 cm×20 cm×23 cm, 
excluding the input optics. It runs on a compact battery, 
a 12 volt auto cigarette lighter, or a worldwide 
universal AC supply/battery charger. It is therefore 
suitable for field measurement of the spectral radiance 
of natural or man-made materials.  

To reduce the influence of the environment on the 
radiance measurements, the experimental campaigns 
were conducted on March 16, July 14, and October 15 
and 17, 2014 when there were with moderate ambient 
temperature, low humidity, and calm winds, free of 
visible cloud cover. Figure 2 shows three measurement 
images of field campaigns for grass land, bare soil and 
lake water in the field site, respectively. 

2.3 ASTER emissivity product AST05 

ASTER, a multispectral sensor providing 15 spectral 
channels (4 VNIR channels, 6 SWIR channels and 5 
TIR channels), was launched on 19 December 1999 
aboard Terra satellite. ASTER offers high spatial 
resolution imagery of 90 m for five thermal infrared 
(TIR) channels, as well as LST and emissiviy products 
(AST08 and AST05, respectively), derived with the 

Temperature Emissivity Separation (TES) method [11]. 
The ASTER surface emissivity product (AST05) over 
the experimental site covering different surface types 
are used in this work. 

(a)   (b) 

(c) 
Fig.2. Measurement of emissivity with a handheld 
portable FT-IR spectroradiometer Model 102F in the 
study site: (a) for alfalfa grass land, (b) for bare soil 
land and (c) for inland lake. 

3 METHOD 

3.1 Radiative Transfer Theory in the TIR 

According to the radiative transfer theory, for a 
cloud-free atmosphere under thermodynamic 
equilibrium, the spectral radiance Rλ  measured at 
the ground level in a TIR sensor, is given with a good 
approximation as [13]: 

s atR ( , ) ( , )B (T ) (1 ( , ))R
λ

↓
λ λ λ λθ ϕ = ε θ ϕ + − ε θ ϕ  (1) 

in which all variables depend on the wavelength λ . 
θ  is the viewing zenith angle and ϕ  is the viewing 
azimuth angle. B  is the Planck function, and (T )sBλ  
is the spectral radiance emitted by a blackbody at 
temperature sT . atR

λ

↓  is the spectral downwelling 
radiance reflected from the target into the 
spectroradiometer with reflectance 1 λε−（ ）. λε  is the 
spectral emissivity. To calculate λε , according to 

equation (1), both atR
λ

↓ and sT  must be known. 
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3.2 Determination of Spectral Downwelling Radiance 

To determine the spectral downwelling radiance atR
λ

↓ , 
a gold plate with known emissivity is used. If we 
assume that a small error is caused by ignoring the 
scattered downwelling radiance of the gold plate in the 
measurement, the atR

λ

↓ can then be calculated as [14] 

gold gold gold
s

at gold

R ( , ) ( , )B (T ( , ))R
1 ( , )λ

↓ λ λ λ

λ

θ ϕ − ε θ ϕ θ ϕ
=

− ε θ ϕ
(2) 

in which goldRλ is the measured radiance for the gold 

plate, gold
λε  is the known spectral emissivity of the 

gold plate, calculated from directional hemispherical 
reflectance measurements. gold

sT is the gold plate’s 
temperature, which can be obtained by a thermocouple 
during the radiance measurements. 

It is worth noting that the measurements of 
downwelling radiances must be conducted 
immediately before or after that of target radiance 
measurement. The measured location, observation 
geometry of the gold plate should be the same to that 
of the target measurement. Then, the downwelling 
spectral radiance determined from the gold plate 
measurement is substituted for that of the target. 

3.3 Determination of Spectral Emissivity 

If the spectral downwelling radiance atR
λ

↓ is 

appropriately determined, the spectral emissivity λε
in equation (1) can be calculated by 

at

s at

R ( , ) R
( , )

B (T ) R
λ

λ

↓
λ

λ ↓
λ

θ ϕ −
ε θ ϕ =

−
(3) 

when the target temperature sT  is known. 
Note that the temperature and emissivity are 

coupled in the TIR radiative transfer equation, to 
determine the spectral emissivity, the temperature and 
emissivity must be separated from the radiance 
measurements. Consequently, a piecewise linear 
spectral emissivity constraint method [15], which 
assumes that N bands corresponding to N emissivities 
in the hyperspectral data, is adopted to decouple the 
LST and LSE from the field radiance measurements. 

4 RESULTS AND DISCUSSION 

4.1 Results of Derived Spectral Emissivity 

Sixteen places were measured for each natural surface 
to reduce the effects of instrumental noise and other 
systematic errors. Once the radiance of the natural 
surface is measured, the downwelling radiances are 
determined, and then the temperature/emissivity 
separation algorithm described above is performed to 

derive the spectral emissivity. Figure 3 shows the 
spectral emissivity curves derived for each 
measurement of three natural surfaces. The average 
and standard deviation spectral emissivity curves are 
also shown in this figure. 

Figure 3. Spectral emissivity measured in the study 
site and derived with the proposed 
temperature/emissivity separation algorithm for three 
natural surfaces: (a) for sand, (b) for soil, and (c) for 
alfalfa. 

In Figure 3, we can see that the maximum 
standard deviation for sand emissivity is below 0.011 
and that for soil emissivity is below 0.01 in the 
spectral domain 8-14.0 µm. Most of the standard 
deviations are below 0.005 for both emissivity 
measurements in the spectral domain of 10-14.0 µm. 
For the alfalfa, the standard deviations at the spectral 
domain of 8-13.5 µm are less than 0.005. All of the 
values of spectral emissivity for alfalfa are above 0.97 
in the 8-14 μm spectral domain. The spectral 
emissivity of bare soil is relatively low, with minimum 
below 0.93. The spectral emissivity for sand has a 
significant variance, especially in the spectral domain 
of 8-11 μm, with minimum below 0.85. 
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4.2 Comparisons with spectral library data 

As a preliminarily test, the spectral emissivity derived 
from the field measurements, are compared with 
emissivity spectra of similar materials as provided by 
the MODIS UCSB emissivity library of the MODIS 
LST group. To assess the reliability of the comparison, 
the emissivity spectrum of materials with similar 
content are chosen. Comparisons between the 
emissivity spectra measured in the field and those 
obtained from the UCSB library are shown in Figure 
4. The solid curves represent the spectral emissivities
derived with the proposed scheme, and they are 
similar to the dashed curves obtained from the UCSB 
library. As shown in this figure, the change trends of 
different materials’ emissivity spectra are approximate. 

Figure 4. Emissivity spectrum curves derived from the 
field measurements (solid lines) and those obtained 
from the UCSB library (dashed lines). 

Table 1 provides summary statistics of the 
comparison. The RMSEs are calculated for the derived 
and obtained emissivities in the 8-14 μm spectral 
domain. To better compare the two different datasets, 
the spectral resolution of emissivity spectra are 
resampled to 4 cm-1. As given in this table, the 
minimum RMSE is 0.0101 for alfalfa. The maximum 
RMSE is 0.0135 for sea water, perhaps because the sea 
water we measured was from an inland water body, 
Ulansuhai Lake in Western Inner Mongolia, China. 
Differences in water quality may exist between this 
water and the sea water used in the UCSB. Due to all 
the RMSEs below 0.02 in the comparisons, we can 
conclude that the proposed scheme in this paper is 
appropriate to determine the emissivity spectrum of 
natural surfaces from field radiance measurements. 

4.3 Evaluation of AST05 emissivity 

To evaluate the accuracy of the ASTER emissivity 
product AST05, an image of AST05 data were 
obtained through the Earth Remote Sensing Data 
Analysis Center (ERSDAC). For each natural surface, 

the emissivity of ASTER five TIR channels for the 
pixels closest to the measurement site was extracted. 
Figure 5 shows, as an example, the comparisons 
between the emissivity spectra derived from the field 
measurements and those obtained from AST05 
product for sand, soil, alfalfa, and water, respectively. 

Table 1. Statistics of RMSE for the derived and obtained 
emissivity in 8-14 μm region for different materials. 

Targets Spectral 
domain (μm) 

Spectral 
resolution (cm-1) RMSE

Sand 8-14 4 0.0131 
Soil 8-14 4 0.0140 

Alfalfa 8-14 4 0.0101 
Sea water 8-14 4 0.0135 

Figure 5. Comparisons of emissivity spectra derived from the 
field measurements (solid black lines) and those obtained 
from AST05 product (dashed red lines). 
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From figure 5, we can see a good agreements are 
obtained for sand and bare soil, with maximum bias of 
-0.0075 in channel 13 for soil. There are big 
discrepancies between the AST05 emissivities and the 
ground measured reference values for alfalfa and sea 
water, both in terms of magnitude and spectral shape, 
especially in channels 10-12, with maximum bias up 
to 0.045 in channel 10 for sea water, which 
demonstrates that AST05 product underestimate the 
channel emissivities for low spectral contrast surfaces. 

5 CONCLUSIONS 

A scheme was proposed in this paper to determine the 
longwave infrared emissivity spectra at the 8-14 μm 
window domain for natural surfaces from field 
radiance measurements with a portable FT-IR 
spectroradiometer. To determine the downwelling 
spectra radiances, a gold plate with known emissivity 
was used. Assuming that the downwelling spectra 
radiances for the measurements of the gold plate and 
the target were equal, the downwelling spectra 
radiance determined from the gold plate measurement 
was used to derive the target emissivity.   

The ASTER emissivity product AST05 has been 
evaluated using field spectral measurements with a 
handheld portable spectroradiometer for several 
natural surfaces. The results showed that AST05 
underestimated the five TIR channel emissivities for 
low spectral contrast surfaces, such as vegetation and 
water. 
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Validation of Sentinel-2 LAI and FAPAR products derived from SNAP 
toolbox over a cropland site in Barrax and over an agroforested site in 
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ABSTRACT - Two field campaigns for the characterization of vegetation biophysical variables were conducted: 
first one in Las Tiesas-Barrax (Albacete, Spain) over the typical winter crop types as a part of the JECAM (Joint 
Experiment of Crop Assessment and Monitoring) activities to improve the retrieval of LAI (Leaf Area Index) and 
FAPAR (Fraction of Photosynthetically Active Radiation); second one in Liria (Valencia, Spain) over a forested 
area of Pinus halepensis, included in the project BIOSEN (BIOphysics variables of vegetation -LAI, FAPAR, 
FCover - and biomass from SENtinel-2 and Landsat-8). Ground data set was upscaled using Sentinel-2A top of 
canopy reflectance (L2A) data and transfer functions have been derived by multiple robust regressions between 
reflectance values and biophysical variables to generate empirical maps of biophysical variables. Furthermore, 
the L2B Biophysical Processor (BP) Toolbox of SNAP was used to estimate LAI and FAPAR over these two areas. 
This paper evaluates the performance of the Sentinel-2 LAI and FAPAR  products derived from SNAP BP Toolbox 
over crops and forest areas using standard validation methodologies. Although FAPAR from SNAP shows a good 
consistency against field data and empirical maps, with an slight overstimation, LAI values from SNAP have 
been largely overestimated for NDVI values under 0.20 in agriculture areas, with RMSE values from 0.49 to 0.75 
for several experiments and largely underestimated in forested areas over the full range of values with an adjust 
slope of 0.3. 

1  INTRODUCTION 

Validation of satellite products are mandatory to make 
a proper use of this information. Protocols for 
validation of LAI global biophysical products are 
already developed in the context of Land Product 
Validation (LPV) group of the Committee on Earth 
Observation Satellite (CEOS) for the validation of 
satellite-derived land products (Fernandes et al., 
2014). 

The direct validation strategy is based on the up-
scaling of ground-data using high-spatial resolution 
imagery to match the coarse spatial resolution 
imagery. In addition, inter-comparison with equivalent 
products are performed to assess the consistency of the 
products over larger domains.  These protocols were 
adapted for the validation of Sentinel-2 L2B prototype 
products using ESA campaigns datasets during the 
ESA VALSE-2 project (Camacho et al., 2013). For 
direct validation, the ESU measurements is used 
directly, whereas empirical maps using robust 
regression techniques were used for intercomparison at 
the site extent. 

The results of VALSE-2 project were used to 
develop a new toolbox -Biophysical Processor (BP)-  
by the European Space Agency (ESA) to calculate LAI 
and FAPAR from Sentinel-2 data (Baret et al., 2010) 
in the environment of the SNAP software. 

The aim of this paper is to validate the Sentinel-2 
LAI and FAPAR products of the BP toolbox. The 
Sentinel-2 BP products will be directly compared 
against the field data and against empirical maps 
obtained robust regression techniques, in one cropland 
site (Barrax) and one agro-forestal site (Liria), both 
located in Spain.   

2  METHODOLOGY  

2.1 Study areas 

A field experiment to spatially characterize the 
vegetation, via its biophysical parameters, was 
performed over agricultural areas in Barrax (Albacete, 
Spain) on March, 2016. The collection of ground data 
in Barrax was performed as part of the JECAM 
experiment  (Joint Experiment of Crop Assessment 
and Monitoring) concerning agriculture areas. 

On February, 2017, a new field experiment was 
developed in Liria (Valencia, Spain) to collect 
biophysical variables over forested areas as part of the 
project developed by EOLAB "BIOphysics variables 
of vegetation -LAI, FAPAR, FCover - and biomass 
from SENtinel-2 and Landsat-8" (BIOSEN) for 
forested areas. 

 Experiments were performed in an area of 20x20 
km2 centred in the coordinates 39.05ºN and 2.11ºE in 
Barrax and 39.75ºN and 0.70ºE in Liria (WGS84). 
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The Barrax test site is located in a plateau 700 m 
above sea level with a flat morphology and large 
uniform land-use units. The region consists of 
approximately 65% dry land and 35% irrigated land. 
The typical crop types and rotation includes barley,  
alfalfa, papaver, onion among others (fig. 1). 24 
Elementary Sampling Units (ESU) were sampled. 

Figure 1: crop types sampled in Barrax. 
Figure 2 shows an NDVI image of the Barrax site. 

Together with well-irrigated areas, senescent crops and 
bare soils can be observed. The presence of bare soils, 
senescent crops and irrigated crops makes of particular 
interest this cropland area for validation studies. 

Figure 2: NDVI values in Barrax, 2016. 
The site of Liria belongs to the Province of 

Valencia, 20 km inland far from the Mediterranean 
Sea. The area of study includes altitudes from 300 to 
700 m above sea level. Sampling units comprise, 
overall, Aleppo pines (Pinus halepensis) at any stand 
age and bordering agrarian fields composed by orange 
trees (Citrus x sinensis) planted geometrically 
following well-distinguished rows with dense crowns. 
Traditional areas of olives (Olea europaea), locust 
trees (Ceratonia siliqua) and almond trees (Prunus 
dulcis) still remain between the majority of orange 
trees farms. The area is conformed as a typical 

mediterranean forest-anthropic interface. 39 ESU were 
sampled.  

Figure 3 shows a NDVI image of Liria study site. 
Well conformed forested areas and restored after 
burned areas occupy centre and North of the image, 
and agriculture areas can be noticed in South. In a 
general point of view, NDVI is relatively higher than 
in Barrax. 

Figure 3: NDVI values in Liria, 2017. 

2.2 Field data collection 

Two field campaigns have been performed in the sites. 
Barrax area was sampled on 29th March, 2016 and 
Liria on 9th February, 2017. 

Field data have been collected following the 
protocols of the ImagineS project (Camacho, 2013), 
using for this purpose Digital Hemispherical 
Photography (DHP), LP-80 Accupar Ceptometer and 
LAI2200 Plant Canopy Analyzer. 

For DHP a pseudo-regular sampling in a square of 
20x20 m2 was done, geolocating its center by GPS. 
Between 12 and 15 pictures have been taken, being 
processed afterwards with the CAN-EYE software 
developed by INRA1. 

For LP80 Accupar Ceptometer and for LiCOR-
2000, each measurement was replicated three times, 
doing  one measurement above and eight below the 
canopy in the same area as DHP. 

2.3 Satellite imagery 

Sentinel-2A data used for this study was 
atmospherically corrected from level L1C to L2A by 
using the SEN2COR2 toolbox added to SNAP, both of 
them developed by ESA and freely available for all the 
users. Acquisition data was 12th of March, 2016 for 
Barrax (orbit 51, UTM 30SWJ) and 5th February, 2017 
for Liria (UTM 30TKX). 

1 INRA: http://www6.paca.inra.fr/can-eye 
2 ESA: http://step.esa.int 
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2.4 Empirical transfer functions (TF) 

Methodology to empirically estimate biophysical 
variables is compliant with existing guidelines 
(Morisette et al., 2006). Following a validation 
strategy based on a bottom up approach, individual 
measurements are aggregated over an elementary 
sampling unit (ESU) corresponding with the pixel of 
those high resolution imagery used for the up-scaling 
of ground data.  Radiometric values over a satellite 
image are also extracted over the ESUs that will be 
used to develop empirical transfer functions (TF) for 
up-scaling the ESU ground measurements (Martínez et 
al., 2009).  

As the number of sampled ESUs is enough, 
multiple robust regression between reflectance and 
biophysical variables can be applied (Martínez et al., 
2009). Several combinations of reflectance of 4 
spectral bands of S2A from 540 nm to 1.660 nm were 
selected (bands related with green, red, near infrared 
and shortwave infrared zones of the spectrum), and 
NDVI, with a nadir ground sampling distance of 10 m. 

For the transfer function analysis ‘Robustfit’ 
function from the Matlab® statistics toolbox was 
applied, using an iteratively re-weighted least squares 
algorithm and being the weights for each iteration 
computed by applying the bi-square function to the 
residuals from the previous iteration. This algorithm 
provides lower weight to ESUs that do not fit well.  

The results are less sensitive to outliers in the data 
as compared with ordinary least squares regression. At 
the end of the processing, two errors are computed: 
weighted RMSE (using the weights attributed to each 
ESU - RW) and cross-validation RMSE (leave-one-out 
method - RC).  

NDVI has been selected as the best input for the 
transfer function, as errors for this combination are 
enough good, while keep good consistency between 
both of the studied variables. Pre-established 
relationships were assumed for LAI and FAPAR, 
where NDVIs is the value of soil, and 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∞ the 
value for densest canopy, extracted from the image, as 
equations (1) and (2):  

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑎𝑎 + 𝑏𝑏 · 𝑙𝑙𝑙𝑙 �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∞−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∞−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠

�  (1) 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑎𝑎 + 𝑏𝑏 · 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (2) 

2.5 Quality flag 

The interpolation capabilities of the empirical transfer 
function used for up-scaling the ground data using 
decametric images is dependent of the sampling 
(Martinez et al., 2009).  

Data sampling was done over the most 
representative structures in the areas of study. 
However, because the method of TF has limited 
extrapolation capabilities, due linear functions, and to 

ensure the quality of the data a test based on the 
convex hulls was also carried out additionally. 

To characterize the representativeness of ESUs 
and the reliability of the empirical transfer function 
using the different combinations of the selected bands 
(green, red, NIR and SWIR) of the Sentinel-2A image, 
a flag image is computed over the reflectance values. 
The result on convex-hulls can be interpreted in figure 
4 (for Liria, 2017) as:  

a) well represented by the ground sampling,
where transfer function will be used as an 
interpolator (clear blue); 
b) the degree of confidence is quite good
although the transfer function is used as an 
extrapolator (dark blue); 
c) pixels where the transfer function behave as
an extrapolator which makes the results less 
reliable (red).  

 Figure 4: quality flag image for the transfer function 
in Liria, 2017.  

2.6 L2B Biophysical Processor (BP) 

After Level 2A of S2A imagery corresponding with 
reflectance at Top-Of-Canopy was achieved, level 2B 
(L2B) related to biophysical variables was obtained by 
performing these L2B biophysical processor (BP) 
installed in SNAP as a toolbox (Weiss and Baret, 
2016). Values of LAI and FAPAR for individual ESU 
and for the whole scene were extracted.  

2.7 Validation 

Having then ground measurements and LAI and 
FAPAR results given by two methods (Transfer 
Functions -TF- and L2B processor -BP-) validation of 
both methods is conducted at the pixel level by direct 
comparison with ground measurements, and at the plot 
level over the site extent by comparison with the up-
scaled maps. 

3 RESULTS AND DISCUSSION 

Sampling evaluation for TF shows a well represented 
sampling: 65.78% of pixels obtained by a strict- and 
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close to-interpolation in Barrax, 2016 and 67,63% of 
strict- and close to-interpolation obtained values in 
Liria, 2017. 

3.1 Empirical maps 

TF based on equations (1) and (2) using NDVI as 
input show for Barrax a RW=0.75 and RC=1.05 for 
LAI and values of RW=0.07 and RC=0.15 for FAPAR 
(table 1).  

Table 1: TF applied in Barrax, 2016 
Transfer function 

LAI = 0,17 - 1,16 * ln[(0,95 - NDVI) / (0,95 - 0,12)] 
FAPAR = -0,042 -1.099*NDVI 

TF applied in Liria give errors for LAI of 
RW=0.75 and RC=1.15 and for FAPAR RW=0.13 and 
RC=0.13 (table 2). 

Table 2: TF applied in Liria, 2017 
Transfer function 

LAI = 0,312 - 1,058 * ln[(0,97 - NDVI) / (0,97 - 0,12)] 
FAPAR = -0,091 + 0,874*NDVI 

In Barrax, application of TF gives a good 
correlation with field data for LAI, with an R2=0.904. 
Although for FAPAR R2=0.875, consistency of values 
for low NDVI areas is not enough to considerer the 
results in the experiment. 

In Liria application of TF gives a good correlation 
with field data for LAI, with an R2=0.867 and 
R2=0.877 for FAPAR. In that case, both  
3.2 Direct comparison 

Biophysical values obtained by BP have been 
compared with ground measurements for each ESU. 
Figures 5 to 7 show the relation between variables for 
each data and site. 

It is noticeable in Barrax that for low values of 
LAI, similar to bare soil, BP overestimate the results, 
but in general values are underestimated. In an 
agroforested area as Liria LAI results by BP are in 
accordance with this observation, as LAI is 
underestimated. FAPAR seems to be only slightly 
underestimated. 

3.3 Intercomparison 

Empirical maps obtained via TF application have 
been considered enough consistent to be used as a 
reference against BP values. A global scatter for the 
whole area has been processed in Barrax, 2016 (fig. 8). 

Again, for low values of LAI, BP largely 
overestimate the empirical maps, better adjusted for 
bare soils and senescent crops which cover a 
significant area in Barrax. For other values, LAI BP 
values are underestimated compared to TF. 

For the agroforestal area of Liria, a segmentation 
in two areas, one dominated by agriculture and one by 
pine forest. In agriculture areas, LAI behaviour 
obtained by TF or by BP of SNAP is similar to these 
one obtained in Barrax, 2016 (fig. 9). Low LAI values 
similar to bare soils are overestimated by BP whereas 
larger values are slightly underestimated. For FAPAR, 
however, a good correlation has been achieved with no 
overestimation for low values (fig. 10). This reveals a 
particular problem in LAI estimates. 

Figure 5: ground measurement of LAI compared with 
LAI from BP by ESU in Barrax, 2016. 

Figure 6: ground measurement of LAI compared with 
LAI from BP by ESU in Liria, 2017. 

Figure 7: ground measurement of FAPAR compared 
with FAPAR from BP by ESU in Liria, 2017. 
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Figure 8: comparision of LAI. Barrax, 2016. 

Figure 9: comparision of LAI value in agriculture 
areas. Liria, 2017. 

In forested areas values of LAI derived from BP 
are underestimated for those forested and vegetated 
areas, with a low slope value of 0.30 (fig. 11). 
Differences can be explained either because radiative 
transfer simulations (PROSAIL) used in the BP are not 
well-suited for the three-dimensional structure of 
heterogeneous pine forest, and because the ground 
measurements refers to green PAI (Plant Area Index) 
rather than to green LAI. FAPAR values form BP are 
more similar with TF, although some underestimation 
is noticed. As a result, BP toolbox applied to forested 
areas seems to create some confusion . 

4  CONCLUSIONS 

High resolution ground-based maps of the biophysical 
variables have been produced over the sampling sites 
using Sentinel-2A Level-2A reflectance data, 
following the CEOS LPV recommendations, and used 
for validation of Sentinel-2 LAI and FAPAR products 
derived with the SNAP Biophysical Processor. 

Over crops and farming areas it is noticeable that 
differences of LAI from BP of SNAP and transfer 

functions are major in low values related to bare soil. 
LAI from TF in areas of bare soil are closer to the null 
value than BP ones, that are normally overestimated 
for low values meanwhile other values are generally 
underestimated . 

Figure 10: comparision of FAPAR values in 
agriculture areas. Liria, 2017. 

Figure 11: comparision of LAI value in forested areas. 
Liria, 2017. 

Figure 12: comparision of FAPAR value in forested 
areas. Liria, 2017. 
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In addition, in those forested areas analyzed, 
although FAPAR shows a slight better consistency 
against field data and empirical maps LAI values have 
been systematically underestimated, even after 
considering that LAI ground values in forest areas are 
slightly overestimated due to the contribution of non-
leave elements to the photon interception. 

Summarizing, LAI from BP presents a systematic 
inconsistency due a general underestimation and 
specifically over crops LAI values are non-reliable for 
areas with a low NDVI meanwhile FAPAR relations 
between two methods are softly better. 
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Sea Surface Temperature (SST) is a key variable that reflects and conditions natural processes which take place 
in the ocean and affect at a planetary scale. For this reason, there is a major interest in SST monitoring by using 
satellite data, with a periodic global coverage and a high precision.  The present work used SST multi-temporal 
series, derived both from in situ and satellite data, to estimate SST, make a comparative analysis between these 
data sets and calculate the actual SST trend. The chosen data sets are: COBE (Japanese Meteorological 
Agency), ERSST version 4 (NOAA), and MODIS SST products (NASA) for the period 2002 to 2016 and the 
AATSR SST product, ARC SST v1.1 (ESA) for the period 2002 to 2011. Obtained SST trends show increases 
between 0.8 and 0.15 ºC per decade and an increase in the warming rate. 

1. INTRODUCTION

The quantitative determination of the ocean 
temperature is crucial for global change studies. For 
this purpose, Sea Surface Temperature (SST) is 
selected as an indicator of climate processes associated 
to the ocean most superficial layer, reflecting possible 
warming-cooling trends, and has been determined as 
an Essential Climate Variable (ECV) by the Global 
Observing System for Climate (GCOS). 

Until the 80s, SST monitoring was based on in situ 
data from buoys and oceanographic campaigns, 
basically with the support of oceanographic ships. 
Associated to this type of data, several problems 
appear. Firstly, these measurements are irregularly 
distributed in space and not necessarily representative 
of the real mean values of a determined area. 

Both buoys and oceanographic campaigns use 
their own methodologies, generating intrinsic errors to 
each procedure. For this reason, the use of data from 
different sources as a homogeneous set, which could 
allow to establish the SST behaviour in time, is 
complex. 

Satellite observations provide multi-temporal SST 
time series, averaged through spatial areas of an 
appropriate dimension for climate change studies and 
are potentially independent from in situ data (Mao et 
al., 2017). 

The main disadvantage is the need for making 
different corrections, for instance, atmospheric or 
geometric, in order to avoid errors because of the 

existent atmosphere between the observed surface and 
the sensor or the data collection by the satellite. 

The present paper objective is to use remote 
sensing and in situ data to determine the SST 
evolution on a global scale, estimating trends by 
decades and comparing absolute SST data from the 
different data sets considered. 

1.1. The importance of SST for climate change studies 

Oceans are a fundamental energy reservoir in the 
Earth climate system. SST is a measurement of 
ocean’s most superficial layer temperature and, once 
the influence of seasonal, regional or diurnal 
anomalies is removed, it can be used as a strong 
indicator of the ocean’s surface climatology. 

In figure 1, the contribution of different terrestrial 
components to the Earth climate system between years 
1971 and 2010 is shown (IPCC, 2014). Energy values 
are a multiple of 1021 J. 

These components are: 

 The upper ocean above 700 m.
 Deep ocean below 700 m (including 2000 m

estimates starting from 1992). 
 Ice melt for glaciers and ice caps (Greenland

and Antarctic ice sheet estimates starting from 1992, 
and Arctic sea ice estimate from 1979 to 2008). 
 Continental (land) warming.
 Atmospheric warming (estimate starting

from 1979) 
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Figure 1. Energy accumulation within the Earth’s 
climate system. 

Uncertainty is estimated as the error from all five 
components at 90% confidence intervals. 

Figure 1 shows that the most influential 
component to the Earth energy reservoir is the upper 
ocean, with an energetic contribution which increases 
through the years. SST behaviour reflects upper ocean 
processes, so it is important to monitor and study this 
variable correctly. 

For this purpose, it is essential to obtain precise 
measurements of SST, as the offered by remote 
sensing techniques, which allow the detection of 
potential changes in SST evolution and offer a stable 
set of measurements that can be treated as an input 
parameter for numerical models, meteorological 
prediction models… and ease the understanding of 
different natural processes related to the ocean 
dynamics (Good et al., 2007). 

2. MATERIAL AND METHODS

An SST appropriate monitoring requires temporal 
data series for a minimum period of time of 10-15 
years (Allen et al., 1994). Another important issue to 
be taken into account is the maximum allowed error 
associated to measurements in climate change studies: 
in the case of a hypothetical increment SST trend of 
0.25 K per decade, a stability of 0.1 K per decade is 
required for detecting changes with a minimum 
confidence level. (Llewellyn-Jones et al., 2001), 
allowing in this way to determine the real SST 
evolution in time. 

In the present paper, COBE SST and ERSST.v4 
are the in situ SST data sets considered, and MODIS 
SST product and ARC.v1.1 SST AATSR product, the 
satellite data sets. 

2.1 In situ data sets 

Extended Reconstruction Sea Surface Temperature 
(ERSST) version 4 

The ERSST multi-temporal series is a data set 
derived from ICOADS (International Comprehensive 
Ocean-Atmosphere Dataset), monthly averaged from 
January of 1854 until the present on a global scale. It 
is produced on a spatial 2º x 2º grid with spatial 
completeness enhanced using statistical methods 
(Huang et al., 2015). 

Version 4 is the most recent of the ERSST data 
produced by NOAA and includes absolute SST data 
and SST anomalies calculated respect a monthly 
climatology referred to years 1971-2000. It is 
presented in a 180 columns, 89 rows and 1961 bands 
format. 
Centennial Observation-Based Estimates of SSTs 
(COBE-SST) 

COBE-SST is the Japanese Meteorological 
Agency SST product produced on a 1º x 1º grid which 
includes data from 1891 to the present. It combines 
version 2.0 of ICOADS data set with the Japanese 
Kobe collection (NCAR, 2017). 

The product is provided on a 360 column, 180 
rows and 2004 bands format. Bands are associated to 
monthly averaged SST since January of 1981 to the 
present. 

2.2. Satellite data sets 

MODIS Terra/Aqua SST products 
MODIS is an instrument aboard both Terra an 

Aqua satellites. Terra’s orbit passes over the Equator 
from North to South in the morning at 10:30 a.m., 
whilst Aqua orbits over the Equator from South to 
North in the afternoon at 01:30 p.m. 

SST products derived from MODIS are developed 
by the NASA Ocean Biology Processing Group 
(OBPG). For SST retrieval, two algorithms, long wave 
and short wave, are used. Data used in this study have 
been processed applying the long wave algorithm, 
which considers MODIS 31 and 32 bands. 

Brightness temperatures are obtained from 
radiances, by an inversion of the relation between 
radiances and a black body temperature. 

Data is available from 2001/2002 (Terra/Aqua) 
until the present. Images of a 4.63 km resolution, 
meaning an 8640x4320 pixels size, and monthly 
averaged have been used. Each pixel is also labelled 
according to its quality; for this study, only those with 
a value of 0 and 1, of good and acceptable quality, 
respectively, have been selected. 
Along-Track-Scanning-Radiometer Reprocessing for 
Climate Sea Surface Temperature (ARC SST) version 
1.1. 
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Climate change monitoring requires high precision 
level measurements. The ATSR programme pursues an 
absolute precision of 0.3 K in measurements with a 
stable error of 0.1 K during the whole mission (O 
‘Carroll et al., 2006), averaged along areas of a 1º 
latitude and 1º longitude spatial resolution. Monthly 
averaged images have been used, for the period of 
time from year 1997 to 2011. 

Measurements from ATSR instruments refer to the 
most superficial layer of the ocean, of a few 
micrometers depth (skin SST), slightly colder than 
water situated some centimeters deeper. In 
oceanography, SST is considered to be a measure of 
the temperature of the first 10 cm of the ocean water 
column (bulk SST), however, given the limitation of 
thermic radiation penetration in the water column, 
ATSR measurements refer to the first micrometers 
(Llewellyn-Jones et al., 2011). 

ARC SST version 1.1 SST data solves this 
difficulty as it is referred to a 20 cm depth (bulk SST), 
estimated by physic models which consider the 
original superficial temperature obtained by the sensor 
and making it ideal to be compared with in situ data. 
The averaged final values incorporate both diurnal 
(10:30) and night time data (22:30). 

In figure 2, example images of the mentioned four 
SST data sets are shown. 

 

 
Figure 2. SST monthly averaged product examples: A, 
ERSST v.4 (NOAA); B, COBE-SST (Japanese 
Meteorological Agency); C, AATSR (ESA); D, 
MODIS (NASA) 

2.3. Methodology 

In general terms, mean SST is calculated by 
applying equation 2.1, where i is the number of 
columns, j the number of rows, SSTt

ij, is SST of one 
pixel for a given month, n is the number of measures 
considered and SSTt

mean, the mean temperature at a 
spatial range for a specific period of time. 

 
 (2.1) 

For the MODIS case, SST for each pixel in every 
month is calculated as a mean between the four 
available measurements: MODIS Terra and Aqua, 
diurnal and nocturnal (Eq. 2.2). Observation times are 
symmetric, so the mean global SST estimated by 
equation 2.2 is similar to the absolute mean SST, as 
the temporal coverage of satellite data is continuous 
(Mao et al., 2017). The uncertainty of these mean 
values is estimated by the standard deviation. 

 
(2.2) 
 

Once the four data sets considered are processed, a 
comparison between the obtained results for years 
2002-2011 is made. 

MODIS SST product and the in situ data set, 
ERSST.v4, have temporal coverage up to the present, 
so the study will be extended until December of 2016, 
in order to estimate the actual SST trend by applying 
the minimum least squares method. 

The uncertainty associated to SST trends (σβ2) is 
calculated as the quotient of the data variance (σ2) and 
the cubed size of the temporal period considered (Δt3), 
multiplied by a factor (ν) equal to 8 for satellite 
derived data and equal to 2, for ERSST.v4 (Hausfather 
et al., 2017) (Eq. 2.3). 
 

(2.3) 
 
Two programming languages have been used: IDL 

(Interactive Data Language), for data sets processing 
and variables extraction and Matlab, for the statistical 
analysis. 

3. RESULTS AND DISCUSSION 

3.1. Comparison between SST data sets: COBE-SST, 
ERSST v.4, MODIS and AATSR 

Relations between the four SST data sets 
considered are shown in the next statistical analysis, in 
which a lineal adjustment by minimum squares is 
applied, considering monthly mean global SST data. 

Several statistics are calculated: R2 (determination 
coefficient), MBD (Mean Bias Deviation), RMBD 
(Relative Mean Bias Deviation) and RMSE (Root 
Mean Squared Error) (Table I). 

Table I shows that, despite MBD, RMBD and 
RMSE are not high, determination coefficients show a 
week relation between most of the SST data sets 
considered, except for the pairs AATSR-ERSST, with 
a R2 of 0.83, a -0.39 ºC bias, meaning an 
overestimation of satellite data respect in situ data, and 
a RMSE of 0.09 and MODIS-AATSR, with a R2 of 
0.69, a 0.91 ºC bias and an overestimation of MODIS 
respect AATSR. 
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Table I. Main statistics obtained by the lineal adjustment of SST data sets considered. 

 SST pairs 
Statistics 

AATSR-
COBE 

AATSR-
ERSST 

MODIS-
COBE 

MODIS-
ERSST 

COBE-
ERSST 

MODIS-
AATSR 

R2 0.08 0.83 0.04 0.06 0.27 0.69
MBD (ºC) 0.73 -0.39 -0.08 -1.20 -1.12 0.81 

RMBD (%) 0.49 0.28 0.06 0.87 0.75 0.57 
RMSE (%) 0.16 0.09 0.02 0.28 0.24 0.18 

Figure 3. Lineal adjustments by 
SST data set pairs: AATSR-COBE, MODIS-COBE, COBE-ERSST, AATSR-ERSST, MODIS-ERSST, 
MODIS-AATSR. 

The comparison between SST data sets show 
significant differences between generic absolute SST 
data available. Consequently, provided information by 
these multi-temporal absolute SST data series must be 
managed with caution, towards establishing any type 
of conclusions related to SST evolution.  The 
adjustments can be visually observed in figure 3. 

Several reasons generate such differences: errors 
in the satellite instruments calibration or the 
methodology used when taking samples, intrinsic of 
every oceanographic campaign and conditioned by the 
technicians in charge of the sampling. Furthermore, 
the fact that SST in situ data sets are a result of the 
interpolation of punctual measures in space, derived 
from buoys, and also punctual in time, when referring 
to oceanographic campaigns, must be taken into 
consideration. This will generate an associated error in 
the interpolated areas, in which direct measures are 
inexistent. 

As in situ data sets, ERSST.v4 and COBE-SST, 
are derived, totally or partially, from the NOAA SST 
data set ICOADS (International Comprehensive 

Ocean-Atmosphere Data Set), the percentage of area 
sampled by ICOADS is shown in figure 4. 

An oceanic coverage in SST sampling of between 
40 and 60 % is registered, from years 1990 to 2014, 
revealing inexistent sampling in a minimum of 40% of 
the oceanic total area, which can introduce a 
significant error in interpolated zones 

Figure 4. Percentage of sampled oceanic area between 
years 1800 and 2014 (NOAA, 2016). 
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For this reason, it is a clear necessity for using 
satellite data sets in SST monitoring, which offer 
continuous data at a global level, solving the problem 
of the in situ lack of data. 

3.2. Current SST trend 

Once analysed the relations between SST multi-
temporal data series derived from ERSST.v4, MODIS, 
COBE-SST and AATSR, the parameter trend is 
estimated, considering ERSST.v4 and MODIS data 
from 1997 and 2002, respectively, to December of 
2016. Results are shown in table II. 

Table II. SST trend given by ERSST.v4 and MODIS 
data sets considering years 1997-2016, 2002-2016, 
2007-2016 y 2011-2016. 

Data  
Years 

ERSST.v4 
(ºC/decade) 

MODIS 
(ºC/decade) 

1997-2016 0.00(3) ± 0.00(0) -
2002-2016 0.01 ± 0.00(0) 0.00(5) ± 0.00(0) 
2007-2016 0.02 ± 0.00(2) 0.01(5) ± 0.00(1) 
2011-2016 0.15 ± 0.01 0.08 ± 0.01 

As observed in table II, the SST trends increase as 
a most recent period of time is considered in the 
estimations. The actual SST trend calculated in 
relation to years 2011-2016 is (0.15 ± 0.01) ºC/decade 
for ERSST.v4 data and (0.08 ± 0.01) ºC/decade for 
MODIS data. 

Previous studies, which consider the period of 
time in between years 1997 and 2015, establish the 
SST trend on 0.12 ºC per decade for ERSST.v4 data 
(Hausfather et al., 2017), with an increase of 0.03 
ºC/decade during year 2016. These observations show 
that the SST trend is far from stability and it is 
increasing in time. 

The SST trend resulting from analysing the 
ERSST.v4 data set is higher than the MODIS SST 
trend, nevertheless, in both cases an increase in the 
ocean absolute surface temperature and on the SST 
trend with the years is reflected, with the 
consequences that progressive changes on this 
parameter can cause on the global natural dynamic. 

4. CONCLUSIONS

a. Significant differences exist between the four
absolute SST data sets analysed, ERSST.v4, COBE-
SST, MODIS and AATSR, as expected, due to in situ 
multi-temporal SST series are produced by combining 
measures from different sources (buoys, coastal 
measure stations, military data, oceanographic 
ships…), with its own sampling methodology, 
calibration and technicians. In consequence, although 
the application of quality controls and bias reductions, 
they will continue to show differences and data must 
be managed with caution. 

b. Attending to sampling points distribution of in situ
SST data sets, it is relevant the poor an irregular 
spatial coverage of measurements, which introduces 
errors in the global results and contributes to 
differences with satellite data sets. 
c. Satellite data sets, offer measurements with an
acceptable global temporal frequency and 
continuously in space, ensuring the whole Earth’s 
surface coverage. The main problem associated to 
instruments which measure in the thermic range is the 
presence of clouds. However, a quality control 
variable is produced, at the same time as our variable 
of interes, SST, so that pixels with uncertain quality, 
can be filtered and eliminated from further 
calculations, improving results reliability, although 
there is still work to be done in this line. 
d. In AATSR and MODIS cases, they offer global
measures with a precision, estimated by standard 
deviation, of 0.1 ºC and 0.13 ºC, respectively. 
O’Carroll et al. (2006) had already determined a 
precision of 0.1 K for the whole ATSR mission, in 
agreement with this study’s estimations. 
e. In situ measurements are a complementary option to
satellite data. The last ones, should reach the higher 
quality grade as possible, following an in situ data 
independent SST monitoring. ERSST.v4 and MODIS 
have been considered for trend estimations due to its 
present available data, resulting on (0.15 ± 0.01) 
ºC/decade and (0.08 ± 0.01) ºC/decade, respectively. 
20 years ago, trends also showed a SST rising, but it 
was so low that the variable could be considered to be 
stable in time. This has changed and, currently SST is 
rising and should be continuously monitored to know 
its evolution in the short and middle time. 

Given the rising and increasing SST trends, the 
topic of this paper is becoming a relevant investigation 
area, as SST is an Essential Climate Variable which 
conditions natural dynamics at a planetary scale. For 
this reason, a comprehensive knowledge of SST 
evolution and its relations with other oceanic variables 
will be required for making decisions about crucial 
matters, such as marine environment management and 
climate change attenuation. 
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ABSTRACT Land surface temperature (LST) plays an important role in land surface processes and is a key input for 
physically based retrieval algorithms of important hydrological states and fluxes such as soil moisture and evaporation. 
Compared to thermal signal, microwave signal can penetrate non-precipitating clouds, thereby providing a better 
representation of LST under nearly all sky conditions. However, previous study shows atmospheric impact on passive 
microwave brightness temperature is not negligible for the high frequency. A multi-channel method for retrieving LST 
is proposed using the passive microwave ground brightness temperature and a favorable accuracy with RMSE=1.58 
K have been obtained in this study. To analyze the atmospheric impact on LST retrieval, the proposed method is 
performed using ground brightness and satellite measured brightness temperature, respectively. The results 
demonstrate that the atmospheric impact leads to an error of 0.73 K when retrieving LST using proposed method. Thus, 
the atmospheric correction is necessary. 

1 INTRODUCTION 

Land surface temperature (LST) is a key physical 
measurement in surface energy and water balance 
processes at regional and global scales (Coll et al. 2016; 
Duan et al. 2014; Wan and Li 1997). It plays a key role in 
various studies, including studies of climatology, 
hydrology, meteorology, ecology, agriculture, public 
health, and environmental monitoring (Anderson et al. 
2008; Li et al. 2009; Weng and Grody 1998). Currently, 
a number of studies have been performed to retrieve LST 
from remotely sensed data. Compared to the infrared 
signal, the passive microwave signal is not significantly 
affected by the atmosphere, thus, passive microwave 
remote sensing is widely used to estimate the LST 
without considering the atmospheric impact. For instance, 
Holmes et al. (2009) proposed an empirical algorithm for 
global land surface temperature retrieval using the 
vertically polarized brightness temperature at 37 GHz. 
However, previous study (Han et al. 2017; Liu et al. 2013) 
showed that the atmospheric impact on brightness 
temperature is not negligible for the high frequency. It 
leads to large error of LST which retrieved from the 
brightness temperature at high frequency.  

Thus, the objectives of this study are (1) to retrieve 
the LST using ground brightness temperature and (2) 
analyze the atmospheric impact on the LST retrieval. This 
article is organized as follows. Section 2 describes the 

simulated data. Section 3 present the multi-channel 
method for retrieving LST. Section 4 provides an analysis 
of the atmospheric impact on the LST retrieval, and 
conclusions are presented in the last section.  

2 SIMULATED DATA 

To analyze the variation of emissivity over a spectrum of 
microwave frequencies, which plays a key role in the LST 
retrieval method, we used AIEM to simulate different 
surface conditions. To consider more land surface types, 
reasonable variations of sand volume content, clay 
volume content, surface roughness, soil moisture and land 
surface temperature are necessary; thus, 6 types of soil 
with different sand and clay volume content were selected, 
surface root mean square height was varied from 1.25 to 
3 cm at steps of 0.25 cm, surface correlation length was 
varied from 12.5 to 30 cm at steps of 2.5 cm, soil moisture 
was varied from 0.02 to 0.38 m3/m3 at steps of 0.06 m3/m3 
and land surface temperature was equal to the 
atmospheric bottom temperature. The output of this 
model is surface emissivity. 

To analyze the atmospheric impact on the LST 
retrieval, we used Monortm to simulate different 
atmospheric conditions. We selected 4 atmospheric 
profiles from the TIGR dataset. The bottom temperatures 
varied from 273 K to 313 K, and water vapor varied from 
0.09 to 6.02 cm. To consider both clear sky and cloudy 
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atmospheric conditions, reasonable CLW was added to 
atmospheric layers at the height less than 5 km and it was 
added to a single atmospheric layer for each situation. 
CLW is ranging from 0-0.5 mm at steps of 0.1 for the 
atmospheric layers at the height less than 2 km, 0-0.4 mm 
at steps of 0.1 mm for the atmospheric layers at the height 
from 2 km to 4 km, and 0-0.3 mm at steps of 0.1 mm for 
the atmospheric layers at the height from 4 km to 5 km. 
The clear sky conditions appear when CLW is equal to 0 
and CLW larger than 0 describes the cloudy conditions. 
The outputs of this model are upwelling and downwelling 
atmospheric brightness temperature and transmittance. 

Thus, the simulated dataset can be generated by 
combining the outputs from AIEM and Monortm using 
the radiative transfer model. It includes the satellite 
measured brightness temperature, ground brightness 
temperature, upwelling and downwelling atmospheric 
brightness temperature, transmittance, land surface 
temperature and emissivity (Figure 1). It is noted that the 
incidence angle at the surface was set as 53 ° according to 
the configuration of commonly used passive microwave 
sensors, and seven commonly used frequencies, i.e., 1.4 
GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 
GHz and 89.0 GHz, were selected when conducting the 
simulation. 

Figure 1. Flowchart for generating the simulated data. 

3 MULTI-CHANNEL METHOD 

Wang and Schmugge (1980) developed a model for 
computing the emissivity of wet surface based on the 
dielectric constant of water (which increase with the 
frequency) and the field capacity of the soil. The lowest 
emissivity occurs when the surface becomes saturated 
with water, as in the case of flooded land (Entekhabi et al. 
1994). Figure 2 shows how emissivity changes as a 
function of frequency and the soil moisture. As the soil 
moisture increase, the emissivity decrease and the slope 
of emissivity between low and high frequencies increases. 

Figure 2. A relationship of emissivity over commonly 
used frequencies for eight surface soil moisture (the sand 
volume content  is 0.14, the clay volume content is 0.57, 
the land surface temperature is 273.15 K, the correlation 
length is 12.5 cm, root mean square height is 1.25 cm). 

Thus, for a given surface soil moisture, it is evident that 
the emissivity can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0 3 3 3 2

2 1 0 1 0 3

s s s s

s s

ε υ ε υ ε υ ε υ ε υ ε υ

ε υ ε υ ε υ ε υ

= − − − −      
− − − −      

(1) 

where υ1, υ2 and υ3 represent the 18.7, 36.5 and 89 
channels, respectively, εs is the surface emissivity, ε0 is 
the emissivity of dry surface (soil moisture=0.02 m3/m3).  

To simplified this expression, we focused on the 
items ( ) ( )0 1 0 3ε υ ε υ−    and ( ) ( )0 3 3sε υ ε υ−   . The item 

( ) ( )0 3 3sε υ ε υ−    expresses the soil moisture impact on 
the emissivity, which is related to the slope of emissivity 
between two frequencies, figure 3 show the scatter plots 
of the ( ) ( )0 3 3sε υ ε υ−    and ( ) ( )3 2s sε υ ε υ−    which 
indicates the slope of emissivity between two frequencies, 
it demonstrates that the relationship between 

( ) ( )0 3 3sε υ ε υ−    and ( ) ( )3 2s sε υ ε υ−    can be 
approximated by a quadratic relationship as follows: 

( ) ( ) ( ) ( )
( ) ( )

2
0 3 3 3 2

3 2

s s s

s s

ε υ ε υ α ε υ ε υ

β ε υ ε υ γ

− = −      
+ − +  

(2) 

The coefficients (α=5.9227, β=0.4002, γ=0.0011) 
were determined by polynomial fitting using the 
simulated data. A favorable accuracy with RMSE=0.003 
is achieved, which can meet the accuracy requirement.  

Figure 4 shows the histogram of the 
( ) ( )0 1 0 3ε υ ε υ−   , it indicates that this item is less than 

0.01 for all the surface conditions, thus, it can be replaced 
using the mean C=-0.003.  
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Figure 3. Scatter plots of ( ) ( )0 3 3sε υ ε υ−    vs 

( ) ( )3 2s sε υ ε υ−    (the fitting line is in red) 

Figure 4. Histogram of the ( ) ( )0 1 0 3ε υ ε υ−   . 

The emissivity of υ1 can be rewritten as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 0 1 2 1 3 2

2
3 2

1s s s s s

s s C

ε υ ε υ ε υ ε υ β ε υ ε υ

α ε υ ε υ γ

= − − − + −      

− − − +  
 (3) 

To formulate a surface temperature algorithm, we 
express the brightness temperature measurement as: 

( ) ( )b s sT Tυ ε υ=  (4) 

where Tb is the brightness temperature at frequency υ, Ts 
is the land surface temperature. This equation assumes 
negligible atmospheric effects over land compared to the 
variations in surface temperature and emissivity. Since 
the smallest variation in emissivity occurs for vertical 
polarization, this polarization is preferred when deriving 
surface temperature. Thus, substituting (4) into (3) and 
solving for Ts, we obtain: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 2 1 3 2

2
3 2

0 1

1b b b b b

b b
s

T T T T T

T T
T

C

υ υ υ β υ υ

α υ υ

ε υ γ

 + − + + −       
 
+ −    =

− +
(5) 

To reduce the error caused by above approximate 
expression, we added a coefficient of ( ) ( )2 1b bT Tυ υ−    
and a constant, and re-determinated all the coefficients by 
nonlinear fitting using the simulated data. 

Thus, Ts can be expressed as: 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

1 2 1 3 2

2
3 2

0 1

b b b b b

b b
s

T a T T b T T

c T T d
T

e

υ υ υ υ υ

υ υ

ε υ

 + − + −       
 
+ − +    =

−
 (6) 

The coefficients a=1.315, b=0.896, c=0.0315, d=0.55, e=-
0.004 are achieved using the simulated data. Figure 5 
shows the distributions of the differences between the 
actual and estimated values of Ts. It shows that a 
favorable accuracy was obtained with RMSE=0.83 K.  

Figure 5. Histogram of the difference between the actual 
and estimated values of Ts from equation (6). 

Since ε0(υ1) is related to the soil sand and clay 
volume content, and the surface roughness, it is difficult 
to accurately obtained. Moreover, the variation of 

( )0 1 eε υ −  is slight (Figure 6), we replace this item using 
the mean. 

Figure 6. Histogram of the ( )0 1 eε υ − . 
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Thus, Ts can be rewritten as: 

( ) ( ) ( ) ( ) ( )

( ) ( )

' '
1 2 1 3 2

2' '
3 2

s b b b b b

b b

T T a T T b T T

c T T d

υ υ υ υ υ

υ υ

= + − + −      

+ − +  
(7) 

The coefficients a’=1.137, b’=1.186, c’=0.0270, 
d’=3.18 are obtained using the simulated data. Comparing 
the actual Ts and estimated Ts from equation (7), an 
accuracy of RMSE=2.53 K is obtained (Figure 7), which 
is a little worse than the accuracy of equation (6) due to 
the approximate expression of ε0(υ1). It is evident that 
multi-channel method can be used to retrieve LST and a 
favorable accuracy have been obtained using the 
simulated data. 

Figure 7. Histogram of the difference between the actual 
and estimated values of Ts from equation (7). 

4 ATMOSPHERIC IMPACT ON LST RETRIEVAL 

For the real earth-atmosphere system, previous study 
(Han et al. 2017) showed that the atmospheric impact on 
ground brightness temperature is not negligible, 
especially at high frequency. To analyze the atmospheric 
impact on LST retrieval, we performed the multi-channel 
method using the satellite measured brightness 
temperature and ground brightness temperature, 
respectively. We suppose the atmosphere is negligible, 
the three-channel method can be written as: 

( ) ( ) ( ) ( ) ( )

( ) ( )

' ' ' ' '
1 2 1 3 2

2' '
3 2

s b b b b b

b b

T T A T T B T T

C T T D

υ υ υ υ υ

υ υ

   = + − + −   

 + − + 
(8) 

where Tb is the satellite measured brightness temperature. 
The coefficients A=1.366, B=0.555, C=0.0208, D=5.97 
are obtained by nonlinear fitting using the simulated 
method. Comparing the actual Ts and estimated Ts from 
equation (8), an accuracy of RMSE=2.31 K is obtained 
(Figure 8). 

Figure 8. Histogram of the difference between the actual 
and estimated values of Ts from equation (8). 

Assuming that atmosphere is not negligible, the 
multi-channel method can be rewritten as: 

( ) ( ) ( ) ( ) ( )

( ) ( )

' '
1 2 1 3 2

2' '
3 2

s g g g g g

g g

T T A T T B T T

C T T D

υ υ υ υ υ

υ υ

   = + − + −   

 + − + 
(9) 

where 
'

b ba
g

T T
T

τ
↑−

= , Tba↑ is  the upwelling atmospheric 

brightness temperature, τ is the transmittance. The 
coefficients A’=1.470 B’=0.722 C’=0.0112 D’=1.15 are 
determined using the simulated data. Comparing the 
actual Ts and estimated Ts from equation (9), an accuracy 
of RMSE=1.58 K is obtained (Figure 9). Obviously, 
atmospheric correction is necessary, and atmospheric 
impact leads to an error of 0.73 K for the LST. 

Figure 9. Histogram of the difference between the actual 
and estimated values of Ts from equation (9). 

5 CONCLUSION 

This article proposed a multi-channel method based on 
the relationship of emissivity over spectrum of commonly 
used frequencies. The results show that high accuracy 
with RMSE=0.83 K is obtained when ε0(υ1) is estimated 
accurately. If ε0(υ1) is approximately expressed using the 
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mean, the accuracy with RMSE=2.31 K is achieved when 
using the satellite measured brightness temperature, and 
RMSE= 1.58 K is obtained when using the ground 
brightness temperature. The atmospheric impact leads to 
an error of 0.73 K. It is evident that the atmospheric 
correction is necessary when retrieving LST from high 
frequency.  
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ABSTRACT- The objective of this study is to analyze the sensitivity of airborne GNSS-R signals to the 
characteristics of the soil surface and vegetation over agricultural areas. Airborne polarimetric GNSS-R data 
were acquired in the context of the GLORI'2015 campaign along five flights performed over the June-July 2015 
period. Ground measurements of soil surface parameters (moisture content and surface roughness) and 
vegetation characteristics (Leaf Area Index (LAI), Vegetation Water Content (VWC) and vegetation height) for 
different cover types (wheat, corn, sunflower …) were collected simultaneously to the airborne measurements. 
The GNSS-R observables (Signal to Noise Ratio (SNR), Reflectivity) illustrate a moderate to good correlation 
with the vegetation characteristics (more specifically vegetation height) or the surface soil moisture.  

1  INTRODUCTION 

In agricultural areas, soil surface and vegetation 
cover conditions play an essential role in the 
understanding of processes related to the soil-
vegetation-atmosphere interface and also for different 
applications related to agricultural management 
(Koster et al., 2004). Remote sensing has shown a 
high potential to retrieve land surface parameters 
(Baghdadi and Zribi, 2016). In this context, the 
GNSS-R technique based on bistatic radar 
observations, with the use of opportunity signals 
coming from global navigation satellite systems, has 
appeared in the beginning of the 1990s (Martin-Neira 
et al., 1993, Zavorotny et al., 2014). In the recent 
years, the GNSS-R technique has been increasingly 
tested and validated over the land surfaces, using 
either single antenna SNR measurements from 
commercial geodetic instruments or using dedicated 
multi-antennas based on the analysis of the 
correlation waveforms (Masters et al., 2004, Egido et 
al., 2012). The GLORI’2015 airborne campaign 
(Motte et al., 2016), summarized in the present paper, 
was designed to confirm the results from the previous 

studies illustrating high potential of GNSS-R to 
retrieve soil moisture and vegetation propperties. We 
consider an important ground database with 
important range of soil moisture, and vegetation 
cover types. 
The main objective of this paper is to investigate 
interactions between the GNSS-R signals and the soil 
and vegetation cover at various incidence angles and 
for various crop types and soil moisture conditions. 
In the second section, we present the study site, 
airborne and ground data. The third section is 
devoted to the presentation of GNSS-R data 
processing. The fourth section describes the 
correlation analysis between in situ data and GNSS-R 
measurements. Conclusions are gathered in the fifth 
section. 

2  DATASET AND METHODS 

2.1 Study site 

The study sites are located in southwestern France 
(Figure 1). The region is governed by a temperate 
climate, with annual amount of rainfall close to 600 
mm, and maximal mean daily air temperature near 25 
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°C in summer. The study area is highly anthropized, 
and the surfaces are mainly dedicated to agricultural 
activities. In our case, we consider two agricultural 
sites, La Masquère et Marcheprime, the two sites 
present complementarities in terms of irrigation, the 
agricultural fields in Marcheprime are irrigated and in 
Lamasquère are generally non irrigated. During the 
20 days of airborne measurements, we consider 
reference fields with an important diversity of 
vegetation covers (wheat, sunflower, corn, carrots 
etc). The selected period of measurements correspond 
to the maximum of growth of all covers, except 
wheat cover at senescence. This allows analyzing 
effect of vegetation dynamic on GNSS-R 
measurements. 

2.2 GNSS-R airborne data  

The airborne GNSS-R data presented below was 
collected with the GLORI Instrument during the 
GLORI 2015 Campaign (Motte et al., 2016). The 
GNSS-R GLORI instrument is developed by 
CESBIO. It is a polarimetric instrument with four 
channels. Two antennas are connected to the receiver, 
a first at nadir with the RHCP polarization to receive 
the direct signal from the GNSS satellites, and a 
second at zenith for receiving the signals reflected in 
two polarizations (RHCP and LHCP). Five scientific 
flights were performed over the studied site on a two 
weeks span (Figure 1). The aircraft speed was 
~100m/s and the altitude above ground was ~600m. 
The antenna radiation pattern allowed for 
measurements ranging between 45 and 90º of 
elevation. 
The data was then processed offline to extract the 
GPS L1 signal waveforms, with a coherent 
integration time of 20 ms. After compensation for 
antenna radiation pattern and receiver noise, the 
individual waveform maxima were averaged 
incoherently for 240 ms in order to compute the 
apparent reflectivity as the ratio of incident signal to 
forward scattered signal. 

 
Figure 1: GLORI 2015 flight plan and ground truth 

collection zones. 

2.3 In situ data 

Intensive ground truth measurements were performed 
in collocation with the flights over the two 
agricultural zones presented above. In situ 
measurements over reference plots concern soil 
roughness, soil moisture, and vegetation 
characteristics (LAI, VWC, height).  
 
3 DATA PROCESSING 
 
The GLORI processing chain is composed of 4 main 
blocks using raw datastream, GPS ephemeris and 
flight ancillary data as inputs (Motte et al, 2016): 

1.GNSS processing of raw datastream 
2.Acquisition and tracking of modulated signal to 

compute correlation waveforms. 
3.Time tagging and extraction of waveform 

maxima. 
4.Processing of the navigation message to get 

transmission time and extraction of the 
correlation power. 

5.Instrument corrections and incoherent averaging. 
6.Correction for antenna gain and instrumental 

noise, incoherent averaging and computation of 
reflectivity. 

7.Geolocalisation and merging of individual files ; 
8.Computation of the footprint location and shape 

on the surface, merging of individual 
measurements in a consolidated file. 

Three observables are considered for our analysis of 
GNSS-R sensitivity to land surface parameters: 
The apparent reflectivity: it is related to the relative 
power reflected to the ground. For a polarization pq, 

the apparent reflectivity pqΓ  can be expressed as the 

ratio of the reflected ( )fqrY ,, τ  to direct waveforms 

( )fpdY ,, τ . In the case of GNSS-R, the right-right 

and right-left ratios rrΓ  and rlΓ  represent the co- 

and cross-polar reflection coefficients. By assuming 
f  to be aligned with the Doppler frequency shift of 

the direct signal, the apparent surface reflectivity 
'
pqΓ  can be obtained as: 

( )
( )

2

,0,

,,'
fpdY

fqrY
pq

τ∆
=Γ  (1) 

The processing Signal to Noise Ratio (SNR) of the 
reflected signal, defined as the signal power above 
the nose level divided by the noise level: 

rBrBrYSNR /)max,( −=  (2) 

Where rB  is the waveform noise floor level. 
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4 STATISTICAL ANALYSIS 

4.1. Sensitivity of GNSS-R observables to soil 
moisture 
In order to limit effects due to elevation angles, The 
sensitivity of GNSS-R observables (LHCP reflected 
signal SNR and LHCP reflectivity) to soil moisture is 
discussed separately for two elevation angle intervals 
(30°-60° and 60°-90°).  
Figure 2a illustrates the sensitivity of LHCP reflected 
signal SNR measurements over the different crop 
plots to soil moisture, with a sensitivity ranging from 
0.35 to 0.39 dB/ [m3/m3]   depending on the angle 
range. The SNR signal dynamic range is of the order 
of 15dB for the two cases. We observe a small 
decrease in the sensitivity to soil moisture with 
increasing elevation angles. This might be caused by 
the discrepancies in the transmitting signal strength at 
high elevation angle which is not taken into account 
in the SNR product.  GNSS-R LHCP Reflectivity vs 
soil moisture is depicted in Figure 2b, with a 
sensitivity ranging from 0.35 to 0.45 dB/[m3/m3] 
depending on the angle range. The dynamics of 
GNSS-R signals is above 15dB for the two cases of 
angle ranges. We observe a small decrease of 
sensitivity of GNSS-R signals to soil moisture with 

the decreasing of elevation angle. This is due to the 
increasing of vegetation effect for low elevation 
angles with more attenuation effect of soil scattering.  
4.2. Sensitivity to vegetation parameters 
In this section, the GNSS-R signals are analyzed as a 
function of vegetation parameter, namely the height 
of the plant cover. More precisely, the plant height is 
divided by the sine of the elevation angle, in order to 
account for the larger amount of vegetation through 
which the signal travelled. As for soil moisture, in 
order to see if elevation angle has an impact on the 
correlation, we consider two intervals of angles (30-
60° and 60-90°), and two observables: LHCP SNR 
and LHCP Reflectivity. 

Figure 3a shows GLORI LHCP SNR sensitivity to 
vegetation height over all the studied plots. First, we 
observe a clear signal decreasing trend with 
increasing vegetation, which is expected from signal 
scattering and attenuation (increasing optical 
thickness). We observe a dynamic range of about 10 
dB for the 30-60° angles and 8 dB for angles 60-90°. 
This higher sensitivity at low elevation angle is 
probably related to the decrease of the effect of the 
soil component (roughness and moisture). 

(a) 

(b) 
Figure 2: GLORI Observables vs Soil moisture. Left: Elevations 30-60°. Right: Elevation 60-90°. (a) LHCP 
Signal to Noise Ratio, (b) LHCP reflectivity 
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(a) 

(b) 
Figure 3: GLORI observables vs vegetation height. Left: Elevations 30-60°. Right: Elevation 60-90°. (a) LHCP 
Signal to Noise Ratio, (b) LHCP reflectivity 

It is accompanied by an increase in the correlation 
between the GNSS-R signals and the vegetation 
height, with R2 equal to 0.54 for low elevations, 
when it is only 0.28 at high elevations. Similar 
behavior is observed from LHCP reflectivity depicted 
on Figure 3 b, with about 10 dB of dynamic range, a 
sensitivity of about -3dB per meter and better 
performance at low elevation angles. 

5 CONCLUSIONS 

This study aimed to confirm the sensitivity of GNSS-
R airborne measurements to soil moisture and 
vegetation parameters. For this purpose, an extensive 
campaign with collocated measurements of soil 
moisture and plant parameters was conducted. 
Sensitivity of GNSS-R measurement to soil moisture 
content is confirmed even for dense vegetation cover. 
GNSS-R observables (LHCP reflectivity (Γ), LHCP 
SNR) increase with the increasing of soil moisture. 
The sensitivity of GNSS-R observables is increased 
with increasing of elevation angle for LHCP 
reflectivity and LHCP SNR. GNSS-R observables are 
also sensitive to vegetation height parameter. We 
observe a clear decreasing of GNSS-R observables 
with vegetation growth. Highest correlation between 

height and GNSS observables (LHCP reflectivity and 
LHCP SNR) are retrieved with low elevation angles. 
Sensitivities are approximately the same for the two 
elevation angle intervals.  
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ABSTRACT - The FLuorescence EXplorer (FLEX) satellite mission, selected as ESA’s 8th Earth Explorer, has 
been designed for the measurement of sun-induced fluorescence (SIF) spectra emitted by plants. This will be 
accomplished through a multi-sensor approach by placing it in a common orbit in tandem with the Sentinel-3 
(S3) mission, featuring two sensors, namely OLCI (Ocean and Land Colour Instrument) and SLSTR (Sea and 
Land Surface Temperature Radiometer). These S3 instruments will be used in combination with the FLORIS 
imaging spectrometers on board FLEX to provide data useful for atmospheric correction of FLEX data. 
However, more synergism can be achieved by exploiting the spectral and directional information from all 
tandem mission instruments together, and this forms an attractive alternative which was explored in a numerical 
experiment. By employing all combined top-of-atmosphere (TOA) spectral radiance data, one can (i) 
characterize the relevant optical properties of the atmosphere, (ii) retrieve biophysical canopy properties 
including accounting for vegetation reflectance anisotropy, and (iii) retrieve a more accurate and consistent 
canopy SIF. A novel fluorescence retrieval method based on spectral radiative transfer (RT) modeling is 
proposed, in which coupled RT models are used to simulate TOA radiance spectra. These are then matched with 
‘measured’ spectra in order to retrieve surface fluorescence, along with a suite of biophysical parameters, via 
model inversion through optimization. By applying coupled RT models of the soil-leaf-canopy and the surface-
atmosphere systems, TOA radiance spectra can be simulated for all optical sensors of this tandem mission. In 
this way, complex effects due to surface reflectance anisotropy and the spectral sampling by the various 
instruments are properly taken into account by their incorporation in the forward modeling. Next, by model 
inversion of TOA radiance data via optimization, the most accurate SIF retrievals can be achieved in a 
consistent manner, along with important canopy level biophysical parameters that help interpret the SIF 
spectrum, such as chlorophyll content and leaf area index (LAI). The potential of this approach has been 
explored and the results are presented in this contribution. We found that, with the assumed well-characterized 
and plausible FLEX/S3 instrument performances, the simultaneous retrieval of biophysical canopy parameters 
and SIF spectra would be possible with a remarkable accuracy, provided the correct atmospheric 
characterization is available.  

1  INTRODUCTION 

Sun-induced chlorophyll fluorescence (F) emitted by 
plant leaves and vegetation canopies is a sensitive 
indicator of plant physiological functioning, including 
photosynthetic activity (Lee et al., 2013). There is 
considerable interest in F for use as a direct measure 
of actual, rather than potential, photosynthetic activity, 
and as a unique early warning signal for detection of 
vegetation stress conditions that reduce primary 
production (ESA, 2015). Although coarse spatial 
resolution missions for atmospheric chemistry like 
GOSAT, OCO-2, GOME-2, SCIAMACHY and 
TROPOMI can provide global maps of F at a few NIR 
wavelengths, and after considerable aggregation over 

time and space, FLEX, recently selected as ESA’s 8th 
Earth Explorer Mission and to be launched in 2022, 
will provide complete spectra of F at a spatial 
resolution of 300m, which is also more ecologically 
relevant for its application to vegetation functioning 
monitoring.  FLEX will fly in tandem with one of the 
Sentinel-3 satellites to utilize its optical sensors OLCI 
and SLSTR (Donlon et al., 2012) for atmospheric 
correction of the FLEX data, thereby adopting the S3’s 
27-day repeat cycle and the overpass time of 10:00 
a.m. local solar time. 

Since the retrieval of F spectra from the FLORIS 
imaging spectrometer data of FLEX is expected to be 
a challenge, several algorithms have been explored in 
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the ESA study FLEX - Bridge. Traditional methods of 
F retrieval make use of the Fraunhofer Line Depth 
(FLD) principle (Plascyk, 1975) to discriminate F 
from surface reflectance R. Spectral fitting (SF) is a 
more advanced method which works over wider 
spectral intervals and uses mathematical functions to 
model the smooth spectra of both F and R (Cogliati et 
al., 2015). Both methods would work exclusively with 
FLORIS spectral data. However, better exploiting the 
possible synergy with the S3 optical sensors OLCI and 
SLSTR would allow the retrieval of biophysical 
parameters of the vegetation and from these their 
reflectance spectra R could be simulated using 
radiative transfer (RT) modeling, instead of using 
mathematical functions. This approach can be 
extended by including the atmospheric RT to model 
the TOA radiance spectra, so that these could be 
compared to measured spectra. 

In this contribution, the SCOPE model (Van der 
Tol et al., 2009) was used to generate a database of 40 
simulated observations of the TOA radiance as 
measured by the two spectrometers on board the 
FLEX satellite, FLORIS-WBS (wide band 
spectrometer) and FLORIS-NBS (narrow band 
spectrometer), supplemented by the OLCI and SLSTR 
sensors on board S3. To test the retrieval, a module of 
the SCOPE model dedicated specifically to soil-
canopy RT in the solar-reflective domain, called 
RTMo, was used in combination with the leaf optical 
model Fluspect (Vilfan et al., 2016) and a soil spectral 
reflectance model called BSM, which is based on the 
Global Soil Vectors of Chongya & Hongliang (2012), 
enhanced with a soil moisture effect model. For the 
modeling of canopy fluorescence just four principal 
component (PC) spectra were used, which had been 
obtained previously from simulations with the full 
version of SCOPE. With the four soil parameters, five 
leaf biophysical parameters (Vilfan et al., 2016), four 
canopy structure parameters, and four fluorescence PC 
weights, the combined model has 17 variables in total, 
which are quite evenly divided over the various soil, 
leaf, canopy and fluorescence properties. After 
propagation of the modeled four-stream surface 
reflectance factors through the atmosphere using the T-
18 system of atmospheric RT (Verhoef et al., 2014), 
the TOA radiance spectra were sampled at the known 
spectral bands of FLORIS, OLCI and SLSTR using 
the associate spectral response functions and a two-
parameter generic noise model applicable to all optical 
sensors. For the modeling of atmospheric effects under 
various conditions, MODTRAN version 5.2.1 (Berk et 

al., 2011) was used at a spectral resolution of 1 cm‒1 to 
generate the required set of T-18 transfer functions for 
each database case, including those for the backward 
looking of the SLSTR sensor under 55 degrees 
viewing angle. 

2 DATABASE GENERATION 

The FLEX-Bridge database that has been generated 
consists of simulated TOA radiance data and various 
other radiometric data (e.g. TOC reflectances and 
fluorescence) of interest to study atmospheric 
correction and alternative F retrieval approaches. Data 
were generated for five sensors, namely the FLORIS-
WBS (187 bands), FLORIS-NBS (288 bands), OLCI 
(21 bands), SLSTR-N (nadir looking, 6 bands) and 
SLSTR-B (backward looking, 6 bands). For SLSTR 
only the six bands in the solar-reflective part of the 
spectrum were generated. In total 40 cases were 
defined, consisting of a standard case (no. 19) and 39 
deviations from it. The standard case is described in 
Table 1. 

Table 1. The standard case (no. 19) 

Parameter Value Parameter Value 
Soil 
moisture 

30% Vol. LIDF spherical 

Leaf Cab 40 µg/cm2 T_air 19.25 C 
Leaf Ccar 10 µg/cm2 P (surface 

pressure) 
967 mbar 

Leaf Cw 0.02 cm‒1 Humidity 15.0 
Leaf Cdm 0.005 

g/cm2 
CO2 conc. 364.7 ppm 

Leaf Cs 0.1 O2 conc. 194.9 ppm 
Leaf N 1.5 altitude 400m 
Vcmax 40 SZA 45° 
Rs 
(stomatal 
resistance) 

5 Visibility 20 km 

LAI 2 Aerosol 
type 

Rural 

 

The other cases of the database were generated by 
changing one or more parameters with respect to the 
standard case. Some parameters are common to 
SCOPE and MODTRAN and these were changed in 
concert to maintain consistency. Also, some changes 
invoke the simultaneous change of a whole group of 
parameters, for instance when surface altitude is 
changed from 400m to 1200m. All cases were labelled 
to facilitate their quick characterization. Table 2 gives 
a summary of all cases by means of their label. 
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Table 2. Summary of database cases 

Case Label Case Label 
1 SM_5 21 Alt_1200 
2 SM_55 22 Vis_05 
3 Cab_20 23 Vis_80 
4 Cab_80 24 Dry 
5 Cw_01 25 Wet 
6 Cw_03 26 Maritime 
7 Cdm_025 27 Urban 
8 Cdm_100 28 Winter 
9 Cs05 29 Tropical 
10 Cs20 30 SZA_30 
11 Vcm_000 31 SZA_60 
12 Vcm_100 32 plagio 
13 Rs_2 33 extremo 
14 Rs_9 34 Cab_5 
15 LAI_0.5 35 Cab_10 
16 LAI_6 36 LAI_0.25 
17 plano 37 LAI_1 
18 erecto 38 LAI_3 
19 std 39 Vis_10 
20 Alt_0000 40 Vis_40 

From this summary one can see that first soil 
moisture, the leaf properties, Vcmax, stomatal 
resistance, LAI, and the LIDF were changed 
downward and upward with respect to the standard 
case, and next surface altitude, atmospheric visibility, 
humidity, aerosol type, atmospheric profile, solar 
zenith angle were changed twice as well. In the last 
nine cases a few more variations of the LIDF, leaf 
chlorophyll, LAI and atmospheric visibility were 
included. Leaf carotenoid was always slaved to 
chlorophyll by taking a quarter of Cab.  

Each MODTRAN case was represented by a file 
containing the atmospheric transfer functions of the T-
18 system corresponding to that case. These had been 
derived from MODTRAN tp7 output files containing 
simulated radiances at TOA and at BOA for two 
albedo values each. The TOA radiance is computed 
from four-stream surface reflectance and fluorescence 
terms, and 12 of the 18 atmospheric transfer functions 
according to Eq. (1).  
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The missing functions T4 and T5 are used for the 
solar and sky irradiance at BOA, and T15 to T18 are 
applied in the thermal domain. Why so many functions 
are needed is because surface anisotropy of reflectance 
and fluorescence are taken into account and because 
for finite spectral bands the products of transfer 
functions have to take into account the apparent 
violation of Beer’s Law in atmospheric absorption 
bands. The functions T8 to T14 all comprise two or 
three photon paths, and in atmospheric absorption 
bands these functions are greater than the products of 
their corresponding primary functions, as can be 
clearly seen in Fig. 2 for the oxygen A band. Not 
taking this affect into account could easily cause errors 
in the predicted radiance of 100% or more! The 
greatest effects are found in the term T14, which 
describes photons travelling directly from the sun to 
the ground, are reflected by the surroundings, scattered 
back to earth by the bottom of the atmosphere, are 
finally reflected by the target and transmitted directly 
through the atmosphere, to be detected at TOA.  

Fig. 1 Functions T2 – T14 for the range 400 – 20000 
nm, on a logarithmic scale for the wavelength and a 
linear scale for transmittance/reflectance 

Fig. 2 Ratios of functions T8 – T14 and the products of 
their corresponding primary functions in the O2-A 
band 
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Realistic amounts of sensor noise were added to 
the computed LOA radiances by means of a generic 
signal-dependent two-parameter noise model that is 
suitable to describe most optical detector types. It is 
based on the assumption that the noise variance is a 
linear function of the radiance signal L, which gives a 
noise standard deviation, also called the noise-
equivalent delta radiance, equal to 

baLLNE +=∆  . (2) 

The constants a and b can be fitted to represent a 
constant noise due to dark current, as well as the 
photon shot noise typical for electro-optical detectors, 
or a combination of both. For the sensors simulated in 
this study, data from which a and b could be derived 
for all bands have been provided by ESA, and the 
detector binning applied for the FLORIS 
spectrometers was mimicked by first generating the 
non-binned signals and then applying the binning in 
software. Binning leads to a lower spectral resolution 
but a higher signal-to-noise ratio. The generic noise 
model of Eq. (2) is very convenient, since the 
constants a and b depend mainly the instrument’s 
design and are only slightly wavelength-dependent.  

3 RETRIEVAL APPROACH 

In the proposed retrieval approach, TOA radiance 
signals for all sensors are simulated by a chain of 
coupled models, of which the input parameters are 
optimized until a sufficient match with the “measured” 
spectral data (coming from the database) is reached. 
This approach allows incorporating irreversible effects 
due to surface anisotropy and spectral sampling over 
wider bands, such as those of the SLSTR sensor. In the 
chain of coupled models used during the retrieval, 
some elements are present that were not part of the set 
of models used during the generation of the database. 
The main differences are that (i) during the retrieval a 
soil spectral model called BSM (brightness-shape-
moisture) is applied, while SCOPE used measured soil 
spectra as input. In SCOPE (ii) fluorescence was 
generated from the Fluspect leaf model and internal 
photosynthetic efficiencies, while during the retrieval 
a statistical model based on PCA was applied. The 
principal component spectra are shown in Fig. 4. Also 
(iii) during the retrieval, SCOPE was not used, but 
only the sub model RTMo in combination with 
Fluspect without F, which is equivalent to using 
PROSAIL. A simplified version of Eq. (1) was used to 
calculate TOA radiances (iv) and the T-18 functions 

were convolved with SRFs in advance (v). Besides the 
addition of sensor noise, all five factors contribute to 
the independence of the retrieval model from the one 
used to generate the database, thus preventing 
“circularity”.   

Fig. 3 Optimization loop illustrating the retrieval of F 
and biophysical parameters from spectra stored in the 
database 

Fig. 4 Spectra of the first four left eigenvectors, PC 1 
– 4. The four PCs express different spectral features, 
such as the overall F level (PC1), the difference 
between the peaks (PC2) and the depth of the valley 
between the peaks (PC4) 
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optimization comprises six parts, five for the five 
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part is normalized by its associated uncertainty, given 
by sensor noise and the uncertainties assumed about 
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(3) as follows 
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For the optimization the Matlab function 
“lsqnonlin” was applied. Jacobians were calculated 
from the various sub models instead of from the 
complete model. This turned out to be much more 
efficient, since otherwise the complete model had to 
be executed once for each of the 17 input parameters. 

4 BAYSIAN ERROR PROPAGATION 

To limit the already high complexity of the 
algorithm, it was assumed that knowledge about the 
atmospheric transfer functions was perfect. In order to 
explore this dependence on knowledge about the 
atmospheric optical properties, a Bayesian error 
propagation (BEP) analysis was executed. From the 
results of this analysis it was concluded that the S3 
sensors OLCI and SLSTR (both nadir and backward 
looking) provide sufficient information about the 
atmosphere as well as the surface to allow a fair 
estimation of atmospheric transfer functions and 
surface reflectance even if information about the 
atmosphere is not available a priori. 

5 RESULTS 

All 40 cases of the database were successfully 
retrieved by the optimization algorithm, although for 
some cases the residual radiance error remained higher 
than the one expected as a result of sensor noise only. 

The number of iterations required to reach the solution 
was about 20, which for the given numbers of 
variables and spectral bands is encouraging. Fig. 5 
shows the retrieved spectra of F as red solid lines, and 
the reference database spectra for the FLORIS-NBS 
and WBS spectrometers as circles and + signs, 
respectively. In the majority of cases the retrieved 
spectra are correct, and the RMS error is of the order 
of 0.1 mW m−2 sr−1 nm−1, comparable to the noise 
level of the WBS and NBS spectrometers, with a SNR 
of about 1000. Systematic deviations were found for 
the planophile canopy and for the case of a hazy 
atmosphere with 5 km visibility. 

A special benefit of the proposed retrieval 
approach is that biophysical parameters of the soil-
leaf-canopy system are retrieved along with 
fluorescence, which facilitates a meaningful 
interpretation of the F signal in relation with canopy 
structure, fAPAR, etc. The quality of these retrievals 
depends on the parameter and the observational 
circumstances. Fig. 6 shows for each database case the 
associated parameter as a black solid line and the 
corresponding retrieved values as red circles. From 
this diagram it is clear that important parameters like 
LAI, the mean leaf inclination (LIDFa) and leaf 
chlorophyll are retrieved very well, soil moisture is 
mostly underestimated, and LIDFb (leaf angle 
distribution bimodality) is overestimated.  

Fig. 5 Retrieved F spectra (red solid lines) compared to simulated FLORIS WBS (blue circles) and NBS (black 
+’s) data, plotted every 5 nm. The database cases (1 - 40) and their simulated condition/factor labels are 
indicated. Vertical axes show radiances in mW m‒2 sr‒1 nm‒1. Horizontal axes show the wavelength in nm 
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Fig. 6 Retrieved biophysical variables (red circles) and corresponding database inputs used in SCOPE (black 
solid lines) for the 40 cases  

6 CONCLUSION 

The integrated approach of combining all optical 
sensors from FLEX and S3 allows simultaneous 
retrieval of canopy fluorescence and biophysical 
parameters by numerical optimization and coupled RT 
modelling. Atmospheric properties were assumed 
known, but a BEP analysis indicates that S3 data allow 
their retrieval (and important canopy properties as 
well). Matlab takes ~30 s for one optimization, but 
using compiled code and parallel processing could 
improve this. 
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ABSTRACT - The aim of this paper is to develop a new semi-empirical radar backscattering model (Baghdadi 
model) based on the Dubois model using a wide dataset of SAR data and experimental soil measurements for 
bare soil surfaces in HH, VV and HV polarizations. This dataset contains radar data in L-, C- and X-bands, with 
incidence angles ranged between 18° and 57°. The proposed model uses a formulation of radar signals based on 
physical principles that were validated in numerous studies. 
In comparison to Dubois model, results obtained with the new model are more accurate. The bias and the RMSE 
decrease for both HH and VV polarizations. The RMSE decreases from 3.8 dB to 2.0 dB for HH and from 2.8 dB 
to 1.9 dB for VV. In addition, the high over- and under-estimations of radar backscattering coefficients observed 
with the Dubois model according to soil moisture, surface roughness and radar incidence angle are clearly 
eliminated with the new model. Based on the same type of expression as that used for HH and VV, a radar signal 
in HV polarization was also proposed. 

1 INTRODUCTION 

Soil moisture content plays an important role in 
meteorology, hydrology, agronomy, agriculture, and 
risk assessment. This soil parameter can be estimated 
using synthetic aperture radar (SAR). Today, it is 
possible to obtain SAR data for global areas at high 
spatial and temporal resolutions with free and open 
access Sentinel-1 satellites (6 days with the two 
Sentinel-1 satellites, at 10 m spatial resolution).  

The retrieval of soil moisture content and surface 
roughness requires the use of radar backscatter models 
capable of correctly modeling the radar signal for a 
wide range of soil parameter values. This estimation 
from imaging radar data implies the use of 
backscattering electromagnetic models, which can be 
physical, semi-empirical or empirical. 

The aim of this study is to develop a robust, 
empirical radar backscattering model based on the 
Dubois model (Dubois et al., 1995). The performance 
of the Dubois model was firstly analyzed using a large 

dataset acquired at several study sites by numerous 
SAR sensors. Next, a new semi-empirical 
backscattering model (Baghdadi model) was proposed 
for bare soil in HH, VV, and HV polarizations.  

The dataset is described in section 2. Section 3 
analyzes the performance of Dubois model. The new 
model is proposed and its performance evaluated in 
section 4. Finally, section 5 presents the conclusion. 

2 DATASET DESCRIPTIONS 

2.1 Study Areas 

A wide dataset composed of AIRSAR, SIR-C, JERS-
1, PALSAR-1, ESAR, ERS, RADARSAT, ASAR and 
TerraSAR-X acquisitions over numerous agricultural 
sites in France, Italy, Germany, Belgium, 
Luxembourg, Canada and Tunisia have been used in 
this research work. In addition, in situ measurements 
of soil moisture and surface roughness were carried 
out simultaneously to SAR acquisitions over bare soil 
surfaces. 
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2.2 Satellite Data 

A large number of L-, C- and X-band images 
(approximately 1.25 GHz, 5.3 GHz and 9.6 GHz, 
respectively) were acquired between 1994 and 2014 
with different incidence angles (between 18° and 57°) 
and in HH, VV and HV polarizations. The spatial 
resolution of SAR images is between 1 m and 30 m 
(Table 1). Images were first radiometrically calibrated 
to enable the extraction of the backscattering 
coefficients ( 0σ ). Then, the mean backscattering 
coefficients were computed from calibrated SAR 
images by linearly averaging the 0σ  values of all 
pixels within the plot. 

2.3 Field Data 

Field measurements of soil moisture and surface 
roughness have been collected from bare plots selected 
over the study areas. Each plot is a homogeneous 
surface (similar soil type, moisture content and surface 
roughness) of around one hectare or more. In situ 
measurements of soil moisture (mv, in vol. %) were 
carried out for a soil layer of 5 cm or 10 cm in each 
reference plot by using both the gravimetric method or 
a calibrated TDR (time domain reflectometry) probe. 
For each bare soil reference field the average soil 
moisture (mv) of all samples was calculated. The soil 
moisture ranged between 2 vol. % and 47 vol. %. 

Roughness measurements were carried out by 
using laser or needle profilometers (mainly 1 m and 2 
m long, and with 1 cm and 2 cm sampling intervals); 
while for some in situ measurement campaigns, a 
meshboard technique was used. Several roughness 
profiles along and across the direction of tillage were 
acquired in each reference field. The standard 
deviation of surface heights (Hrms) and the correlation 
length (L) were calculated by using the mean of all 
experimental correlation functions. In our dataset, 
Hrms ranged from 0.2 cm to 9.6 cm. 

A total of 1569 experimental data acquisitions with 
radar signal, soil moisture content and roughness were 
available for HH polarization, 930 for VV 
polarization, and 605 for HV polarization. 

3 ANALYSIS OF THE DUBOIS MODEL 

3.1 Description of the Dubois model 

Dubois et al. (1995) proposed an empirical model to 
model radar backscatter coefficients in HH and VV 

polarizations (
0
HHσ  and 

0
VVσ ) for bare soil surfaces. The 

expressions of 
0
HHσ  and 

0
VVσ  depend on the radar wave 

incidence angle (θ, in radians), the real part of the soil 
dielectric constant (ε), the rms surface height of the 

soil (Hrms), the radar wavelength (λ=2π/k, where k is 
the radar wavenumber): 
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0
HHσ  and

0
VVσ  are given in a linear scale. λ is in

cm. The validity of the Dubois model is defined as 
follows: kHrms ≤ 2.5, mv ≤ 35 vol. %, and θ ≥ 30°. 

3.2 Comparison between simulated and real data 

The analysis of the Dubois model shows an 
overestimation of the radar signal by 0.7 dB in HH 
polarization and an underestimation of the radar signal 
by 0.9 dB in VV polarization for all data combined 
(Table 1). The results show that the overestimation in 
HH is of the same order for L-, C- and X-bands 
(between 0.6 dB and 0.8 dB). For the L-band, a slight 
overestimation of approximately 0.2 dB of SAR data 
is observed in VV polarization. Also in VV 
polarization, Dubois model based simulations 
underestimate the SAR data in C- and X-bands by 
approximately 0.7 dB and 2.0 dB, respectively. 

Dubois for HH Dubois for VV 
Bias 
(dB) 

RMSE 
(dB) 

Bias 
(dB) 

RMSE 
(dB) 

FOR ALL DATA -0.7 3.8 +0.9 2.8 
L-BAND -0.8 2.9 -0.2 2.3 
C-BAND -0.6 3.7 +0.7 2.6 
X-BAND -0.7 4.1 +2.0 3.2 

KHRMS < 2.5 +0.4 3.4 +1.3 2.9 
KHRMS > 2.5 -2.7 4.5 -0.1 2.5 

MV < 20 VOL.% -2.0 4.3 +0.9 2.8 
MV > 20 VOL.% +0.5 3.2 +0.9 2.8 

θ < 30° -4.1 5.4 -0.6 2.9 
θ > 30° +0.6 3.0 +1.5 2.7 

Table 1. Comparison between the Dubois model and 
real data. Bias = real data – model. 

The RMSE is approximately 3.8 dB and 2.8 dB in 
HH and VV, respectively (Table 1). The analysis of the 
RMSE according to the radar frequency (L, C and X 
separately) shows an increase of the RMSE with the 
radar frequency in HH (2.9 dB in L-band, 3.7 dB in C-
band, and 4.1 dB in X-band). In VV polarization, the 
quality of Dubois simulations (RMSE) is similar for 
L- and C-bands but is less accurate in X-band (2.3 dB 
in L-band, 2.6 dB in C-band, and 3.2 dB in X-band). 

Moreover, the analysis between Dubois model 
simulations and SAR data is done according to soil 
roughness, soil moisture and incidence angle (Figures 
1 and 2). 
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Figure 1. For HH polarization, (a) comparison 
between radar backscattering coefficients calculated 
from SAR images and estimated from the Dubois 
model, (b) difference between the SAR signal and the 
Dubois model relative to soil roughness (kHrms), (c) 
difference between the SAR signal and the Dubois 
model relative to soil moisture (mv), (d) difference 
between the SAR signal and the Dubois model relative 
to incidence angle. 

The results show a slight underestimation of the 
radar signal by the Dubois model in the case of kHrms 
lower than 2.5 (Dubois validation domain) for both 
HH and VV polarizations (Figures 1b, 2b; Table 1). 
For surfaces with a roughness kHrms greater than 2.5, 
an overestimation of the radar signal is obtained with 
the Dubois model in HH while the model simulates 
correctly in VV (Figures 1b, 2b; Table 1). Higher 
under- and overestimations are observed in HH than 
they are in VV (reach approximately 10 dB in HH). 
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Figure 2. For VV polarization, (a) comparison 
between radar backscattering coefficients calculated 
from SAR images and estimated from the Dubois 
model, (b) difference between the SAR signal and the 
Dubois model relative to soil roughness (kHrms), (c) 
difference between the SAR signal and the Dubois 
model relative to soil moisture (mv), (d) difference 
between the SAR signal and the Dubois model relative 
to incidence angle.  

Analysis of the error as a function of soil moisture 
(mv) shows that for both VV-polarized data, whatever 
the mv-values, and HH-polarized data with mv-values 
higher than 20 vol.%, the observed bias between real 
and simulated data is small (Figures 1c, 2c; Table 1). 
However, a strong overestimation of the radar signal is 
observed by the Dubois model in HH for mv-values 
lower than 20 vol.% (-2.0 dB, Table 1). 
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Finally, the discrepancy between SAR and the 
model is higher in HH for incidence angles lower than 
30° (outside of the Dubois validity domain) than for 
incidence angles higher than 30° (Table 1). The 
Dubois model strongly overestimates the radar signal 
in HH for incidence angles lower than 30° but better 
agreement is found with the measured data for 
incidence angles higher than 30° (Figures 1d, 2d; 
Table 1). In VV polarization, the Dubois model 
slightly overestimates the radar signal for incidence 
angles lower than 30° and underestimates the signal 
for incidence angles higher than 30° by +1.5 dB 
(Figures 1d, 2d; Table 1). 

In conclusion, the Dubois model simulates VV 
better than HH (RMSE=2.8 and 3.8 dB, respectively). 
The disagreements observed between the Dubois 
model and measured data are not limited to data that 
are outside the optimal validity domain of the Dubois 
model. 

4 NEW EMPIRICAL MODEL 

4.1 Methodology 

The new model uses the dependency observed 
between the SAR signal and soil parameters. For bare 
soils, the backscattering coefficient depends on soil 
parameters (roughness and moisture) and SAR 
instrumental parameters (incidence angle, polarization 
and wavelength). The radar signal in pq polarization (p 
and q = H or V, with HV=VH) can be expressed as the 
product of three components: 

(3) 

The relation between the radar backscatter and the 
incidence angle (θ) can be expressed by 

(Baghdadi et al., 2001). 
In linear scale, the relationship 

between the radar backscatter coefficient and soil 
moisture (mv) can be written as  (Baghdadi 
et al., 2006, 2008). The sensitivity of the radar signal 
to the soil moisture γ depends on θ. Higher sensitivity 
is observed for low than for high incidence angles 
(Baghdadi and Zribi, 2016). To include this 
dependence on incidence angle, the soil moisture value 
is multiplied with the term . Thus, 

can be written as 
The last term represents the 

behavior of  with soil roughness. For a logarithmic 
behavior of  with kHrms,  in linear scale 
can be written as  (Baghdadi et al., 2006). 
Baghdadi et al. (2002) showed that at high incidence 
angles, radar return is highly sensitive to surface 
roughness and shows much larger dynamics than at a 

low incidence angle. In addition, the term is 
intended to include this dependence with the incidence 
angle: . 

Finally, the relationship between the radar 
backscattering coefficient (σ°) and the soil parameters 
for bare soil surfaces can be written by: 

(4) 

The coefficients δ, β, γ, and ξ are then estimated 
for each radar polarization using the method of least 
squares by minimizing the sum of squares of the 
differences between the measured and modelled radar 
signal: 

  (5) 

where θ is expressed in radians and mv is in 
vol.%. Equations (5) show that the sensitivity (γ) of 
the radar signal to the soil moisture in decibel scale is 
0.25 dB/vol.% in HH polarization, 0.22 dB/vol.% in 
VV polarization and 0.30 dB/vol.% in HV polarization 
for an incidence angle of 20°. This sensitivity 
decreases to 0.09 dB/vol.% in HH, 0.08 dB/vol.% in 
VV and 0.11 dB/vol.% for an incidence angle of 45°. 

4.2 Performance of the new model 

Results show that the new proposed model provides 
more accurate results (biases and the RMSE decrease 
for both HH and VV polarizations). The RMSE 
decreases from 3.8 dB to 2.0 dB for HH and from 2.8 
dB to 1.9 dB for VV. In addition, the high over- or 
underestimations of radar backscattering coefficients 
observed with the Dubois model according to soil 
moisture, surface roughness and radar incidence angle 
are clearly eliminated with the new model (Figures 3 
and 4). 

Analysis of the new model’s performance for each 
radar wavelength separately (L-, C- and X-bands) 
shows that the most significant improvement is 
observed in X-band with an RMSE that decreases 
from 4.1 dB to 1.9 dB in HH and from 3.2 dB to 1.8 
dB in VV. In L-band, the performance of the new 
model is not better than that of the Dubois model 
because the RMSE decreases slightly with the new 
model of 3.0 dB to 2.3 dB in HH and remains similar 
in VV (RMSE = 2.3 dB with the Dubois model and 
2.7 dB with the new model). The improvement is also 
important for the C-band with an RMSE that decreases 
from 3.7 dB to 1.9 dB in HH and from 2.6 dB to 1.9 
dB in VV. With respect to bias, the results show that it 
decreases with the new model for all radar 
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wavelengths. In addition, the new model does not 
show bias according the range of soil moisture, surface 
roughness, and radar incidence angle. 
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Figure 3. (a) Comparison between σ° modelled in the 
new model and σ° measured (for all SAR bands) for 
HH polarization, (b) difference between SAR and the 
new model as a function of surface roughness 
(kHrms), (c) difference between SAR and the new 
model as a function of soil moisture (mv), (d) 
difference between SAR and the new model as a 
function of incidence angle. 
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Figure 4. (a) Comparison between σ° in the new 
model and σ° measured (for all SAR bands) for VV 
polarization, (b) difference between SAR and the new 
model as a function of surface roughness (kHrms), (c) 
difference between SAR and the new model as a 
function of soil moisture (mv), (d) difference between 
SAR and the new model as a function of incidence 
angle. 
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Figure 5. (a) Comparison between σ° in the new 
model and σ° measured (for all SAR bands) for HV 
polarization, (b) difference between SAR and the new 
model as a function of kHrms, (c) difference between 
SAR and the new model as a function of mv, (d) 
difference between SAR and the new model as a 
function of incidence angle. 

The comparison between the new model 
simulations in HV polarization (Equation 5) and the 
real data (SAR data) shows an RMSE of 2.1 dB  (1.6 
dB in L-band, 2.2 dB in C-band, and 1.9 dB in X-
band). The bias (σ°SAR - model) is -1.3 dB in L-band, 
0.2 dB in C-band, and -1.3 dB in X-band. Figure 5 
shows also that the new model correctly simulates the 
radar backscatter coefficient in HV for all ranges of 
soil moisture, surface roughness and radar incidence 
angle. 

5 CONCLUSION 

A new empirical model (Baghdadi model) was 
proposed for radar backscatter from bare soil surfaces. 
A large dataset was used, composed of ground 
measurements and SAR images over bare agricultural 
soils. Results show that the new model provides 
improved results in comparison to the Dubois model 
in the case of HH and VV polarization. Biases and 
RMSE have decreased for both HH and VV 
polarizations. Based on the same equation as that used 
for HH and VV, a radar signal in HV polarization was 
also proposed. Finally, the new empirical model 
proposed in the present study would allow more 
accurate soil moisture estimates using the new 
Sentinel-1A and -1B SAR data. 
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ABSTRACT The aim of this paper is to analyze the behavior of multi-frequency radar signals for the estimation 
of the vegetation covered surface characteristics in a tropical context. This analysis is based on radar 
measurements acquired by Sentinel-1 and TERRASAR-X radars over a period of two months (September-
October 2016) at the site of Berambadi (South of India). Spatial measurements are accompanied by field 
measurements on reference plots, soil moisture and roughness and Leaf Area Index « LAI ». A sensitivity of the 
radar signals in the HH, VV and VH polarizations to the soil moisture and to the vegetation growth (through 
NDVI index) is observed. This sensitivity is higher in X band than in C band. In VH polarization, the sensitivity 
of the signal to surface properties appears very low. 

1  INTRODUCTION 

Surface soil moisture and vegetation play an essential 
role in numerous environmental studies related to 
hydrology, meteorology and agriculture.  
Radar remote sensing measurements of bare soil are 
very sensitive to the surface-layer water content, due 
to a pronounced increase in the dielectric constant of 
the soil or vegetation with increasing water content.  
In the present paper, the objective is to analyze the 
potential of two radar sensor (TERRASAR-X and 
SENTINEL 1) potentials to estimate soil moisture and 
vegetation cover properties. Section 2 describes the 
studied site and database. Section 3 analyses results 
concerning sensitivity of radar signals to soil moisture 
and vegetation properties. Conclusions are gathered in 
section 4. 

2  SITE AND DATABASE 

2.1 STUDIED SITE 

The study site is located in the Berambadi basin; it is 
close to the city of Gundlupet in Chamarajanagar 
district of Karnataka state in South India (Figure 1). 
The study site is semi-arid with an annual precipitation 

of 800 mm mainly due to the South West monsoon 
rainfall. The main land use classes encountered in the 
area are: dense/closed forest, scrub forest, land with 
scrub, Kharif (summer) crop, double crop and 
plantation. During Kharif (summer) and Rabi (winter) 
marigold, sunflower, finger millet, maize, garlic, 
sugarcane, sorghum, water-melon, lentils, and 
groundnut etc., are grown. 

Figure 1: Illustration of studied site 
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2.2 SATELLITE DATA 

a) Sentinel 1 radar data 
The first S-1A satellite was launched on 3 April 2014. 
The second S1-1B Sentinel was launched on 22 April 
2016. Both satellites offer a repeatability of 6 days for 
different parts of the globe (Europe, North Africa etc). 
They have a frequency of 5.4 GHz with standard 
operating modes: the Strip Map (SM), Interferometric 
Wide Swath (IW), Extra Wide Swath (EW), and 
WaVe (WV) modes. In this paper, we consider 4 IW 
S1 images with 10m X10m spatial resolution, a dual 
polarizations VV and VH, and an incidence angle 
about 39-40°, acquired from September 2016 to end of 
October 2016 (Table 1). All of these images were 
generated from the high-resolution Level-1 Ground 
Range Detected (GRD) product. The data was pre-
processed with Sentinel-1 Toolbox with 3 steps: 
 
- Thermal noise removal  

- Radiometric calibration 

- Terrain correction using SRTM DEM at 30m.  

The calibration aims to convert digital number values 
of the raw images into backscattering coefficients (σ0).  
 
b) TERRASAR-X data 
Five TerraSAR-X images (X-Band ~ 9.65 GHz) were 
acquired (in HH and VV polarizations, incidence angle 
of 36°). All of the images were acquired in the form of 
“Single Look Complex” products, with the TSX 
images produced in the Single Look Slant Range 
Complex (SSC) representation, having a ground pixel 
spacing of approximately 2 m. The images were then 
radiometrically calibrated to derive the backscattering 
coefficients σ0, and then geo-referenced using the 
SRTM 3Sec as a DEM (Auto download in SNAP 
software). The mean radar signals were computed for 
each test field.  

2.3 GROUND MEASUREMENTS 

During September and October 2016 (two months), 
ground campaigns were carried out at the same time as 
the radar satellite acquisitions. Considered reference 
fields concern three types of land use (Turmeric, 
Sorghum and Maize). The ground measurements 
realized on the reference fields involved the 
characterization of the following soil parameters: soil 
moisture using a theta-probe instrument, soil 
roughness with just tortuosity estimation, and 
vegetation leaf area index. 
 
Soil moisture 
For each test field, approximately 20 handheld 
thetaprobe measurements were made at a depth of 5 
cm. The samples were taken from various locations in 

each reference field, within a two-hour time frame, 
coinciding with the time of each overhead satellite 
acquisition. The volumetric moisture ranged 
between 1 vol.% and 32 vol.% for all thetaprobe 
measurements. 
 
Soil roughness 
Soil roughness is estimated through the use of a chain 
to calculate tortuosity. It is defined as the ratio of the 
length of the curve (L) to the distance between the 
ends of it (C). Results illustrate this parameter in the 
range 1.03-1.17, with limited variations between 
reference fields. 
 
Leaf Area Index 
LAI is defined as the total one-sided area of leaf tissue 
per unit ground surface area. According to this 
definition, the LAI is a dimensionless quantity. For 
each test field, we consider approximately twenty 
hemispherical digital photos processed to retrieve this 
vegetation parameter (Duchemin et al., 2008). These 
measurements were applied simultaneously to each 
TERRASAR-X data acquisition. During all 
measurement campaigns, the LAI measurements were 
ranged between 0 and 4.6.  
 
For analysis of radar sensitivity to vegetation 
parameters, we choose to consider just NDVI 
vegetation index (from S2 satellite) because of limited 
number of LAI measurements during the studied 
period. 

3 RESULT  

3.1 SAR SENSITIVITY TO MOISTURE 

During the studied period, we note the absence of 
precipitations. This induces very limited variations in 
soil moistures with values generally ranged between 0 
and 7 cm3/cm3. For this reasons, analysis of radar 
signal sensitivity to soil moisture could not be 
discussed to all vegetation covers. It is considered just 
for irrigated turmeric cover. Figure 2 illustrates 
relationship between soil moisture and TERRASAR-X 
data in (HH and VV polarizations and S1 data in VV 
and VH polarizations. First, we observe highest 
sensitivity to soil moisture in X band than in C band. 
This behavior has been shown in other experimental 
studies (Baghdadi et al. 2012). This is due particularly 
to sensitivity of X band data to soil moisture in the 
first millimeters of soil and then to more extreme 
values, comparing to C band sensitive to moisture in 
2-3 cm (Zribi et al., 2014). Values of NDVI for 
turmeric culture during this period seem not very high, 
for this reason, penetration of radar signal still not 
negligible and then sensitivity to soil moisture not 
weak. 
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(a) 

 
(b) 

(c) 

(d) 
Figure 2: Sensitivity of radar data to soil moisture. a) 
TSX, HH polarization, b) TSX, VV polarization c) S1, 

VV polarization d) S1, VH polarization 

3.2 SAR sensitivity to vegetation 

In our case, we discuss sensitivity of radar signals to 
vegetation dynamic for three dominant vegetation 
covers, turmeric, sorghum and finally Maize. 

a) Turmeric cover
Figure 3 illustrates radar signals, TSX in HH and VV 
polarizations and S1 in VV and VH polarization, 
dynamic as a function of NDVI vegetation index. For 
the case of turmeric cover, NDVI is ranged between 
0.1 and 0.55. First, for co-polarized signals (HH and 
VV), we observe an increasing of radar signal with 
NDVI increasing. The highest dynamic (about 2.5 dB) 
is observed in X band, with approximately the same 
dynamic for HH and VV polarizations. For C band, 
VH polarization does not show any sensitivity to 
vegetation dynamic. As observed in other 
experimental studies, this is probably due to limited 
volume scattering for this cover. 

Figure 3: Sensitivity of radar data to vegetation NDVI 
index for Turmeric cover. a) TSX, HH polarization, b) 
TSX, VV polarization c) S1, VV polarization d) S1, 

VH polarization 
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b) Sorghum
Figure 4 illustrates radar signals, TSX in HH and VV 
polarizations and S1 in VV and VH polarization, 
dynamic as a function of NDVI of Sorghum. NDVI 
values are weak and ranged approximately between 
0.1 and 0.35. As for Turmeric, highest sensitivity is 
observed in X band, with a limited dynamic of radar 
signal as a function of NDVI. We note an increasing 
of just 1.2 dB for the 0.2 NDVI increasing. For C 
band, the sensitivity is completely absent; there is not 
tendency of radar signal as a function of NDVI. 

 

 
Figure 4: Sensitivity of radar data to vegetation NDVI 
index for Sorghum cover. a) TSX, HH polarization, b) 
TSX, VV polarization c) S1, VV polarization d) S1, 

VH polarization 

c) Maize
Figure 5 illustrates radar signals, TSX in HH and VV 
polarizations and S1 in VV and VH polarization 
dynamic as a function of NDVI of Maize. NDVI 
values are ranged approximately between 0.2 and 0.55. 
Inversely to the other covers, we observe an 
attenuation of radar signal with the increasing of 
NDVI, for all co-polarized signals. This behavior due 
to vegetation attenuation effect is observed also for 
cereals in other experimental studies (Fratanelli et al., 
2013). The highest sensitivities are observed in X 
band, with approximately a dynamic of 2dB. In C 
band, VV polarization illustrates lower dynamic as a 
function of NDVI, around 1.5 dB. This decreasing 
trend is linked to the geometrical vertical structure of 
Maize, inducing attenuation of radar signal. 
For VH data, we observe the inverse trend, with the 
increasing of radar signal with NDVI. This behavior is 
linked to the sensitivity of VH cross-polarization to 
volume component which increases with the growth of 
vegetation cover (increasing of NDVI).  

Figure 5: Sensitivity of radar data to vegetation NDVI 
index for Maize cover. a) TSX, HH polarization, b) 
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4 CONCLUSION 

This paper proposed an analysis of the sensitivity of 
TERRASAR-X/S1 radar signals for surface 
parameters (soil moisture and NDVI linked to 
vegetation cover dynamic) for three types of land use 
(Turmeric, Sorghum and Maize), in Berambadi site, in 
tropical conditions. For soil moisture, analysis is 
limited to irrigated Turmeric fields, illustrating a 
highest sensitivity to soil moisture for X band. For 
vegetation characterization, for the two polarizations 
HH and VV, and for the three covers, we observed a 
highest sensitivity of X band data to NDVI than with 
C band data. VH polarization illustrates the lowest 
potential to retrieve surface parameters. 
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ABSTRACT – This work evaluates the assimilation of Green Area Index (GAI) derived from radar and optical 
imagery into an agrometeorological model named SAFY-WB (Simple Algorithm For Yield model combined with 
a Water Balance model) to retrieve corn biophysical parameters. Radar satellite information is provided by the 
Sentinel-1A (S1-A) mission through two angular normalized orbits allowing a repetitiveness from 12 to 6 days. 
Optical images are provided by Spot-5-Take-5 and Landsat-8 missions all along the crop cycle. A nonlinear 
relationship between GAIopt (GAI derived from optical data) and the ratio radar signal (σ°VH/VV), allows to create 
a GAIsar (GAI derived from radar data) (R² = 0.75). Then, these GAI are assimilated into the model to optimize 
the simulations by using three configurations: GAIsar, GAIopt or a combination of radar and optical (GAIsar+opt). 
Results show that in the calibration and validation steps, the GAIsar is mainly suitable for initializing the model 
during the first crop stages. The GAIopt is suited all along the crop cycle but limitations remains during the first 
phenological stages, when cloud cover is important over the studied region. The last configuration (GAIsar+opt) 
uses the benefit of both sensors: GAIsar to substitute GAIopt at the beginning of the crop cycle and GAIopt to retrieve 
the vegetation dynamic from flowering. Finally, the model, controlled by SAR and optical data, is able to 
accurately simulate the dynamic of GAI (R²<0.99 and rRMSE<11%), Dry Stem Mass (DSM), Total Dry Mass 
(TDM) and yield through Dry Grain Mass (DGM) (R² = 0.82). 
KEYWORDS: maize, crop yield, microwave, Synthetic Aperture Radar (SAR), biomass, Sentinel-1 

1 INTRODUCTION 

Cultivated throughout the world, corn is the most 
produced cereal with more than 1 billion of tons in 2013 
(FAO, 2015). In France, corn is the second crop 
production, mainly cultivated in areas located in the 
south west (40% of the national production).  
Among the wide range of monitoring tools (in situ 
measurements, human observations, weather stations, 
local modeling …), satellite images are fully suited for 
crop monitoring. Indeed, satellites images can be 
acquired at high spatial resolution, with medium to high 
temporal repetitiveness (few days), and with large 
swaths (several kilometers). However, the only use of 
satellite images (acquired in optical and/or microwaves 
domains) implies two main limitations. Firstly, they 
don’t allow a continuous daily monitoring of crop 
parameters (being limited by their temporal sampling). 
Then, they can only be related to some specific crop 
biophysical parameters (Green or Leaf Area Index 
(GAI or LAI), height, mass of vegetation) during a 
limited period of the phenological cycle of the crop 
(Baup et al., 2016; McNairn and Brisco, 2004). To 
overcome these problems many studies have 

successfully combined optical and/or microwave 
images with a model of culture to daily estimate more 
crop parameters such as the water content, the GAI, the 
biomass, the evapotranspiration, or the grain yield 
during the whole crop cycle (Fieuzal et al., 2017; 
Battude et al., 2016; Betbeder et al., 2016; Claverie et 
al., 2012; Hadria et al., 2009; Duchemin et al., 2008; 
Maas, 1988). Such approach generally considers simple 
algorithm-crop models that are able to rapidly run over 
numerous and heterogeneous fields compared to more 
complex models that require a more detailed 
description of the surface (mechanistic description of 
vegetation and soil properties). 
In this context, the objective is to evaluate the 
assimilation of Green Area Index (GAI) derived from 
radar (GAIsar) and optical (GAIopt) imagery into an 
agrometeorological model to retrieve corn biophysical 
parameters (GAI, Dry Stem Mass, Total Dry Mass and 
yield through Dry Grain Mass). The study area and data 
collection are presented in section 2, followed by the 
developed methodology (section 3) featuring the 
processing from satellite images to the parametrization 
of the model. The results and discussion are presented 
in section 4. 
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2 STUDY AREA AND DATA COLLECTION 

2.1 Site description 

The study area (centered at 44.06◦N, 0.42◦E, 110 × 140 
km²) is located in the South-West of France over two 
French regions (Nouvelle-Aquitaine and Occitanie). 
Characterized by hilly and valley terrain, the open field 
agricultural landscape is by far the dominant land use 
system (Figure 1). 

Figure 1: Location of the study site and inventoried corn 
fields in 2015 and 2016 

2.2 Field surveys 

The agricultural practices (variety, sowing, emergence 
and harvesting dates, irrigation information and yield 
per parcel) and the soil parameters (texture, depth) have 
been collected during two successive agricultural 
seasons (2015 and 2016) over 126 fields (Table 1). 

Table 1 : Features of the corn field 

Year Number 
of fields 

Area (ha) 
[min max mean] 

Slope (°) 
[min max mean] 

2015 65 [3.1 42.3 9.6] [0.3 11.2 4.3] 

2016 61 [3.1 62 11.9] [0.4 9.7 4] 

Among all the monitored fields, specific measurements 
are performed over 5 of them. Each three weeks from 
sowing to harvest, the total above ground biomass 
(fresh mass) is weighed in situ before being dried (at 
65°C, at least 72h) to get Dry Stem Mass (DSM), Dry 
Grain Mass (DGM), Total Dry Mass (TDM) and Water 
Content (WC).  
Climatic data are collected using a network of 11 
weather stations located inside the study area (Figure 
1). They acquire specific data related to the need of the 
model: global solar radiation, air temperature, rainfalls 

2.3 Satellite images 

a) Optical images
The Landsat-8 products are orthorectified and 
radiometrically corrected by the USGS. Spot-5 Take 5 
and the Landsat images are processed by the level 2A 
processor named MACCS (Hagolle et al., 2015). All the 
images are available free of charge at the Theia land 
data services (https://www.theia-land.fr/en/). From 
April to November, it concerns 44 images in 2015 and 
23 images in 2016. More detailed features of optical 
images are given in Table 2. 

b) Radar images
Radar images are provided by Sentinel 1A (S1-A), 
freely available from the European Copernicus Services 
Data Hub (https://scihub.copernicus.eu/). Over the 
studied region, images are acquired in Ground Range 
Detected (GRD) mode and projected on Earth ellipsoid 
model, with an incidence angle ranged between 29.1° 
and 46°, following two orbits (#30 and #132)  (Torres 
et al., 2012). For the same acquisition period as optical 
images, 50 and 68 images are respectively acquired in 
2015 and 2016. Temporal sampling, size of the swath, 
spatial resolution and sensors features are given in 
Table 2. 

Table 2: Satellite (radar and optical) features 
Mission Sentinel-1A Landsat-8 Spot 5 
Swath 250 km 185 km 60 km 
Repetitivity 12 days 16 days 5 days 
Spatial 
resolution 

20 × 5 m 30 m 10 m 

Sensor 
features 

5.405 GHz 
Dual 

polarization 
(VV VH) 

0.45-0.52 µm 
0.53-0.60 µm 
0.63-0.68 µm 
0.85-0.89 µm 

0.50-0.59 µm 
0.61-0.68 µm 
0.79-0.89 µm 

3 METHODOLOGY 

3.1 Radar images processing 

Sentinel 1-A GRD images are pre-processed 
(radiometric calibration, Range Doppler terrain 
correction and resampled at 10 m spacing) using the 
ESA’s SNAP software to obtain the Sigma-naught for 
the VH and VV polarizations. The radar signal is 
sensitive to the antenna incidence angle, effect which 
can be reinforced by the local incidence angle observed 
over hilly landscape. Thereby an angular normalization 
(Betbeder et al., 2016; Fieuzal, 2013) is applied from 
sowing to harvest (equation 1). 

  𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛0 = (𝜃𝜃𝜎𝜎0− 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟) × 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜎𝜎𝑖𝑖0  (1) 

Where σnorm0  is the normalized radar signal, 𝜃𝜃𝜎𝜎0 is the local 
incidence angle of the acquisition, θref is the local incidence 
angle of reference (37.5°), τmean is the average angular 
sensitivity and σi0 is the initial radar signal (τmean(VV) =
0.06 dB. °−1,τmean(VV) = 0.07 dB. °−1). 
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Afterwards all the data are filtered using a moving-
average fitting window to reduce the influence of 
external variables (e.g., precipitation, dew or irrigation) 
distorting the vegetation signal response. 

3.2 Green Area Index (GAI) retrieval from optical and 
radar 

The BVnet tool (Biophysical Variables Neural 
NETwork) is used to derive the GAI from optical 
images (GAIopt). This algorithm is based on the 
inversion of the radiative transfer model PROSAIL 
using artificial neural network (Baret et al., 2007).  
Empirical relationships are established between radar 
signals and GAIopt to estimate GAI from S1-A images. 
Among the three tested radar configurations (σ°VV, σ°VH
and σ°VH/VV), the ratio of polarizations gives the best 
empirical relationship from theoretical emergence 
(124°C.day) to the average radar saturation 
(1200°C.day), with a R² = 0.75 (Table 3).  

Table 3: Coefficients of determination for nonlinear empirical 
relationships between radar configurations and GAIopt 

Radar R² n 
σ°VV 0.21 592 
σ°VH 0.70 592 

σ°VH/VV 0.75 592 

Finally, using a simple inversion of this nonlinear 
empirical relationship, GAIsar is obtained from the 
σ°VH/VV ratio (equation 2). 

𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = 167.97𝑒𝑒0.766×𝜎𝜎𝑉𝑉𝑉𝑉/𝑉𝑉𝑉𝑉
0

   (2) 

3.3 Implementation of the agro-meteorological model 

The SAFY-WB model (Simple Agro-meteorological 
For Yield estimate and Water Balance) (Duchemin et 
al., 2015) simulates the temporal evolution of the GAI 
and the aerial dry masses (more precisely: DSM, DGM 
and TDM) from the day of emergence until the 
harvesting day. The model runs at daily time steps, and 
physical processes are controlled by different climatic 
variables: the global solar radiation, the air temperature, 
the potential evapotranspiration and precipitation, and 
GAI-derived satellite data. Three configurations are 
evaluated when the model is controlled by GAIsar, 
GAIopt or GAIsar+opt.  
During the calibration step, the model is parameterized 
on one independent field of corn cultivated in 2016. 
During calibration, six parameters (Pla, Plb, Stt, Rs, D0, 
ELUE (Duchemin et al., 2008) are optimized by 
comparing the GAI values simulated by the model 
(GAIsim) and the GAI derived from satellite time series 
(GAIsar, GAIopt or GAIsar+opt), using a method of simplex 
for the minimization of the cost function (i.e., RMSE 
between GAIsim and GAIsatellite). 

The validation step is performed over 65 fields of corn 
cultivated in 2015 (year independent of calibration). 
For this step, only two parameters of the six are 
optimized (D0, ELUE), the others being constant. 
Model accuracy is investigated through the comparison 
between the maximum of DGMsim and farmer’s yield.  

4 RESULTS AND DISCUSSION 

4.1 Calibration performances of the model 

Once calibrated, the trends of the GAI and the dry 
masses are globally well reproduced, as evidence by the 
example of simulation shown in Figure 2. In this 
example the model is controlled by GAIsar+opt. 
Statistical performances are given in Table 4 depending 
on the GAI used to control the model. 

Figure 2: Comparison between observed and simulated GAI 
and dry masses (DSM, DGM and TDM). Lines represent 

simulations and punctual symbols the observations of GAI 
(GAIsar: 0 - 500 °C.day or GAIopt: 500 - 2500 °C.day) and dry 

masses 
Table 4: Summary of statistical performances of the 

calibration step depending on the 3 satellites configurations 
(GAIsar, GAIopt, GAIsar+opt) used to control the model 

Configuration Model 
output R² rRMSE 

(%) n 

GAIsar GAIsim 0.74 153 12 
DGM 0.94 43 7 
DSM 0.85 60 7 
TDM 0.98 19 7 

GAIopt GAIsim 0.99 11 13 
DGM 0.97 25 7 
DSM 0.93 34 7 
TDM 0.98 18 7 

GAIsar+opt GAIsim 0.99 10 15 
DGM 0.97 24 7 
DSM 0.94 30 7 
TDM 0.97 18 7 

The poorest performances (mean rRMSE of 68%) are 
obtained when the model is controlled by GAIsar. 
Although the assimilation of GAIsar allows a faithfully 
estimation of the emergence date, the crop cycle is not 
fully recovered, inducing incoherent simulation of GAI, 
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DSM and DGM particularly (Ameline et al., 2016). At 
the opposite, the parameterization based on GAIopt 
allows the model to well reproduce the temporal curve 
of the GAIopt (R² = 0.99, rRMSE: 11%). The 
combination of radar and optical (GAIsar+opt) gives 
comparable results to the optical case. In this case, 
GAIsar provide essential information during the first 
phenological stages (from sowing till beginning of stem 
elongation) and GAIopt overcomes the radar signal 
saturation problems to retrieve the vegetation dynamic 
especially from flowering to harvest. The dry masses 
simulations (DSM, DGM, and TDM) are in good 
agreement with measurements when the model is 
controlled by GAIopt (R² > 0.93) or GAIsar+opt (R² > 
0.94). Whatever the considered configuration, the DSM 
is estimated with a rRMSE superior or equal to 30%.  

4.2 Validation 

The assimilation of GAIsar leads to aberrant estimates of 
GAI and DM (results not shown here). Contrariwise the 
simulation of dry mass is consistent with the literature 
(754 < TDM < 2880 g.m−2), when the model is 
controlled by GAIopt of GAIsar+opt data (Figure 3).  

Figure 3: Model simulations of GAI and DGM obtained in 
the validation step for the 65 corn fields in 2015 

The poorest performances for the yield estimation are 
observed by using the GAIsar configuration (R² = 
0.001), due to weak calibration performances. When 
the model is controlled by GAIsar+opt, the estimates of 
yields offer the same high performance as the GAIopt 
case (R² = 0.82) (Figure 4). In these two cases, the 
model is able to reproduce with confidence the yield 
heterogeneities (from 26 q.ha-1 to 145 q.ha-1).  

These results also highlight the difference in grain yield 
production due to irrigation practices, with higher 
values for irrigated fields. 

Figure 4: Comparison between the maximum of Dry Grain 
Mass simulated by the model and the farmer yields (over 65 

corn fields in 2015) 

5 CONCLUSION 

The aim of this article was to evaluate the feasibility to 
assimilate GAI derived from radar and/or optical 
satellite data into the SAFY-WB model to estimate corn 
biophysical parameters. The results revealed that radar 
backscattering coefficients (especially the ratio 
VH/VV) have the potential to estimate the GAI only 
during the first phenological stages (until 500 °C.day), 
contrary to optical data which offer more possibilities 
all along the crop cycle (in condition of clear sky). Then 
the model was successfully controlled (calibration and 
validation steps) using three sources of satellite-derived 
GAI: GAIsar, GAIopt or GAIsar+opt. Among these sources 
of GAI, best results in GAI (R² = 0.99), dry masses (R² 
= 0.93 to 0.97) and yield estimates (R² = 0.82) are 
obtained when the model is controlled by GAIopt or 
GAIsar+opt. In the first case, the GAIopt can be used all 
along the crop cycle whereas in the combined case, the 
GAIsar is only used during the first phenological stages 
(500 °C.day, when study area is often cloudy), followed 
by the GAI derived from optical data until harvest. 
These results demonstrate the efficiency of combining 
optical and radar images to monitor corn biophysical 
parameters. 
In the future, this study must be extended to multi-year 
approach and the model should be improved to better 
simulate crop yield. 
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ABSTRACT In semi-arid regions, climate is characterized by extended periods of drought. In this context , the 
characterization of surface parameters play a key role in the modeling of the water balance. The aim of this 
study is to analyze the potential of Sentinel-1 (S1) radar data to soil characteristics (roughness and water 
content) and to vegetation parameters (Leaf Area Index "LAI“ and Vegetation Water Content "VWC“) in 
agricultural areas. Simultaneously to several radar acquisitions over the Kairouan Plain (Tunisia, North Africa), 
acquired between 2015 and 2017 using S1 sensors, ground measurements (soil roughness, soil water content, 
LAI, VWC) were carried out. The NDVI (Normalized Difference Vegetation Index) index calculated from Landsat 
optical images revealed a strong correlation with in situ measurements of LAI and VWC. The sensitivity of the S1 
measurements to variations in soil moisture, which has been reported in several scientific publications, is 
confirmed in this study. This sensitivity decreases with increasing vegetation cover growth (NDVI), and is 
stronger in the VV than in the VH polarization. The results also reveal a similar increase in the dynamic range of 
the radar signals observed in VV and VH polarizations, as a function of soil roughness. The sensitivity of S1 
measurements to vegetation parameters (LAI and H) in the VV polarization is also determined, showing that the 
radar signal strength decreases when the vegetation parameters increase. No vegetation parameter sensitivity is 
observed in the VH polarization, probably as a consequence of volume scattering effects. 

1 INTRODUCTION 

Hydrological process at regional and global scale play 
a key role in water balance modelling, particularly in 
climate change. These measurements have been based 
on field measurements and are incapable of restoring 
the spatial and temporal variability of these parameters 
and need to be extrapolated over larger areas. 
Remote sensing data was widely to estimate surface 
parameters over agricultural areas (Baghdadi and 
Zribi, 2016). In this context, water content play a key 
component in these agricultural processes (Koster et 
al, 2004 ; Zhao et al, 2014 ; Manfreda et al, 2009).  
Different spatial measurements have shown their 
potential for monitoring soil moisture like thermal 
infrared and microwave methods (Wagner, 1999 ; 
Paloscia et al, 2006). 
Radar remote sensing data have also been developed 
for the estimation of soil parameters and have the 
advantage of being independent of weather conditions. 
Different inversion approaches have been proposed to 
restore these parameters based on different 
backscattering models (Baghdadi et al, 2006 ; Santi et 
al 2016) 
The new C-band satellite was launched in April 2014 
and offers free data with high temporal and spatial 

resolutions. This constellation allows achieving 
regular operational estimations of the characteristics of 
the continental surface. 
In this context, the aim of this study is to analyse the 
potential of Sentinel-1 data for the assessment of 
different soil and vegetation parameters. The second 
section is experimental and describes the database 
over bare soil and cereals. The radar signals sensitivity 
to soil and vegetation parameters are analyzed in 
section 3. Section 4 describes the performance of the 
Water Cloud model. Our conclusion is provided in the 
last section. 

2 DATABASE AND STUDY SITE 

2.1 Study site 

Figure 1 : Location of the Kairouan plain in Tunisia 
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The Kairouan plain is situated in Central Tunisia 
(9°23'-10°17'E, 35°1'-35°55'N). This semi-arid region 
is characterised by dry summer seasons and an annual 
average precipitation of 300 mm/year. 
We selected about 20 reference fields between bare 
soils and cereal plots ranging in size between 2 and 8 
ha. Over these plots, ground measurements were 
carried during two agricultural seasons (2015-2017). 

2.2 Database 

2.2.1 Radar data 

The Sentinel-1A satellite was launched in April 2014. 
The satellite offers 12 days as a revisit time and 10 m 
of spatial resolution, co-polarization and incidence 
angle between 39° and 40°. The images were 
generated from Level-1 Ground Range Detected 
product with different pre processing as thermal noise 
removal, radiometric calibration, terrain correction and 
filtering of speckle. 

Figure 2 : Setinel 1A satellite 

2.2.2 Ground measurements 

The ground measurements were carried over the fields 
which include handheld thetaprobe measurements, 
roughness measurements, and LAI measurements with 
hemispherical digital images. 
 The soil moisture content revealed a very high range 
between 3.9 vol.% and 45 vol.% during the 
experimental campaigns. Roughness measurements 
were made using a 1m long pin profiler. For each test 
plot, 5 parallel and 5 perpendicular profiles were 
compared to estimate the roughness parameters (the 
root mean square surface height (Hrms) and the 
correlation length (L)). Vegetation cover 
measurements are carried out to characterize several 
parameters: leaf area index (LAI) and water content. 
For each test field we consider approximately twenty 
hemispherical digital images, which are processed by 
analyzing the canopy gap fraction, in order to retrieve 
this vegetation parameter. The measurements were 
applied 4 times during each agricultural season. 
During all measurement campaigns, the computed 

value of LAI ranged between 0 and 5. The VWC was 
measured three times in cereal fields for each 
vegetation cycle. For each reference field, 
measurements were made at three locations, each 
having a 1m2 surface area. The above ground biomass 
was removed, and wet and dry weights were used to 
estimate the VWC. 

3 RADAR SIGNAL SENSITIVITY TO SOIL AND 
VEGETATION PARAMETERS  

a) Radar signal sensitivity to soil moisture

The sensitivity of radar signal to soil moisture was 
analyzed for plots with NDVI<0.25 which corresponds 
to bare soils or poorly covered soils. The analysis of 
the two polarizations shows a higher sensitivity in VV 
than in VH which is explained by the sensitivity of the 
VH signals to the volume component in the surface 
scattering.

Figure 3 : Relationship between backscattering 
coefficient and soil moisture for: VV polarization (a) 
and VH polarization (b) 

b) Radar signal sensitivity to soil
roughness

For our case, we analyzed the relationship between the 
radar signal and Hrms parameters. 

Soil moisture effect is very important on radar signal. 
VV and VH data show approximately the same 
behavior with a dynamic due to roughness 
approximately equal to 6 dB and shows good 
correlation, higher than 0.7. 
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Figure 4: Relationship between backscattering 
coefficient and Hrms roughness parameter for: VV 
polarization (a) and VH polarization (b) 

c) Radar signal sensitivity to vegetation
parameters

d) 
The behavior of the signal radar is different for VV 
and VH polarization. VV signal decreases with the 
increasing of LAI parameter. This behavior is the same 
for the vegetation water content. The effect of volume 
scattering component could explain this result. 

4 METHODOLOGY 

In this study, we proposed to use the “Water Cloud 
Model” (Attema and Ulaby, 1978) combined to a 
semi-empirical model for bare soil and calibrated 
using C-band radar data, NDVI, soil moisture, 
roughness parameter and incidence angle. 
The NDVI was used as a vegetation descriptor, 
derived from LANDSAT8 images 

02000
soilsoilcanopycanopy στσσσ +++=

    (1)

With )sec.1.2exp(2 θτ VB−=  (2) 

And 




 −= 21cos.1.0 τθσ VAcanopy

   (3) 

δβασ ++= )(log Hrmsmvsoil           (4) 

Figure 5: Relationship between backscattering 
coefficient and LAI for: VV polarization (a) and VH 
polarization (b) 

Figure 6: Contribution of the backscattering 
coefficient on a plot 
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5 RESULTS  

The calibration process allows the empirical 
parameters A and B to be determined as: A = 0.06; B = 
0.42. 

The figures provide the validation of the model’s 
simulation of the radar signal and S-1 signal. A good 
degree of consistency is observed between the two 
outputs. Statistical parameters from the simulation are 
improved with a RMSE of 0.84 dB and a biais of 0.08 
dB.  

6 CONCLUSION 

A calibrated Water Cloud Model (WCM), 
combined to an empirical backscattering model  (Zribi 
et al., 2014) for  simulating soil’s contribution,  is 
proposed in this study to simulate backscattering radar 
signal, applicable to agricultural fields. It combine C-
band SAR data and optical images, using the NDVI as 
a vegetation descriptor in WCM. Bare soils and 
Cereals fields were considered in our study and the 
simulations are proposed during agricultural period 
(2015-2017). Results show that good correlation 
between the relationship of the radar signal and 
surface parameters, and also that the VV polarization 
is more sensitive to vegetation parameter.  
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ABSTRACT- Considering the advantages of multi-satellite convergence and the time and space scale of soil 
moisture, a nonlinear sliding estimation method of soil moisture based on multi-satellite fusion is proposed. First, 
the direct and reflection signals of GNSS satellites are separated by means of a low order polynomial fitting, and 
then, by establishing the sinusoidal fitting model of reflection signals, the relative delay phase of the SNR 
interferogram is obtained. Finally, a linear regression model is used to analyse and select the phase of the SNR 
interferogram, and a sliding estimation method of soil moisture using the least squares support vector machine 
(LSSVM) based on multi-systems fusion is established. Based on the monitoring data, the feasibility and 
effectiveness of using single and multiple GNSS satellites to slide estimate soil moisture are compared and 
analysed. Theoretical analysis and experimentation show that, GNSS-IR can provide full play to the advantages 
of artificial intelligence and effectively integrate the performance of each satellite. The fitting process is stable, 
and the model needs less modelling data; the sliding mode can achieve a long time estimation, and the 
estimation error is relatively stable. Using satellites that have an R2 value greater than 0.50, the results are 
better than when using single satellites, the correlation coefficient between the estimated results and the 
reference values of soil moisture was greater than or equal to 0.94, and RMSE and MAE are less than 0.06 and 
0.05 respectively. 

1  INTRODUCTION 

Soil moisture is an important parameter in the research 
of hydrology, meteorology and the agricultural 
environment and is also one important index of the 
water resource cycle. The estimation of soil moisture 
is of great significance for climate prediction, flood 
disasters and the water resource cycle (Njoku et al., 
2004; Sabater et al., 2008).  In recent years, GNSS 
remote sensing technology based on the multi-path 
effect provides a new, efficient and high-resolution 
monitoring method for the acquisition of soil moisture. 
a GNSS multipath signal has been used to estimate the 
environmental parameters and their changes of station, 
such as snow depth, seawater height, soil moisture and 
vegetation water (Rodriguez-Alvarez et al., 2012;). 
According to the relationship between the soil 
dielectric constant and soil moisture, Wang et al. 
(Wang et al., 2010) proposed a simplified empirical or 
semi-empirical soil moisture model to verify the 
effectiveness of soil moisture estimation in different 
environments. Because these methods require 
numerous parameters and the modelling is complex, 
there are some deficiencies such as the need for 
manual measurement of data and the weak 
generalization property of the model. Larson et al. 
(Larson et al., 2010) took advantage of the amplitude, 
frequency and phase of the multipath reflection 
component at a certain satellite elevation to realize the 

inversion of the trend of soil moisture change. Bilich 
et al. (Bilich, et al., 2007) studied the separation of the 
direct component and reflected component in SNR 
observations and the relationship between the reflected 
component and reflection environment value and then 
modified the phase observation value to get better 
results. Zavorotny et al. (Zavorotny, et al., 2010) used 
delay phase parameters to estimate soil moisture and 
verified that its correlation was more stable. By 
drawing from studies of vegetation scattering by other 
means of remote sensing, studies of the vegetation 
effect correction problem in the process of soil 
moisture detection and the derived parameter 
estimation of vegetation have been carried out step-by-
step (Wu et al., 2012). Chew et al. developed a soil 
moisture retrieval algorithm for the influence of land 
surface soil moisture on the GPS multi-path and 
studied the influence of surface vegetation changes on 
SNR (Chew et al., 2015). Because the influence of soil 
surface roughness and vegetation information on 
microwave scattering differs, it is very difficult to 
establish an accurate soil moisture estimation model 
directly. The existing research is less concerned with 
the advantages of multi-satellite fusion estimation, and 
the estimation of soil moisture is affected by artificial 
interference, which is not conducive to the 
improvement of estimation accuracy. If soil moisture 
is changed with time scale and spatial scale, the 
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estimation of soil humidity using the GNSS-IR 
technique can be regarded as a nonlinear regression 
problem. It is possible to establish a nonlinear 
estimation model of soil moisture through the phase of 
the SNR interferogram. 

Based on the aforementioned research, a method 
for estimating soil moisture is presented, using a least 
squares support vector machine based on multi-
satellite fusion. The LS-SVM is introduced into soil 
humidity estimation, and a soil moisture estimation 
model based on multi-satellite fusion is established. 
Based on the monitoring data provided by the PBO 
network, the feasibility of using single and multiple 
satellites to estimate soil moisture was compared and 
analysed, and the effectiveness of the sliding type 
estimation was studied and verified. 

2  THE THEORY OF SOIL MOISTURE SLIDING 
ESTIMATION 

2.1 Satellite Signal Reflection 

SNR is an indicator of receiver antenna signal quality, 
SNR can be described in plural form as follows: 

)()0( φmd SSSNR
•••

+= (1) 

where  
•

SNR ,   )0(
•

dS and )(φmS
•

  are in plural form, 
and represent SNR, direct component and multipath 
reflection, respectively. Among them, ‘0’ and ‘ φ ’ 
represent the initial phase value of direct component 
and the phase of the reflection component, respectively. 

ψcos2
222

mdmd SSSSSNR ++=  (2)
whereψ is the function variables associated with the 
geometry of the satellite receiver. 

For one-time multi-path reflection, the signal 
received by the GNSS antenna is a composite signal of 
direct signal and reflected signal, as shown in Figure 1. 
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Figure 1. Geometric model of multipath error on the 
ground 

In Figure 1,  θ  is the satellite elevation angle of 
the direct signal transmitted from the satellite; h is the 
vertical height of the antenna to the ground; ε is the
incline angle of the slope; and β is the angle between 
the satellite signal and the slope. Whenε is small, the
formula can be expressed as follows: 

βεβθ ≈+= (3) 

Combining with Figure 1, It can be concluded 
that 
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There is a linear relationship between the relative 
phaseψ and θsin . 

Because there is a sine or cosine relationship 
between the observed SNR value and the relative 
phaseψ , GNSS soil moisture measurement is only 
related to multipath reflection components. Then, after 
removing the direct component, a sine or cosine 
relationship between SNR multipath reflection 
components and θsin , with a fixed frequency, still 
exists (Larson et al., 2010): 

)sin
4

(cos 222 MPMPMP

H
ASNR φθ

λ
π

+=   (5) 

whereθ ,λ and H represent the satellite elevation angle, 
wavelength of carrier wave and GNSS antennas height, 
respectively;

2MPA is the relative amplitude of the 
multipath reflection components, and

2MPφ is the 
relative phase delay. 

If θsinx = and
λ
πH2

f = , the aforementioned 

formula can be simplified as follows: 
  )fx2(cos 222 MPMPMP ASNR φπ +=     (6) 

2.2 The Soil Moisture Estimation Model Using The 
LS-SVM Based on Multi-satellite Fusion 

Suppose the relative phase delay set of GNSS 
satellites   is as follows: 
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wherei is the day of the year (DOY), j is the satellite 
vehicle’s ID, and   is the length of time. 

Suppose the soil humidity set corresponding to 
the relative phase delay set x is y . Because the 
relationship between the input vector x and soil 
moisture y is nonlinear in the application. GNSS 
satellite reflection signal to estimate soil moisture, 
mapping the sample input to a higher dimensional 
feature space by a nonlinear transformation is needed; 
thus, the nonlinear problem in input space is 
transformed into a linear problem in feature space. 
Then, a linear LS-SVM is used to fit the sample points 
in the feature space. The principle of LSSVM model is 
described (Suykens et al., 1999, Bishop et al., 2006). 
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2.3 The Process of Soil Moisture Estimation 

1) Separating multi-path reflection components from
the GNSS signal. SNR values were obtained by using 
TEQC software (Chew et al., 2016) to solve GNSS 
monitoring data, and the direct and reflection 
components were separated by low order polynomial 
fitting. 

2) The resampling of multipath reflection components.
Because the multipath reflection component changes 
with epochs, it is necessary to convert the problem to 
the relationship between the multi-path reflection 
components and the sinusoidal value   of the incident 
satellite elevation. 

3) Parameter estimation of multi-path reflection
component. Fitting a sine to the component after 
resampling by a nonlinear least squares fitting 
algorithm (ohnson et al., 1981), a confidence interval 
algorithm (Powell et al., 1990) is used to determine the 
step length of the least-squares iteration and other 
parameters. Then, the values of amplitude and phase 
could be obtained. 

4) Establishing a soil moisture estimation model. A
linear regression model is adopted to establish the 
relationship between the phase of the SNR 
interferogram and soil moisture, selecting satellites by 
setting the threshold of the correlation coefficient R2. 
And then a nonlinear fitting model of multi-satellite 
fusion is established. 

6) Sliding estimation. Supposing the former 2t period
is selected as the training sample of the model and step 
size of estimation isτ , the total number of sliding
times is

τ
2-1

,...,21,
tt

n = and establishes the LS-

SVM estimation: if the input training set 
is { }0

1)-t(bn
0
2

0
1 x,,x,x1 += X , the output training set is 

{ })1-t(b21 ,,,y1 += nyyY  ; if the input training set is  , 
the output training set is { }0

btn
0

2n
0

1n x,,x,x2 +++= X . Thus,
1Y and   2Y could be treated as the output training set 

for the next model, and so on. The process is 
illustrated in Figure 2. 

3 EXPERIMENT ANALYSIS 

GNSS monitoring data of the P043 station, which is in 
the PBO network (http://xenon.colorado.edu/portal), 
was selected for the experiment. The station is located 
at Newcastle in Cheyenne, Wyoming, at 104.185702 
W, 43.881146 N, and has an elevation of 1490.9 m.  
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Figure 2. Flowchart depicting steps of the LS-SVM 
sliding estimation model based on multi-satellite 
fusion for soil moisture 

The station can provide a high sampling rate and 
abundant meteorological data, and in 2011, the L2C 
observation data was opened to provide high quality 
L2 band SNR observation data. As shown in Figure 3 
(left), the topography around the station is flat, open 
and sparsely vegetated (mainly grassland). The steel 
triangle bracket is adopted, and the receiver model is a 
TRIMBLE NERT9. The antenna cover of SCIT is 
adopted, and the antenna model is TRM59800.80. The 
change in soil moisture and rainfall at the site in the 
73-294th days of 2015 (a total of 222 days) is shown 
in Figure 3 (right). 
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Figure 3. Digital elevation model around the GPS site 
p041 in southern California (left). The GPS site p041 
environment (right). 

Figure 3 (right) shows that rainfall is more 
significant, the largest rainfall is 26 mm. 
Corresponding to the rainfall, soil moisture increased 
significantly, especially from the 229-230th day and 
275-276th day. Due to the continuous rainfall, the soil 
moisture changes more significantly and shows strong 
non-linearity and randomness. When the rainfall stops, 
soil moisture decreases gradually. It can be seen that 
rainfall is the main reason for the change in soil 
moisture. The station has abundant rainfall and is 
suitable for the study of soil moisture. 
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Figure 4. (top left) Delay phases of L1 for four satellite tracks: PRN03 (green triangles), 07 (blue triangles), 13 
(black quadrilateral s) and 31 (black Crosses). (bottom left) Delay phases of L2 for three satellite tracks: PRN04 
(blue triangles), 14 (black crosses), and 32(green triangles). (top right) Delay phases of L2 for three satellite 
tracks: PRN03 (green triangles), 07 (blue triangles), and 31(black crosses). (bottom right) Delay phases of L2 for 
three satellite tracks: PRN01 (black crosses), 09 (green triangles), and 24(blue triangles). Soil moisture content 
(red dots). 

Therefore, the monitoring data from the 73rd-
294th day of 2015 are selected, the sampling rate is 30 
Hz, and the satellite elevation is between 5° and 20°. 
The SNR (L2 carrier) is obtained by using TEQC to 
calculate the GNSS receiver monitoring data, and 
separating the direct signal and reflection signal of 
each satellite by a quadratic polynomial separation. 
Then, the nonlinear least squares method is used to 
estimate the phase of SNR interferogram. Limited by 
space, only the L1 and L2 bands of some satellites are 
selected for analysis, and the relationship between the 
phase of the SNR interferogram of each satellite and 
soil humidity is shown in Figure 4. 

Figure 4 shows that when the soil humidity rises 
or decreases, the phase of the SNR1 interferogram in 
the L1 carrier of each satellite has some outliers and 
has poor agreement with soil moisture, while the phase 
of the SNR1 interferogram in the L1 carrier of each 
satellite can have a good response to soil moisture. For 
the 229 ~ 231st day and 275 ~ 277th day, the phase of 
the SNR interferogram shows a large fluctuation. This 
is related to the sharp rise in soil humidity caused by 
continuous rainfall.  
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Figure 5. The correlation coefficient between delayed 
phase and soil moisture.  

Combined with Figure 5, it shows that the 
correlation between the phase of the SNR1 
interferogram and the soil moisture is poor, and the 
correlation coefficients between the phase of the 
SNR2 interferogram and soil moisture are more than 
0.50. From the aforementioned analysis, we can see 
that the correlation coefficients between the phase of 
the SNR interferogram and soil moisture are different. 
Moreover, because the kinematical track of the 
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satellite and the different performance of different 
satellites, the response patterns of different satellites to 
changes in soil moisture are not consistent during the 
same periods. Therefore, the phase of the SNR 
interferogram in the L2 carrier is selected to establish 
the soil humidity estimation model in this paper. 

To verify the feasibility and effectiveness of the 
soil moisture estimation method based on multi-
satellite fusion, for the regression coefficient R2 of the 
linear regression equation, this study set a threshold of 
0.40. Phases of 13 satellite’s SNR2 interferograms are 
selected to establish the soil moisture estimation 
model based on the LS-SVM, and 7 schemes are 
designed as follows: scheme 1 – sliding estimation 
based on a single satellite; scheme 2 - sliding 
estimation based on multi-satellite fusion with an R2 > 
0.40; scheme 3 - sliding estimation based on multi-
satellite fusion with an R2 > 0.50; scheme 4 - sliding 
estimation based on multi-satellite fusion with an R2 > 
0.60; scheme 5 - sliding estimation based on multi-
satellite fusion with an R2 > 0.70; scheme 6 - sliding 
estimation based on multi-satellite fusion where 0.7 = 
< R2 < 0.80; and scheme 7 - sliding estimation based 
on multi-satellites fusion where 0.8 = < R2 < 0.90. To 
reduce the modelling error, each phase is pre-treated 
and normalized to [-1, 1], then reduced to the original 
interval after the estimation. The test samples are 
taken from the 73rd-119th days, the 120-294th days 

are selected as the training samples, and the estimated 
step size was 1. For example, when the prediction step 
is, the 73rd-119th days are selected for establishing the 
model to estimate the 120th day. Then, when, the 
73rd-120th days are selected for establishing the 
model to estimate the 121st day, and so on, until the 
294th day is estimated. The estimated results of each 
scheme are shown in Figure 7. The linear regression 
analysis between the estimated results and the true 
values of soil moisture are shown in Figure 8. Limited 
by space, only partial satellite results are provided. 

Figure 6 displays the soil moisture estimation 
based on a single satellite does not reflect the change 
in soil moisture accurately; the estimation error is 
large, and the fluctuation is obvious, in particular for 
the 240-270th day. Most of the estimation results 
based on a single satellite increase gradually, and even 
some estimation results of the satellites are distorted. 

The comparison between Scheme 2 and Scheme 
7 finds that the estimation error of the Scheme 2 days 
has an obvious distortion from the 120-180th day; 
estimated results of Scheme 3 and Scheme 4 are stable 
relatively, as the errors are within 0.10. For Schemes 5 
through 7, because the number of satellites reduces 
gradually, the estimation error results in the 
phenomenon of sudden change, such as the 200 to 
230th days. 
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Combining Table 1, one can see that even though 
the correlation between the phase of the SNR2 
interferogram and the estimation of soil moisture 
based on a single satellite is better, the estimation 
results still have major uncertainty. It is difficult to 
guarantee the stability of the error, and the maximum 
error is greater than 0.10. The estimation based on 
multi-satellite fusion can well reflect a change in soil 
moisture, and the correlation coefficient is greater than 
or equal to 0.94; by selecting the satellites where the 
R2 is greater than 0.50 for fusion, the results of the 
estimation based on multi-satellite fusion are better. 
From scheme 4 ~ scheme 6, the estimation of soil 
moisture in different time periods is related to the 
number of satellites for fusion and the correlation 
coefficient. According to the analysis of the root mean 
square error and mean absolute error shown in Table 1, 
by selecting the satellites where the R2 is greater than 
0.50 for fusion, the estimation results have a better 
accuracy as most of the mean square error (RMSE) is 
less than 0.06, and the mean absolute error (MAE) is 
less than or equal to 0.04. Compared to the model 
based on multi-satellite fusion, the results of Scheme 3 
and 4 are the best, with more stable accuracy and a 
maximum estimation error of less than 0.10, and the 
average error is 0.029 and 0.024, respectively. 

Table 1. Estimation accuracy of soil moisture in each 
model (unit: cm-3 cm3) 

 
Max is the maximum value of the model inversion 
error, Mean is the average of the model inversion 
results. 

In conclusion, the sliding estimation method 
using the LS-SVM based on multi-satellite fusion 
integrates the performance of each satellite fully, and 
the phases of the SNR2 interferograms are 
complementary to each other; this method can 
improves the problem of a single satellite that has 
difficulty adapting to the multi-path effect of the 
surface. In addition, selecting the satellites for which 
the R2 is greater than 0.50 for fusion can allow for 
better adaptation to different levels of soil moisture 
estimation compared to a single satellite. A fitting 
phenomenon does not occur in the process of 

estimating using the LS-SVM, and the performance of 
the models is well applied. The correlation coefficient 
R2 between multi-satellite fusion and soil moisture is 
greater than the estimation results based on a single 
satellite. The sliding method is beneficial to the 
estimation of soil moisture, and over a long period, the 
estimation error is more stable. 
4  CONCLUSIONS 

The theoretical analyses and experiments show 
the following: 1) The GNSS antenna is affected by the 
kinematical track and the performance of satellites 
during observation, the phase of the SNR 
interferograms of different satellites have different 
response patterns to changes in soil moisture, and a 
linear regression equation can well describe the 
relationship between the two. 2) The proposed method 
provides full play to the advantages of artificial 
intelligence in measuring soil moisture, synthesizes 
the performance of each satellite effectively, and 
makes the phases of the SNR2 interferograms 
complementary to each other. Moreover, the model 
needs less modelling data, the sliding mode can realize 
the estimation over a long period of time, and the 
fitting process performance and the estimation error 
are stable. 3) Based on multi-satellite fusion, when the 
satellites for which the R2 is greater than 0.50 are, the 
correlation coefficient between the results and the 
reference values of soil moisture is equal to or greater 
than 0.94. And the RMSE and MAE are less than 0.06 
and 0.05, respectively. Therefore, the estimation of soil 
moisture can be treated as a nonlinear event, and 
multi-satellite fusion is more favourable to accurate 
estimation of soil moisture. To further improve the 
performance of this model, multi-station data in 
different environments, vegetation information, 
temperature, rainfall and other variables will be taken 
into account. 
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ABSTRACT - This paper presents two methodologies retrieving soil moisture from SAR remote sensing data. 
The study is based on Sentinel-1 data in the VV polarization, over a site in Urgell, Catalunya (Spain).  By 
modelling the backscatter difference w.r.t. NDVI, the soil moisture corresponding to a specific NDVI value can 
be retrieved. The first algorithm is already developed on West Africa (Zribi et al., 2008)  from ERS scatterometer 
data to estimate soil water status. In this study, it is adapted to Sentinel-1 data and take into account the high 
repetitiveness of data in optimizing the inversion approach. Another new method is developed based on the 
backscatter difference be- tween two adjacent days of Sentinel-1 data w.r.t. NDVI, with smaller vegetation 
change, the backscatter difference is more sensitive to soil moisture. The validation of the two methods is done 
with field data acquired in study site, with an rms error about 0.08 m3/m3 for method 1 and 0.07m3/m3 for 
method 2 in volumetric moisture. 

1  INTRODUCTION 

Surface soil moisture plays an essential role in 
numerous environmental studies related to hydrology, 
meteorology and agriculture. For hydrological and 
agricultural purposes, the estimation of soil moisture is 
crucial since it controls the quantity of water available 
for vegetation growth (Cook et al., 2006; Bezerra et 
al., 2013). The low resolution traditional passive 
remote sensing measures the surface soil moisture at a 
high temporal resolution about 2-3 days, but low 
spatial resolution (around 40 km) (Zribi et al., 2008). 
With SAR missions, although the temporal resolution 
is relatively low (eg. 12 days for Sentinel-1), but the 
spatial resolution is much higher. Radar remote 
sensing measurements of bare soil are very sensitive to 
water content in the surface layer due to   the 
pronounced increase in the soil dielectric constant with 
increasing water content (Baghdadi et al., 2016). 
Assuming the influence of vegetation variation and 
soil roughness change is small, we have the difference 
of backscatter related with the change of soil moisture. 
In the last twenty years, different inversion algorithms 
have been proposed to retrieve soil moisture. Change 
detection approaches have been widely used, 
particularly at low and medium spatial resolutions 
(Zribi et al., 2014; Wagner et al., 2008).  
        In this paper, we introduce two methodologies in 
which soil moisture is retrieved from Sentinel-1 data 
over the period from the end of 2014 until 2016 
November for method 1 and method 2. In the two 

methodologies using change detection techniques, 
preprocessed radar data are combined with normalized 
difference vegetation index (NDVI) auxiliary data to 
estimate the mean soil moisture with a resolution of 
1km. By modeling the relationship between the 
backscatter difference and NDVI, the soil moisture at 
a specific NDVI value is retrieved. The first method 
considering the backscatter difference between a 
certain value and the minimum value through- out the 
whole time period, while the second method 
considering the backscatter difference between two 
adjacent days of acquisition. 
        This paper is organized as follows. In Section 2, 
the studied site and data base are presented. Section 3 
describes the two methodologies. Section 4 shows the 
validation with the ground measurements and the 
results of the retrieved soil moisture. Finally, the 
discussion and conclusions are presented in the last 
section. 

2  SITE AND DATABASE 

2.1 Site 

The study area covers a 60x60km area and is located 
in Urgell, Catalunya. Urgell climate is typically 
Mediterranean with continental influence, mild in 
winter and warm in summer, with a very dry season in 
summer and two rainier seasons in autumn and spring 
(Escorihuela et al., 2016). 
        In the old irrigated district, the open channel 
leads water into the agricultural fields, makes the 
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vegetation flourishing in this area, which can be 
obviously recognized as the green area in the map in 
Fig.1. Surrounded the irrigated area, the land is much 
drier without irrigation. A new irrigated system is 
being developed surrounding the old irrigated system 
but is still not visible on satellite imagery. 

 
Fig. 1. Study area in Urgell, Catalunya (60km x 60km) 
with ground measurements (star points) and meteo 
stations (round points) 

2.2 Data Base 

2.2.1 Ground Measurements 

In-situ measurements are acquired, continuously in 
two demonstrative fields belonging to the new 
irrigated district: Foradada and Agramunt.  
 
Table 1. Ground measurement in the two 
demonstrative fields of Foradada and Agramunt. 

 
        The meteorological data comes from 16 meteo 
stations in the study area and the nearest station is 
used for validation. 

2.2.2 Satellite Data 

1) Sentinel-1 data 
The Sentinel-1 mission provides data from a dual-
polarization C-band Synthetic Aperture Radar (SAR) 
instrument. In this study, three different tracks (110, 
30, 132) of the Sentinel- 1A are used for retrieving soil 
moisture, with resolution of 10m and temporal 
resolution of 12 days for each track. VV polarization is 

used for our analysis. All the Sentinel-1 data is 
preprocessed with 3 steps: thermal noise removal, 
radiometric calibration, and terrain correction using 
SRTM DEM at 30m. 
 
2) MODIS Data 
The MODIS Normalized Difference Vegetation Index 
(NDVI) complements NOAAs Advanced Very High 
Resolution Radiometer (AVHRR) NDVI products and 
provides continuity for time series historical 
applications. In this study, the considered MODIS 
products (MOD13Q1 and MYD13Q1) coming from 
Aqua and Terra missions, have 16-day temporal 
resolution and 250m spatial resolution. 

3 METHODOLOGIES 

3.1 Method 1 

The first method is to retrieve soil moisture by 
modeling of radar signal dependence on vegetation, 
which is already developed on West Africa with ERS 
Scatterometer to estimate soil water status (Zribi et al., 
2008). In this study, the approach is adapted to 
Sentinel-1 data and takes into account the high 
repetitiveness of data in optimizing the inversion 
approach. 
        The signal received by the instrument from each 
spatial cell results from the sum of the backscattered 
signals contributed by both bare soil and vegetation 
cover (Zribi et al., 2008). The backscatter from bare 
soil is affected by soil moisture and soil roughness. If 
we assume that the influence of vegetation variation 
and soil roughness change are small compared to that 
of soil moisture, the backscatter difference between a 
given date and that at which the driest signal is 
estimated is related with the change of soil moisture. 
Three NDVI classes are divided evenly according to 
the minimum and maximum value in this area. Within 
each NDVI class, we assume the vegetation variation 
effect can be neglected. Take into account the all year 
round data, the minimum value for each pixel is found, 
which corresponding to the driest signal. With the 
increase of the NDVI value, the sensitivity of the 
signal to the moisture should decrease, which means 
the difference between satellite backscatter of a given 
date with that of the driest date is decreasing with 
NDVI.  

3.1.1 Method 1 modeling 

The modeling of backscatter difference as a function 
of NDVI for satellite track 110 is shown in Fig.2. To 
estimate the with- out being affected by noise effects 
due to rare events, for each value of the NDVI, we 
excluded the upper 1% of the corresponding values 
and we consider the 10% maximum  (green points) to 
build the function, which is representing the maximum 
soil moisture. 
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Fig. 2. Illustration of the processed radar signal as a 
function of NDVI over Urgell site 

        The soil moisture for each pixel can be retrieved 
by the following function. 

( ) ( )

( ) ( ) ( )djiMvMv
NDVIf

tjiMv
NDVI

ji ,,,, minmax
, +

∆
=

σ

The soil moisture Mv(i, j, t) for a specific cell (i, j) 
at a given date t can be derived by the difference 
between the backscatter for a given date and the 
minimum value for each pixel, divided by the function 
of NDVI, which corresponding with the maximum soil 
moisture, then multiplied by Mvmax which is set to be 
0.3 according to SMOS data in this area. Mvmin is 
considered approximately equal to 5%. 

3.2 Method 2 

Another new method is developed based on the 
backscatter difference between two adjacent days of 
Sentinel-1 data w.r.t. NDVI, in this case the vegetation 
change is much smaller, thus the backscatter difference 
is more sensitive to soil moisture. The database for 
method 2 is from 2014 November until 2016 October, 
but data during April and May is excluded since the 
vegetation change is quite rapid causing big changes in 
radar signal. 

Fig. 3. Illustration of the backscatter difference 
between two adjacent dates as a function of NDVI 
over Urgell site 

3.2.1 Method 2 modeling 

In Fig.3, the difference between two adjacent days 
decrease with NDVI in a very symmetric pattern. 
Again, we set 20 NDVI steps, and for each step, we 
delete the 0.1% maximum, then consider the 10% 
maximum (green points) to build the linear function 
f(NDVI), which is corresponding to maximum soil 
moisture change between two dates. 
        The soil moisture for each pixel between date (t1) 
date (t2) can be retrieved by the following function. 

( ) ( )( ) ( ))1,,2,1)2,, tjiMvttHtjiMv += δσ
where H is equal to: 

( )( ) ( ) ( )max1, Mv
NDVIg
NDVIttH δ

δσ
δσ =+

        From the ground measurement statistics, the 
maximum soil moisture difference between two 
adjacent dates of Sentinel-1 data, maxMvδ , is assumed 
to be equal to 0.15 m3/m3. 

Fig. 4. Inter comparison between moisture Sentinel-1 
estimations with all three satellite tracks for method 1 
(up) and method 2 (bottom) and ground measurements 
in two demonstrative fields. 

        From a starting date t1, which in the present case 
is a date corresponding to a ground measurement, an 
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iterative calculation is used to determine the soil 
moisture for the following dates t1, t2, t3: 

( ) ( ) ( )( )2,1)1,,)2,, ttHtjiMvtjiMv δσ+=
( ) ( ) ( )( )3,2)2,,)3,, ttHtjiMvtjiMv δσ+=

4. VALIDATION AND RESULTS

4.1 Validation 

With the ground measurements available in two 
demonstrative fields (Foradada and Agramunt), the 
validation is done for retrieved soil moisture from 
Sentinel-1 data. The validation considers all three 
satellite tracks and two demonstrative fields for both 
methods. The Root Mean Square (RMS) error value is 
about 0.08 in volumetric soil moisture for method 1 
and 0.07 for method 2 as shown in Fig.4. For method 
2, the initial value for the starting point of iteration is 
based on ground measurement. 

4.2. Results 

The retrieved soil moisture for both methods are 
mapped for our studied site. Blue color represents 
wettest pixels and red color relatively dry. All the 
retrieved soil moisture values are scaled from 0 to 
30%. The up 2 figures (a) and (b) in Fig.5 are the 
results of method 1, and figure (c) and (d) are the 
results of method 2. A high similarity is observed 
between the two method products. We retrieve 
approximately the same moisture spatial variations for 
the two analyzed dates. August 21st in 2015 is a very 
dry day, showing clearly the irrigated area. September 
2nd of 2015 estimations are just after a rainfall more 
than 10 mm, resulting the soil moisture increased a lot 
in the whole area. 

(a) Method 1 (2015-08-21)   (b) Method 1 (2015-09-02) 

(c) Method 2 (2015-08-21)       (d) Method 2 (2015-09-02) 
Fig. 5. Retrieved soil moisture map of method 1 and method 2. 
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5. DISCUSSION AND CONCLUSIONS

In this paper, two inversion approaches are developed 
based on the high repetitiveness of Sentinel-1 data. 
The proposed methodologies, using change detection 
techniques, have been validated with the ground 
measurement in two demonstrative fields with RMS 
value about 0.08 for method1 and 0.07 for method 2 
(in volumetric moisture), and the coherence between 
soil moisture variations and rainfall events is 
observed. Soil moisture maps at 1km resolution are 
generated for the study area. These results demonstrate 
the potential of Sentinel-1 data for the retrieval of soil 
moisture at 1km or even better resolution. 
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ABSTRACT - The inland water level plays an essential role in water balance management. This paper presents 
methodology to retrieve water level from radar altimeter data including Cryosat-2 and Jason-2 over lakes in 
Western Africa. The idea is to combine both Level-1 and Level-2 data to retrieve water level more precisely and 
automatically over small lakes. From Level-1 data, the waveform is analyzed for data filtering and the possibility 
of water level retrieval. Then an iteration method is proposed to retrieve the height from Level-2 altimeter data 
with a strict water mask. The preliminary results of water level time series, derived from Level-2 data, in Lake 
Volta and Lake Kainji are presented in this paper, and the results are compared with the data from DAHITI 
(Database for Hydrological Time Series of Inland Waters). The standard deviation is controlled below 0.3 
meters. 

1  INTRODUCTION 

The space-borne radar altimeter is an essential tool to 
monitor the oceans, and it can be also used for inland 
water surfaces including lakes and rivers. The space-
borne radar altimeters transmit a short microwave 
pulse in the nadir direction, and the signal reflected by 
the surface is received by the instruments. The elapsed 
time corresponds to the range between the satellite and 
the Earth’s surface (Calmant et al., 2008). The water 
level from an altimeter is derived from the satellite 
range (R), subtracted from the altitude of the satellite 
(Halt), and by applying the different needed 
corrections. In this study, the corrections of wet 
troposphere, dry troposphere, ionosphere, solid earth 
tide and pole tide are made, and the geoid is applied. 

 Hwaterlevel = Halt −R +(Cwet_tropo + Cdry_tropo + 
Ciono + Csolid_earth_tide + Cpole_tide) + Cgeoid

        Since all altimeters including Cryosat-2 and 
Jason-2, are designed initially for oceans, so there are 
some limits for in- land water level retrieval, which is 
influenced a lot by land contamination. Despite 
CryoSat-2 having different operating modes (SAR, 
SARin and LRM), over the Niger basin is operated in 
LRM being its spatial resolution equivalent to Jason-2 
(over 1km).  The aim of this study is to reduce the 
contamination and get a clear signal for inland water 
level retrieval. 
This paper is organized as follows. In Section 2, the 
studied area and data base are presented. Section 3 

analyzes the level 1 waveform over the lakes. Section 
4 proposes an iteration methodology to retrieve the 
water level. Section 5 shows the results of the 
retrieved height and the comparison with the DAHITI 
database. Finally, the conclusions are presented in the 
last section. 

Fig. 1. Study areas including Lake Volta (a) and Lake 
Kainji (b). 

2  STUDY AREA AND DATABASE 

2.1 Study area 

The study area is located in the Western Africa, and 
two lakes (Lake Volta and Lake Kainji) are chosen for 
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the study. For both lakes, the water level data time 
series is available in the DAHITI database. The water 
surface for both lakes is changing with seasons, and 
there are islands inside, irregular lakeshores, making it 
difficult to get a clean data. During dry seasons, the 
land reveals in the north part of Lake Kainji. 

2.2 Data Base 

1) Cryosat-2 
CryoSat-2 is a European Space Agency environmental 
research satellite which was launched in April 2010. It 
is the first satellite with a high-resolution altimeter 
(Garcia Mondejar et al., 2014).  
Although it is dedicated to monitoring of the ice 
change, the water level can also be retrieved from it. 
The new SAR mode provides an along track resolution 
of 250m. There are three operating modes of the 
payload SIRAL (SAR Interferometric Radar 
Altimeter): LRM (Low Rate Mode), SARIN (SAR 
Interferometric), SAR. Moreover, unluckily, the LRM 
is the operating mode over the study area. SARIN 
mode is only available since 2017 over Niger river 
basin. 
2) Jason-2 and Jason PISTACH 
The Ocean Surface Topography Mission (OSTM) on 
the Jason-2 satellite is a follow-on mission to Jason-1 
measures the sea surface height since 2008. Jason 
PISTACH (Coastal and Hydrology Altimetry product) 
are the improved Jason-2 altimeter products for coastal 
areas and inland waters with specific processing, 
developed by CLS (Satellite Location Collection). 
 

2.2.1. DAHITI 

Database for Hydrological Time Series of Inland 
Waters (DAHITI) provides water level time series of 
lakes, reservoirs, rivers, and wetlands derived from 
multi-mission satellite altimetry for hydrological 
applications (Schwatke et al., 2015). 

2.2.2. MODIS NDVI 

The MODIS Normalized Difference Vegetation Index 
(NDVI) complements NOAA’s Advanced Very High 
Resolution Radiometer (AVHRR) NDVI products and 
provides continuity for time series historical 
applications. The NDVI image is used for water mask 
generation over the study area. 

3 METHODOLOGY  

3.1. Level-1Waveform Analysis 

Level-1 data are calibrated waveforms with the 
engineering and Doppler corrections applied. For a 
rough surface, the leading edge of the return pulse is 
stretched because of scattering. For water surface, the 
power of signal received by the instrument is much 
larger than for the rough land, and the energy which is 
the total amount of waveform is larger as well. The 
power echo values are normally scaled to fit between a 
certain range. The scaling factors can change for each 
waveform, and it is given within the altimeter data 
(Cryosat product handbook, 2012). 

 
Fig. 2. Waveform analysis over Lake Volta and Lake Kainji. 
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Fig. 3. Water level time series and Standard Deviation over Lake Volta (left) and Lake Kainji (right). 

To convert these back to values in Watts the following 
equation is used. 
Power_in_Watts=scaled_value*(scale_factor*e−9)* 
2^scale_power 

Fig.2 shows samples of waveform for each footprint 
over Lake Volta and Lake Kainji. The left figures show 
the scale power while the right figures show the power 
in Watts. When the satellite track passes through the 
water, the waveform is more peaky than for land, and 
after converted to power in watts, it is more clear 
where water is. For Lake Kainji, the land reveals in the 
north part. To get the water level from Level-1 data, a 
strict water mask is needed. It is possible to retrieve 
the height from waveforms by combining the 
conditions of the peak for the waveform and the 
energy amount, but the threshold needs to be defined 
depending on different situations. Level-1 data can be 
used for altimeter data filtering, together with Level-2 
data, the height retrieved could be more precise. 

3.2. Water level retrieval from Level-2 data 

Level-2 data is the Level-1 data retracked and 
corrected for geophysical effects. The transmission 
time is included in the product which allows 
computing the satellite range easily. From Level-2 
data, an iteration method is developed to control the 
standard deviation. For each track, start from the 
middle point within the lake, calculate the height 
standard deviation of the middle three points, add 
more points to the border if the standard deviation is 
smaller than 0.3 meters. In this case, the standard 
deviation is controlled below 0.3 meters and land 
contamination is restricted. 

4. RESULTS

This study aims at estimating water level by 
combining Level-2 and Level-1 data, which can be 
used for data filtering. In this part, the preliminary 
results on elevation, done with Level-2 data only are 
presented, as shown in Fig.3.  
        The results of the height over Lake Volta and 
Lake Kainji are compared with DAHITI data (blue 
points). The heights retrieved from Cryosat-2 (green 
points) and Jason-2 PISTACH (red points) have the 
same yearly pattern but with a certain bias compared 
to DAHITI data since the geoid applied for the three 
types of data is different, with EGM96 geoid model 
for Cryosat-2, EGM08 geoid model for Jason-2 
PISTACH, and EIGEN-6c3stat geoid model for 
DAHITI. 
        The standard deviations are smaller than 0.3 
meters, which is set as the threshold. 

5. CONCLUSION

The aim of the study is to retrieve inland water level 
from altimeter by combining both Level-1 and Level-2 
data. In this paper, the Level-1 waveform is analyzed 
over lakes. To filter data for retrieving water levels, the 
conditions of the peak value of the waveform and the 
energy can be applied. To implement the Level-1 
method, the threshold should be tested under different 
situations. The Level-2 data can be used for the 
retrieval by applying different corrections. The 
preliminary results from Level-2 data already show 
good agreement with DAHITI database. 
        For the future work, instead of using a strict 
mask, the method will be developed with the 
combination of Level-1 and Level-2 data, and will be 
applied to smaller lakes and rivers. 
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ABSTRACT-Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) is a new remote-
sensing technique, and it can be used to estimate near-surface soil moisture from signal-to-noise ratio (SNR) 
data. Considering the effects of vegetation changes on GNSS-IR soil moisture in some environments and the time 
and space scale of soil moisture, a non-linear inversion method for soil moisture is proposed that takes into 
account the effects of vegetation changes. First, the SNR data and satellite elevation angles are solved using 
TEQC. The direct and reflected signals are separated using a low-order polynomial; then, a sinusoidal fitting 
model of the reflection signal is established to obtain the amplitude and phase of the SNR interferogram. Finally, 
an estimation model of vegetation water content (VWC) and prediction model of the vegetation phase changes 
was established to modify the original phase and weaken the influence of the vegetation changes. Based on the 
corrected phase, a Genetic Algorithm-BP neural network model is established for soil moisture inversion. 

1  INTRODUCTION 

Near-surface soil moisture has been the subject of 
numerous climate and land surface-atmosphere 
studies, and it is of great significance on climate 
meteorological forecasting, flood disaster prediction, 
water resource cycling studies and other related 
research (Njoku et al., 2004; Sabater et al., 2008). Soil 
moisture affects precipitation via the partitioning of 
energy between the land and the atmosphere into 
sensible and latent heat fluxes (Betts et al., 1996; 
Robock et al., 2000). In recent years, GNSS remote 
sensing technology developed based on multi-path 
effect has provided a new high-efficiency and high-
resolution monitoring method for obtaining soil 
moisture content. Chew et al. (Chew et al., 2016) 
further confirmed that the relative phase is the best 
measure of soil-moisture changes, and there is a linear 
relationship with surface soil moisture, in theory. 
Zavorotny et al. (Zavorotny et al., 2010) used the 
delayed phase to estimate soil moisture, and verified 
that the correlation was more stable than the 
amplitude. Furthermore, quantifying the vegetation 
extent, such as the vegetation water content, is 
important to soil scientists interested in using remote-
sensing data products for soil moisture estimation, 
because soil moisture estimations are affected by 
changes in vegetation cover (Jackson et al., 2004; Pan 

et al., 2012). Studies on vegetation change affect SNR, 
Rodriguez-Alvarez et al. (Rodriguez-Alvarez et al., 
2012; Rodriguez-Alvarez et al., 2011) have used 
antennas or receivers that are specifically designed for 
the task. It has been suggested that geodetic-quality 
antennas/receivers could be used for vegetation 
sensing (Small et al., 2016). The phase of the SNR 
interferogram is also affected by vegetation. It is 
possible to account for vegetation effects on soil 
moisture retrieval algorithms by considering aspects of 
the SNR interferogram other than phase. The 
amplitude decreases as vegetation grows (Wan et al., 
2015). A subsequent modeling study indicates that the 
effects of changing vegetation canopies on SNR data 
and how these effects could obfuscate soil moisture 
estimation (Chew et al., 2015). Chew et al. (Chew et 
al., 2014) described a method of estimating vegetation 
effects on soil moisture estimation by comparing 
observations of A, Heff, and ALSP with model 
simulations. However, the effects of vegetation on 
GNSS -IR must be considered in some environments. 
Therefore, quantifying or removing the effects of 
vegetation changes on the phase is more conducive to 
the accurate analysis of soil water content. If the soil 
moisture changes over temporal and spatial scales, the 
estimation of soil moisture using GNSS-IR can be 
regarded as a non-linear regression problem. It is 
possible to construct a non-linear inversion model for 
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soil moisture estimation using the relative phase of 
each satellite.  

Based on the above research, considering the 
effects of vegetation changes on phase, an inversion 
method based on a GA-BP neural network for soil 
moisture, is proposed. Considering the effects of 
vegetation changes on SNR, the estimation model of 
vegetation moisture content and the prediction model 
of vegetation phase changes are established. The 
inversion model for soil moisture is constructed using 
the corrected phase. Using the measured data from the 
PBO website, the feasibility of soil moisture inversion 
by a nonlinear fitting method is studied, and the 
validity of soil moisture inversion is verified based on 
the effect of modified vegetation change on the phase. 

2  THE PRINCIPLE OF SOIL MIOSTURE 
INVERSION  

2.1 SNR Data 

SNR is an indicator of the signal quality of the 
receiver's antenna. Direct and reflected signals 
between the interference or multipath effects have an 
obvious impacts on the direct signal, and the direct 
signal often show oscillating phenomenon(Figure 1). 
The direct and reflected signals are separated by a 
low-order polynomial. The low-order polynomial is 
then fitted to the data to retain only the interference 
pattern, and the amplitude of the reflected component 
is larger at a satellite elevation angle of less than 30 
degrees (Figure 1). 
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Figure 1. SNR interferogram observed on day 318 in 
2011 at the South California GPS station (p041). An 
SNR interferogram from PRN 31 (left). The same 
SNR data from a rising part of PRN 31, but detrended 
with a low-order polynomial (right). 
 

Initial studies characterized the SNR 
interferogram using the following equation (Larson et 
al., 2010)： 

)sin
4

(cos φθ
λ
π

+=
H

ASNR
         

(1) 

where θ 、 λ and H represent the elevation angle of 
the satellite,  the GNSS wavelength and the a priori 
reflector height, respectively. A is an amplitude term, 

and φ represents the phase shift. A and φ  are the 

amplitude and phase of the demand, respectively, 
which are calculated using the nonlinear least-squares 
fitting algorithm (ohnson et al., 1981). 

2.2 Modify the Impact of Vegetation Changes 

Chew et al. (Chew et al., 2014) found that vegetation 
changes had a significant effect on phase. The effects 
of vegetation changes must first be quantified or 
removed before estimating the soil moisture. 
Moreover, there is a linear relationship between 
amplitude and vegetation change. Therefore, the veg-
simple model described by Small et al. (Small et al., 
2016) was used to estimate the vegetation water 
content and its phase change. The process was as 
follows. 

First, amplitude A was normalized, the first 20% 
of A was used to calculate the mean for each year and 
each track; then, the mean was subtracted from the 
phase time series to obtain Anorm. The 20% value was 
a parameter that may decrease or increase depending 
on the amount of noise present in the data. Then, 
Anorm was smoothed using a Savitzky–Golay filter, 
and a least-squares smoothing method was used to 
remove high-frequency noise associated with soil 
moisture fluctuations from A norm. Modeling studies 
have shown that soil moisture-induced variations in 
amplitude are small compared to those from 
vegetation alone, but they are not negligible (Chew et 
al., 2014; Chew et al., 2015). 

Second, the vegetation water content (VWC) was 
estimated using a smoothed amplitude sequence: 
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where 6.101 =α , 4.392 −=α , 8.413 =α , 6.224 −=α , 24.55 =α . 

Third，the estimated VWC was used to predict 
the phase shift (

vegφ∆ ) resulting from the vegetation 
canopy: 
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1veg )( βββββφ ++++=∆ VWCVWCVWCVWCt                 (3)      
where 65.51 −=β , 9.432 =β , 1013 −=β , 4.204 =β ， 37.25 −=β . 

 
Finally, the phase was adjusted for the predicted 

effects of vegetation, as follows: 
)()()( veg tttr φφφ ∆−=               (4) 

Equations (3) and (4) are based on model 
simulations of GPS reflections using a uniform 
vegetation canopy (Chew et al., 2014). The parameter 
values used in the veg-simple algorithm are based on 
model simulations. They were designed to replicate 
collocated GPS and vegetation data from only five 
sites (Chew et al., 2016). 

2.3 Soil Moisture Inversion Process 

The phase is set after modifying the effect of 
vegetation changes as follows: 
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)](，...，)2(，)1([x trrr φφφ= ， ）n,...,2,1t（ =     (7) 
where t is on behalf of years, and n is the length of 
time. 

y is the soil moisture set corresponding to the 
phase set, and the n time period of x  is used as the 
training sample of the model; then, m-n is the test 
sample. The inversion process is shown in Figure 2. 
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Figure 2. Flowchart depicting steps of soil moisture 
inversion 

3 EXPERIMENT ANALYSIS 

The GNSS monitoring data provided by the P041 
station for the continental plate boundary observation 
network (PBO: http: //xenon.colorado.edu/portal) in 
South Carolina, USA were experimentally analyzed. 
The station is located in Marshall, Boulder and 
Colorado, at 105.1942673 W, 39.9494934 N and 
1728.8 m above sea level. An earlier study of soil 
moisture provided a high sampling rate and rich 
meteorological data, and the first observation of L2C 
observations was carried out to improve the high 
quality L2-band SNR observation data. Fig. 3 (right) 
indicates that the station around the terrain is flat, open 
and that has scarce vegetation, and it is mainly grass-
based. The station is supported by steel triangular 
brackets. The receiver model is a TRIMBLE NERT9, 
and the TRM59800.80 SCIT Radome was used in 
station P041, as shown (Fig. 3 (b)). The changes in 
soil moisture and rainfall from day 70-290 of 2011 are 
shown in Figure 4.  

Figure 4 shows that significant rainfall occurred 
13 times during this period, which included days 88, 
100, 104, 115, 131 ~ 132, 137 ~ 140, 143 ~ 144, 171, 
186 ~ 195, 207 ~ 211, 231 ~ 232, 250, 255 to 258, of 
which the maximum rainfall was 2.67 cm. 

Corresponding to the rainfall, the soil moisture 
increased significantly, especially on days 131 ~ 132, 
137 ~ 140 and 186 ~ 195. Due to the continuous 
rainfall, the soil moisture changed more intensely and 
exhibited a nonlinear and random patter; when the 
rainfall stopped, the soil moisture gradually reduced 
and descended. The rainfall is the clearly the main 
reason for the changes in soil moisture; the study area 
was rich in rainfall and suitable for soil moisture 
research. 

Figure 3. Digital elevation model around the GPS site 
p041 in southern California (left). The GPS site p041 
environment (right). 
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Figure 4. Soil moisture and rainfall from the southern 
California GPS site P041. Line：SMC in cm3 cm−3 
time series. Bar: Daily precipitation in mm from 
NLDAS for the grid cell containing site P041. 

Therefore, the selected monitoring data from the 
GNSS receiver occurred from days 70-290 in 2011, 
and the sampling rate was 30Hz. The SNR2 value (L2 
carrier) was obtained by solving the monitoring data 
with TEQC. The straight and reflected signals of the 
satellites were separated by the quadratic polynomial, 
and the relative phase of each satellite was deduced by 
the nonlinear least squares method. Not all of the 
satellite tracks could be used for GPS-IR. The tracks 
should have consistent reflections between satellite 
elevation angles of  . Due to limited space, only the 
selected PRN18, 21, 22 and 31 satellites were used for 
analysis, and the relationship between amplitude, 
phase and vegetation change of each satellite is shown 
(Figure 5). 
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Figure 5. Top: Delay phases of four satellite tracks: 
PRN 18 (blue points), 21 (black points), 22 (green 
points) and 31 (red points). Middle: amplitudes of the 
same satellite tracks. Bottom: vegetation information 
from 

Figure 5 indicates that the amplitude is linearly related 
to the vegetation information. When the vegetation 
change increased to 0.05, the amplitude of each 
satellite fluctuated greatly, such as on days 150 ~ 290. 
From the research of Chew et al. (Chew et al., 2014), 
using the Savitzky–Golay filter to smooth and remove 
the high-frequency information of the original 
amplitude, and calculate the vegetation caused by the 
phase change, the original phase was corrected to 
obtain a more realistic phase, as shown in Fig. 6. The 
correction of the original phase mainly focused on the 
160th to 270th day, which corresponds to the 
coefficient of vegetation change, and the degree of 
phase fluctuation after the correction is weakened.  

Therefore, to verify the feasibility and 
effectiveness of the proposed algorithm, the PRN 18, 
21, 22 and 31 were selected for experimental analysis, 
and the GA-BPNN inversion model for soil moisture 
was established. Two solutions were established: 
solution 1 – a GA-BPNN inversion model based on 
the original phase, solution 2 – a GA-BPNN inversion 
model based on modified vegetation. To reduce the 
modeling error, the phase was preprocessed, the data 
were normalized to the interval [-1, 1], and the data 
were restored to the original intervals after modeling 
inversion. A training sample was taken on days 70-219, 
and the samples were tested on days 220-290. The 
inversion results for each solution are shown in Figure 
7.  
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Figure 6. Compared and analyzed delayed phases for 
four satellite tracks: PRN 18, 21, 22 and 31. Green 
points: original phase. Black points: corrected phase 
data for vegetation effects 

Figure 7 shows that the inversion of soil moisture 
was carried out using solution 1, the error was 
unstable and the fluctuation was large, especially from 
day 250 to 290; the inversion error was extremely 
unstable. Furthermore, the inversion result in solution 
2 improved better than solution 1. From Figure 9’s 
analysis, using Φr to invert the soil moisture, the 
correlation between the inversion result and the real 
value has been improved, especially the PRN 21 and 
31; they increased by 17.3% and 23.4%, respectively. 
From the accuracy statistics of Table 1, the inversion 
result of Φr is superior to the inversion result using the 
original phase, whether it is the root mean square error 
(RMSE) or the mean absolute error (MAE), and the 
improvement of the maximum error also improved. It 
can be seen that it is necessary to modify the effect of 
vegetation changes and improve the accuracy of soil 
moisture inversion. 
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Figure 7. Inversion error for four satellite tracks: PRN 
18, 21, 22 and 31. Green points: original phase. Black 
points: corrected phase data for vegetation effects. 

Table 1 Inversion accuracy of each satellite (unit: cm-3 
cm3) 

In short, the nonlinear model of soil moisture 
inversion was established using the phase of each 
satellite. In the process of inversion, BPNN was not 
fitted, and the performance of the model was improved. 
The phase reversal of soil moisture is feasible. And 
inverse soil moisture is feasible to determine based on 
the phase. Using Φr to inverse the soil moisture, the 
correlation between the obtained soil moisture and the 
monitoring value was better than the original phase 
inversion model, and the accuracy of the model 
inversion further improved. The correlation between 
soil moisture and the monitored value was better than 
that of the original phase inversion model, and the 
accuracy of the model inversion further improved. 
Thus, the effect of vegetation changes on soil moisture 

should be considered by quantifying or removing the 
phase of vegetation change to improve the inversion 
accuracy. It is feasible and effective to introduce a 
nonlinear model into soil moisture inversion. 
4  CONCLUSIONS 

Long-term monitoring of soil moisture and 
accurate analysis of its changes in environmental 
science research has great significance. A GA-BPNN 
soil moisture inversion method, using the effect of 
vegetation changes, was proposed herein. The 
theoretical analysis and experiments indicate the 
followings: 1) the GNSS antenna was affected by the 
geometric trajectory of the satellite and the satellite's 
own performance. The relative phase of the different 
satellites was different, and the amplitude was linearly 
related to the vegetation information. 2) Introducing a 
neural network into the soil moisture inversion made 
full use of the advantages of artificial intelligence, and 
the ability of non-linear fitting was effectively 
improved, and the fitting process performance was 
more stable. 3) the effect of vegetation changes on soil 
moisture and the accuracy of soil moisture inversion 
have been improved. The correlation coefficient 
between the inversion result and the reference value of 
soil moisture has been greatly improved, and the 
RMSE and MAE were less than 0.06 and 0.05. 
Therefore, applying the nonlinear model to the 
inversion of soil moisture was feasible and effective, 
and the problem of soil moisture was solved as a 
nonlinear event. To further improve the performance 
of the model, a follow-up study of vegetation 
modification in different environments and multi-
satellite fusion inversion are necessary. 
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ABSTRACT This paper reports the results of an experimental campaign carried out with a Ground Based 
Synthetic Aperture Radar (GB-SAR), aimed at monitoring the behaviour of an Alpine glacier. The apparatus is 
an Ibis-L® system, a commercial interferometric radar operating at Ku-band. It has been installed in a valley in 
front of the Planpincieux glacier, located on the Italian side of the Mont Blanc massif, about 3 km far from the 
glacier surface. The images, acquired with a temporal frequency of approximately five minutes, were processed 
correcting the atmospheric effect using a simple model which takes into account the variation of the atmospheric 
parameters with the altitude. The study enhances the importance of a satisfactory evaluation of the atmospheric 
behaviour to achieve an estimate of the deformation, and finally evaluates the mean velocity of the glacier in the 
order of 20-30 cm per day. 

1  INTRODUCTION 

Ground Based Synthetic Aperture Radar (GB-
SAR) interferometry has consolidated in the last years 
as an operational tool for landslides and mines 
monitoring, and has achieved a fine dissemination as a 
tool also for glaciers and snow covered areas studies. 
The use of SAR interferometry for terrain monitoring 
is based on the same principle of most popular 
spaceborne Differential Interferometric SAR, 
DInSAR, but with different performances in terms of 
spatial and temporal resolution. Radar aboard satellites 
are potentially able to monitor very large area, at basin 
scale, while ground-based installation can observe 
single landslides, and give information on the 
movement or deformation of the monitored terrain 
with repetition time shorter than an hour, while 
satellite observations can be not fully satisfactory 
because of a too long repeat pass time. This is for 
example the case of an Alpine glacier, where the 
understanding of its behaviour, especially during the 
seasons where the meteorological conditions make 
them more active, demands at least daily observations. 
The ground based approach can be a valid and 
complementary tool to compensate the time gap 
between satellite observations or for calibration 
purposes, and as a monitoring and alerting system. 
GB-SAR interferometry is able to provide only a 
partial estimate of the terrain deformation; in the case 
of a glacier, for example, we obtain a partial estimate 

of the actual ice flow, because interferometric 
techniques provide only the Line of Sight component 
(LOS) of the displacement. Despite this limitation in 
the actual deformation and motion retrieval, the 
capability to provide information without the 
installation of artificial reflectors represents a valuable 
opportunity, especially for scenarios where the walk 
through the area under monitoring is not viable or safe. 
A GB-SAR can provide displacement maps of glaciers 
of a few square kilometres, from up to 3-4 km 
distance. In addition, in the case of Alpine glaciers, 
affected by cryosphere changes, the studies of glaciers’ 
dynamics can largely benefit from the high spatial and 
temporal sampling available from terrestrial radar 
survey, with respect to satellite observations. Finally, 
the installation of a terrestrial radar is not affected by 
slope orientation, limitations that can occur for 
spaceborne observations.  

In this paper, we present the results of an 
experimental campaign and the related interferometric 
data processing, aimed at monitoring an Alpine 
glacier, the Planpincieux glacier, located on the Italian 
side of the Mont Blanc massif. The GB-SAR 
employed is a commercial system working at Ku-band 
(an operating frequency corresponding to a 1.74 cm 
wavelength), installed in front of the glacier area for 
five weeks. The study of glacier monitoring faces 
some difficulties in radar data interpretation: the main 
issues are unwrapping errors, and high amplitude 
dispersion, mainly due to the high velocity and 
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dielectric heterogeneity of the backscattering surface. 
The atmospheric phase screen (APS) estimation, 
which can compromise the reliability of the retrieved 
interferometric data, is also a very important issue. For 
this reason, on the bases of the approaches available 
from literature a simple APS model which includes the 
elevation of the radar bin has been implemented. The 
availability of observations obtained through a 
different system monitoring observing the same area, 
allowed verifying the reliability of the radar data. 

2 THE TECHNIQUE AND THE MONITORED SITE  

2.1 GB-SAR Interferometry  

When a series of SAR images acquired at different 
times is available, interferograms can be obtained by 
comparing pairs of images. Assuming that the 
dielectric characteristic of the pixels of the SAR image 
remain unchanged between two acquisitions, avoiding 
the occurrence of phase wrapping, and neglecting 
atmospheric effects on the signal propagation, the 
displacement along the radar LOS, dLOS, associated to 
a pixel can be recovered using the following simple 
equation:   

ϕ
π
λ

∆⋅
4

=LOSd  (1) 

where λ is the wavelength of the radar sensor and Δφ 
is the phase difference (interferometric phase) 
obtained for the same pixel. In real cases, to retrieve 
from the interferometric phase, the actual 
displacement, different factors must be taken into 
account (Caduff et al. 2015); a general expression for 
the interferometric phase, in the standard “zero 
baseline” condition of GB-SAR installation, is given 
by the sum of at least four terms, as shown in eq. 2: 

πϕϕϕϕ 2k+++= noiseatmdisplint  (2) 

where φdispl is the term related to the geometric LOS 
displacement of the pixel; φatm is related to the change 
of the atmospheric parameters, especially air humidity 
and temperature; φnoise contains possible thermal 
or/and scattering noise. The term 2kπ refers to the case 
where measured phases values are wrapped, in fact the 
phase values are constrained within the range [-π,π]. 
To estimate, and correct, the contribution of these 
terms, some processing procedures are applied to the 
radar data. The first step of the processing consists in 
applying a 2D unwrapping algorithm (Costantini, 
1998) to all the images.  

The points whose interferometric phase can be 
used for retrieving the displacement with sufficient 

accuracy are usually selected with different criteria; 
one of this is calculating the dispersion of amplitude 
(DA) of the signal and using a threshold to 
discriminate good points (Ferretti et al., 2001): the 
lower is DA the better the accuracy of the phase 
measurement. The other critical factor is coherence, 
varying between zero and the unity.  A high coherence 
means that disturbing effects are negligible and the 
measured phase is statistically reliable. Finally, the 
φatm term, related to APS, is introduced by the optical 
path change that is driven by meteorological variables, 
i.e. humidity temperature, and pressure (Luzi et al., 
2004). Solutions to take into account this factor, are 
discussed in several papers: see for example: Noferini 
et al. (2005); Iannini and Guarnieri (2011), Iglesias et 
al. (2014). Monitoring stable surfaces like rocks, 
allows assuming that φnoise changes negligibly between 
different acquisitions, and, after unwrapping, the only 
contribution to the right side of eq. 2 is in φatm.  

Differently, a glacier surface, especially at 
temperate climate and during the intermediate seasons, 
is subject to melting and sublimation processes with 
consequent changes of the dielectric properties, 
snowdrift and snow metamorphism with possible 
collapses (Riesen et al., 2011). It is worth to note also 
that liquid and solid precipitation events can affect the 
phase of the propagating signal. For this reason, this 
term must be evaluated and the measured phase 
corrected. 

 

Fig. 1: GB-SAR installation. In the small rectangle a 
description of the two main sectors of the glacier flow, 
with indicated the radar LOS. In red the western side 
mainly moving along the LOS; in yellow the eastern 
one whose motion is along the yellow arrow. 
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2.2 The radar apparatus 

The GB-SAR system used in this study is the Ibis-L® 
from IdS spa (Rodesbereg et al., 2010). The system is 
composed of four separate modules: a radar sensor 
able to transmit and receive microwave signals, a 
mechanical scanning rail, 2-m long, along which the 
sensor moves providing synthetic aperture imaging, a 
laptop for data acquisition and processing, and a 
power supply module that allows continuous 
measurements. Many types of GB-SAR systems have 
been developed in the last decades: a review of the 
GB-SAR systems can be found in Caduff et al., 2015 
and Monserrat et al., 2014. Fig. 1 shows a picture of 
the installation with a view of the monitored area from 
the radar site. In table 1 the main parameters of the 
radar are listed. 

Table 1: Parameters of IBIS-L during the experimental 
campaign 

GB-SAR Parameters 

Central 
frequency/Wavelength 

17.1 GHz/1.75 cm 

Length of the synthetic 
aperture  

2 m  

Maximum distance from 
target 

3000 m 

Range resolution 0.75 m 
Azimuth resolution 4.4 mrad 
Azimuth resolution at 3000m 13 m 
Image acquisition rate 4 images/hour 
Total duration of monitoring From 09.04.2015 to 

10.14.2015 (40 days). 

2.3 The monitored glacier 

The Planpincieux glacier is located approximately at 
45.85°N 6.97°E, in the Aosta Valley Region (North-
Western Italy). The glacier lies on the southern side of 
the Mont Blanc massif, towards the Ferret Valley, and 
it is part of the composite Grandes Jorasses-
Planpincieux glacier, at an elevation between 2530-
3700 m asl, covering approximately 1 km2. As 
described in Giordan et al. 2016, the lower part of the 
Planpincieux glacier is intensely crevassed. The 
morphological analysis evidences that this part is 
separated in two different ice flows by a central ridge 
of bedrock. The Research Institute for Hydro-
geological Protection of the National Council of 
Research of Italy (CNR IRPI) considers the Grandes 
Jorasses massif an open-air laboratory for the 
development of monitoring systems and techniques. 
Since 2013, CNR IRPI is monitoring the glacier with 
low-cost vision-based equipment, installed in the 
opposite side of the valley.  

The apparatus location maximizes the parallel 
condition of the LOS to the estimated direction of the 
western flow. This choice affected the measurement of 
the eastern tongue that deviates from the measured 
component and appears as an increasing distance (see 
also fig. 1). The mean distance of the glacier is about 
2700 m with differences in elevation of 1200-1400 m 
(Figure 2). Radar images are georeferenced on a 1 m-
resolution digital surface model (DSM). 

During this study, an Ibis-L, IDSTM is used, with a 
revisiting time of 16 minutes; the total amount of 
processed images is 3567. The survey lasted 40 days, 
from 4th September to 14th October 2015. Figures 3a-
b represent the mean amplitude (MA) and the DA 
maps respectively. APS estimate is applied in the area 
within the frames. 

Fig. 2: Calculated cumulative APS in radians, as a 
function of the radar coordinates (range and 
elevation), obtained according to Equation (3) and 
projected on the DSM. 1 radian corresponds to a 
virtual displacement of λ/4 (approx. 4.4 mm). 
Contours map draws the altitude of the glacier 
surface. 

2.4 Processing chain 

The first step after checking the quality of the SAR 
images, was to study the role of the APS, analysing 
first the meteorological data of an automatic weather 
station: air temperature, air relative humidity, 
cumulative rainfall in 30 minutes, and snow deposit at 
ground. The station is placed at 2290 m asl, in the 
same valley side of the Planpincieux glacier. These 
data have been provided by the Centro Funzionale 
della Valle d’Aosta. The period of the survey 
coincided with the beginning of the Alpine cold 
season. Temperature was close to 0°C and some 
snowfall events occurred. Cold temperature and high 
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humidity affect the radar signal with an increased 
APS. On these bases, an estimate of APS from the 
radar data acquired in the stable surroundings of the 
glacier, considering stable points pixels with DA<0.35, 
was carried out; here the measured phase can be 
associated uniquely to APS. Using a regression 
formula that depends of range and altitude of the pixel, 
shown as eq. 3, we estimate the APS for the whole 
monitored surface; more details about its formulation 
in Dematteis et al., 2017. The calculated APS, 
projected on the Digital Surface Model is shown in 
fig. 2.   

2
210atm z+r+= aaaϕ (3) 

The coherence threshold used to discard noisy 
interferograms is 0.65. This cleaning rejected some 
16% of the total number.  

As far as the DA is concerned, it is worth 
noting that the amplitude of the glacier response is 
very low and highly variable, so that the DA of the 
glacier is comparable to that of shadowed areas. In fig. 
3 a map of the DA in radar coordinates is shown. 

Fig. 3: Calculated DA in radar coordinates. 

The unwrapping is performed on pixels selected with a 
coherence-driven criterion (Berardino et al. 2002), 
with a mean coherence higher than 0.55. Coherence is 
computed averaging 5 pixels in azimuth and 7 pixels 
in range.  

3 THE EXPERIMENTAL RESULTS 

To obtain a deformation map of the monitored area, 
the first step is a to calculate the mean amplitude (MA) 
map using all the selected images. Glacier and rocks in 

general feature high amplitude while lower values are 
present in shadowed areas. A coherence-based mask is 
then applied to the pixels. The final outcome of the 
processing consists in a map of cumulative 
deformation projected on the DSM of the glacier, 
shown as fig. 4. To interpret the map legend, negative 
and positive values correspond to motion toward and 
away from the radar respectively.  The eastern flow 
appears moving away because the motion direction is 
slanted with respect to the LOS. 

Fig. 4 Cumulative deformation map in cm projected 
on the DSM of the monitored area. Positive values 
indicate points moving toward the observer.  

The general behaviour obtained through radar 
acquisitions, and some morphological observations of 
the glacier discussed in Giordan et al. 2016, agree. 
Two main streams with different kinematics are 
present. The western sector flows downstream almost 
parallel to the LOS, while the eastern part flows with a 
remarkable horizontal component towards east, 
resulting in a not LOS-aligned motion. 

The deformation obtained through radar 
observations have been also compared with estimates 
obtained through an optical system (Giordan et al., 
2016).  Considering as error of the radar retrieval the 
standard deviation of the cumulative motion on the 
bedrock (𝜎𝜎=8.42 cm), i.e. a stable area, we obtain the 
following numerical results. For the front sector a 29.2 
±3.8cm/day velocity is estimated, with respect to 
31,4±10.3 cm/day obtained from optical independent 
data. Also the crevasses, 23.0±2.6 cm/day, and middle 
sector, 20.8±3.9 cm/day, deformation velocities are 
very close to values obtained through the optical 
technique: 29.9±4.5 cm/day and 26±7.2 cm/day 
respectively. These results confirmed that, despite the 
need to operate a careful correction of the data 
affected by APS, GB-SAR monitoring over Alpine 
glaciers demonstrated to be reliable and accurate. 
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 4 CONCLUSIONS 

An experimental campaigns carried out with a GB-
SAR to monitor an Alpine glacier has been reported. 
To improve the correction of the significant effect of 
the atmosphere on the radar data, mainly due to the 
large distance of the observed surface, and the 
difference in elevation, an experimental derived 
formula has been implemented using data acquired on 
stable points, and applied to the acquired data. Results 
obtained from the radar survey, mainly consisting in 
glacier velocity of three different sectors of the glacier, 
have been compared to estimates achieved in a recent 
study based on the use of optical images, showing a 
good agreement. The study confirmed that the GB-
SAR technique can be successfully applied to the 
monitoring of Alpine glaciers, provided that 
atmospheric effects are carefully considered.  
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ABSTRACT - Fully polarimetric SAR (PolSAR) data contain not only the geometric and backscattering 
information, but also the polarization information of the scattering target. It has become the main data source 
for estimation of surface parameters such as soil moisture and surface roughness. A fully polarimetric 
RADARSAT-2 SAR data was used in this study to qualitatively evaluate the potential of PolSAR data at C-band 
frequency for the retrieval of surface roughness. Five polarimetric parameters including the entropy H, 
anisotropy A, mean scattering angle α, the single-bounce eigenvalue relative difference (SERD) and double-
bounce eigenvalue relative difference (DERD) were calculated and were compared with measured root mean 
square height S (rms height S) and the correlation length L, the two most acknowledged parameters describing 
the surface roughness. Results show that the polarimetric parameter is nearly not relevant with both the rms 
height S and the correlation length L for all the correlation coefficients are less than 0.3. However, the sensitivity 
of each polarimetric parameter has demonstrated a certain difference especially with the rms height S in this 
preliminary study. The entropy H, mean scattering angle α and SERD seem to be more sensitive to surface 
roughness. Further discussion is required to explore the combination potential of polarimetric parameters with 
relatively higher sensitivity for the estimation of surface roughness in the following study.  

1  INTRODUCTION 

As the key factors affecting the surface conditions, 
soil surface parameters, such as soil moisture and 
surface roughness, play an important role in 
hydrology, meteorology, agronomy and other 
application fields (Engman, 1991; Jackson et al., 1996; 
Bissonnais et al., 1998). SAR in particular provides 
one of the most effective and reliable means for 
estimation of these parameters.  

With the rapid development of SAR systems, fully 
polarimetric SAR (PolSAR) data has been widely used 
in classification, target recognition and surface 
parameter retrieval (Oh et al., 1992; Zribi and 
Dechambre, 2003; Srivastava et al., 2003; Oh, 2004; 
Baghdadi et al., 2006; Fallahpour et al., 2017). 
Compared with the single polarization data, PolSAR 
image contains not only the geometric and 
backscattering characteristics, but also the polarization 
characteristics of the scattering target. Diverse 
polarimetric parameters such as scattering energy, 
entropy H, anisotropy A, mean scattering angle α, 
polarization power and polarization ratio, as well as 
coherence coefficient have been proposed to 
characterize the target objects (Cloude, 1999; Hajnsek, 
2001; Allain et al., 2004). However, the potential of 
polarimetric parameter for the estimation of surface 
roughness was investigated in only few studies 

(Hajnsek, 2001；Allain et al., 2004; Baghdadi et al., 
2012). As we know that on the bare surface the return 
signal of SAR is mainly affected by the dielectric 
constant and surface roughness. The moisture content 
affects the return signal by affecting the dielectric 
constant, and the surface roughness determines the 
type of the return signal. A perfectly smooth surface 
has zero backscatter, while the rough surface diffuses 
signals in all directions (Ulaby et al., 1986). Therefore, 
soil moisture and surface roughness have close ties 
with each other. It is of great significance to explore 
the relationship between polarimetric parameter and 
surface roughness for accurate estimation of soil 
moisture.  

This work presents a first qualitative comparison 
of PolSAR parameter at C-band with respect to surface 
roughness. It is organized in five parts. Section 2 
introduces the study area and dataset. Section 3 
describes the methodology. Results and discussion are 
given in Section 4, and finally conclusions are 
presented in section 5.

2  STUDY AREA AND DATASET  

Juyanze (Latitude: 41°44′~42°00′N, Longitude: 
101°30′~102°01′E) is located in the Inner Mongolia 
Autonomous Region of China. It is at the northeastern 
corner of the Ejina alluvial fan, and is one of the 

  323

Recent Advances in Quantitative Remote Sensing - RAQRS 2017

mailto:zylpyang@chd.edu.cn


terminal lakes of the Heihe River. Extensive land use 
and irrigation in the upper valley of the Heihe River 
has reduced modern flow to these terminal lakes. The 
average annual precipitation and evaporation are 37 
mm and 3841.81 mm, respectively, indicating 
extremely dry climate and severe adverse nature 
environment at present.  

A C-band fully polarimetric Radarsat-2 image was 
used in this study (Fig. 1). The single look complex 
(SLC) SAR image is acquired on July 6, 2014 with a 
width of 25km × 25km and an incidence angle of 
20.17°. Radiometric calibration, multi-look, filtering 
and terrain correction were performed using 
PolSARpro 4.2 (http://earth.eo.esa.int/polsarpro/), 
followed by polarimetric decomposition to obtain the 
following polarimetric parameters: entropy H, 
anisotropy A, mean scattering angle α, SERD and 
DERD. 

Fig.1 The study area and the sampling sites. The 
rectangle indicates the coverage of RADARSAT-2 

SAR image acquired on Jul. 6, 2014. The dots indicate 
the sampling sites. 

Simultaneously with the satellite overpass, surface 
roughness was measured using a 2m long needle 
profilometer and a digital camera. 48 sites were 
measured, at each sampling site, 4 field photographs 
were taken, two were along and the rest were across 
the row direction. The photographs were processed by 
GetData Graph Digitizer software later on. The rms 
height S and correlation length L were calculated. 

3 METHODOLOGY 

3.1 Surface roughness 

As mentioned above, soil moisture and surface 

roughness are two key factors affecting radar signal 
over bare surface. The moisture content affects the 
return signal by affecting the dielectric constant, and 
the surface roughness determines the type of the return 
signal. The rms height S and correlation length L are 
two commonly used parameters to describe surface 
roughness from the vertical and horizontal dimensions 
respectively. The equations can be found in Ulaby et al. 
(1986) and will not be shown here. 

3.2 Polarization theory 

Cloude and Pottier (1996) proposed a polarimetric 
decomposition theory based on eigenvector / 
eigenvalue of the coherent matrix (single, double and 
volume scattering) to determine the total scattering 
mechanism.  

Using the eigenvectors and eigenvalues, three 
main parameters are used to express the decomposition 
results: scattering entropy H, anisotropy A and mean 
scattering angle α. The entropy H is an eigenvalue of 
the coherent matrix T defined by logarithms, which 
represents the random behavior of the scattering 
phenomenon. The anisotropy A reflects the relatively 
important minor scattering mechanism. If the scattering 
mechanism is equal, then A is equal to 0. The larger the 
value of A, the more anisotropic scattering is (Cloude 
and Pottier, 1996). The mean scattering angle α 
represents the dominant scattering mechanism and is 
calculated from the eigenvectors and eigenvalues of T. 
In addition, Allain et al. (2004; 2005) introduced two 
parameters, the single-bounce eigenvalue relative 
difference (SERD) and double-bounce eigenvalue 
relative difference (DERD), to better reflect the natural 
surface. 

4 RESULTS AND DISCUSSION 

Sensitivity of different polarimetric parameters, 
including the entropy H, anisotropy A, mean scattering 
angle α, SERD and DERD, to surface roughness 
parameters, the rms height S and the correlation length 
L are shown in Fig.2, and Fig.3 is the corresponding 
fitting lines by polynomial algorithm. 

As Fig.2 demonstrated, the correlation between 
each polarimetric parameter and both the rms height S 
and the correlation length L is not obvious and all the 
correlation coefficients are less than 0.3. Among the 
five polarimetric parameters, entropy H is most 
sensitive to the slight variation of the rms height S and 
DERD is the least sensitive one. No great difference 
was detected in the sensitivity of SERD and the mean 
scattering angle α to rms height S. Meanwhile, it is 
found that SERD is the most sensitive one to the 
correlation length L, followed by anisotropy A. The 
other three parameters have approximate sensitivity to 
the correlation length L. From the polynomial fitting 
lines in Fig.3, it is discernible that there is a reverse 
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trend between anisotropy A, SERD and both surface 
roughness parameters. DERD presents a reverse trend 
only with the rms height S. In general, relatively 
complex changing trend are exhibited in the fitting 
lines with the correlation length L.   

Fig.2 Sensitivity of different polarimetric parameters to 
the rms height S and the correlation length L. 

Previous studies (Cloude, 1999; Hajnsek et al., 
2001) show that the entropy H, the anisotropy A and 
mean scattering angle α are very sensitive to surface 
parameters values. They considered that the anisotropy 
A and combined H/α values offered the possibility of a 
straightforward inversion of roughness and dielectric 
constant. ERD, SERD and DERD are shown to have 
great relevance for roughness characterization (Allain 
et al. 2004, 2005). Although not very relevant with 
individual surface roughness parameter, the sensitivity 
of each polarimetric parameter has demonstrated a 
certain difference especially with the rms height S. The 
entropy H , mean scattering angle α and SERD seem to 
be more sensitive to surface roughness. Combination 
potential of entropy H , mean scattering angle α and 
SERD will be further investigated in future study. 

Fig.3 Polynominal fitting lines of different polarimetric 
parameters to the rms height S and the correlation 

length L. 

5 CONCLUSIONS 

Fully polarimetric RADARSAT-2 SAR data was 
used in this study to qualitatively evaluate the potential 
of PolSAR data at C-band frequency for the retrieval of 
surface parameters. Five polarimetric parameters 
including entropy H, anisotropy A, mean scattering 
angle α, SERD and DERD were calculated and the 
sensitivity to the rms height S and the correlation length 
L, the two most acknowledged parameters describing 
the surface roughness, was investigated. Results show 
that the polarimetric parameter is nearly not relevant 
with both the rms height S and the correlation length L 
for all the correlation coefficients are less than 0.3. 
However, the sensitivity of each polarimetric parameter 
has demonstrated a certain difference especially with 
the rms height S in this preliminary study. The entropy 
H, mean scattering angle α and SERD seem to be more 
sensitive to surface roughness. In the following study, 
further discussion is required to explore the 
combination potential of polarimetric parameters with 
relatively higher sensitivity for the estimation of 
surface roughness.  
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ABSTRACT - An early tracking of water stress with plant-based measurements using indices based on the near-
infrared and the visible spectral bands is very important to monitor the plant water status and increase the water 
use efficiency. The photochemical reflectance index (PRI) provides an assessment of leaf physiological 
properties. It is based on the short term reversible xanthophyll pigment changes as a response to water deficit 
and the activity of the photosynthesis. It is able to track water stress before changes on the structure of 
vegetation (Suárez, et al., 2008). It may be used for a wide range of species. Strong relationships between PRI 
and LUE were shown at leaf and canopy scales (Garbulsky et al., 2011). However, there is a little information 
about its relationship with the plant water status. This study will investigate the PRI as a water stress index. 
First, we identified the factors of changes of transpiration from sap flow measurements at different time steps 
under rain-fed olive orchard in Tunisia and characterized the different water stress levels. . At canopy scale, we 
have not found any clear relationship between LUE and PRI as reported in several previous works.  Then, at 
plant scale, we analyzed the relations between plant-based measurements (sap flow, PRI, the leaf turgor 
pressure, surface temperature) and the environmental variable (solar radiation, relative air humidity and vapour 
pressure deficit, soil water content..). There is no clear relationship between LUE and PRI. In clear sky 
conditions, the PRI was best correlated with sap flow especially over periods characterized by a moderate soil 
water deficit and thus when transpiration is governed by Vapor Pressure Deficit. Finally, under a high soil water 
deficit, the surface temperature was more closely associated with sap flow. 

1  INTRODUCTION 

In Mediterranean regions, climate change is 
expected to increase air temperatures and might 
decrease rainfall. The main crop in this area (Olive 
orchard), is known as drought tolerant, but a moderate 
water deficit (i.e., a decrease in summer rainfall) may 
enhance water stress and limit its productivity by 40% 
(Hsiao et al., 1983). In this context, there is an 
increasing interest to adjust the water supplies to the 
plant water requirements. Remote sensing has 
potential in providing timely information on crop 
conditions. The assessment and the early detection of 
the water status is thus crucial since water stress is one 
of the main factors limiting water (transpiration) and 
carbon (photosynthesis and primary productivity) 
exchanges. Water stress also induces stomatal closure, 
which reduces the transpiration rate, thus decreasing 
evaporative cooling and increasing leaf temperature. 
To monitor the plant water status, indices based on the 
observed surface temperature have been proposed 
(Jackson et al., 1977). Jackson et al. (1977) used the 
difference between canopy temperature and air 
temperature (Tv-Ta) as an index to characterize the 
water status of the crops. Another index was defined 
by Gamon et al (1992) related to the state of foliar 

pigments. Moreover, This Photochemical Reflectance 
Index (PRI) is calculated as follows: 

PRI=(R531-R570)/( R531+R570) 

Where R531 and R570 are the reflectance at the 531nm 
and 570nm wavelength.  
The PRI is sensitive to the epoxidation state of the 
xanthophyll cycle pigments which is related to the 
photosynthetic efficiency. The xanthophyll cycle 
pigment is de-epoxidized under conditions of excess 
light since this reaction is readily reversed under 
limiting light (Gamon et al., 1990). Winkel et al. 
(2002) demonstrated the sensitivity of PRI to water 
stress conditions, although structural effects caused by 
the water stress would also affect the reflectance signal 
over Chenopodium quinoa. Thenot et al. (2002) 
showed the clear difference given by the PRI between 
well-watered and water-stressed Sajama, a cultivar of 
Chenopodium quinoa. Thus, the de-epoxidation state 
may be used as an indicator of short-term changes in 
photosynthetic activity. Photosynthetic light-use 
efficiency (LUE), which is one of the widely used 
concepts to model carbon assimilation by plants, was 
demonstrated to be successfully estimated with PRI 
over Mediterranean holm oak forest (Serrano & 
Peñuelas, 2005), over Mediterraneen forest (Garbulsky 
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et al., 2008) and over olive trees (Suarez et al., 2008), 
although inconsistencies were found in the PRI/LUE 
relationship as function of drought conditions over 
Sky Oaks Field (Sims et al, 2006). These 
inconsistencies at the canopy scale can be explained 
by the difficulty of measurement in forest ecosystems 
especially at low fraction cover, as well as the high 
sensitiveness of the sensor to the tree structure. The 
sparse nature of the olive grove is a challenge in using 
remote sensing data for water stress monitoring, 
because the fraction of vegetation is such that the 
surface is dominated by the bare soil interaction with 
the atmosphere. But, to our knowledge no previous 
works have explored the comparaison of the 
effectiveness of the PRI and Tv-Ta.  

The objective of this study is to evaluate the 
ability of the PRI and TIR (Thermal InfraRed) indices 
to early detect the water stress over a sparse olive 
orchard in semi-arid area. In this study, we choose 
different periods of well-defined climatic and water 
conditions to determine the relevance of the PRI and 
TIR indices. The level of water stress affecting the 
functioning of olive trees will be determined by 
analyzing different diagnostic parameters such as CO2 
and water vapour fluxes and sap flow. 

2  Materials and methods 

2.1 site description 

Our study is conducted in an olive orchard covering an 
area of 39 ha in the plain of Kairouan, central Tunisia 
(35°18'17.14"; 9°54'56.62"). It is a semi-arid region 
with average annual precipitation of 300 mm. Rainfall 
varies largely in space and time a flood-generating 
peak of 700 mm in 1969 and a marked seasonal 
pattern (a wet season from October till April and a dry 
season from May till September). Olive trees in our 
site were planted with a spacing of 20 m resulting in a 
fractional vegetation cover of about 0.07. The trees are 
80 years old. The soil is loamy sand. 

Fig.1: the site’s instrumentation: the flux tower and the 
sensors installed above the tree. 

The site was instrumented as shown in Fig.1. We 
measured weather variables such as temperature, wind 
speed, relative humidity, net radiation, and the rainfall; 
variables related to plant functioning such as PRI, 

surface temperature (Tv), sap flow and 
evapotranspiration and variables related to the bare 
soil functioning such as temperature and humidity at 
different depths, albedo and soil heat flux. 

2.2 The observed and the potential transpiration 

Sap flow measurements were performed using the heat 
dissipation technique, HDT (Granier, 1985). The 
GRANIER method consists in inserting, radially in the 
sapwood of the trunk, a sensor to measure the sap 
flow. This sensor (TDP 50) is composed of two 
needles inserted in the sapwood one above the other; 
The upper needle is heated with constant temperature, 
the other is not heated. The system allows to measure 
the temperature difference between the two needles. 
At zero flow conditions, this difference reaches its 
maximum. The temperature difference is highly 
correlated with the sap flow velocity. In this study, 
four olive trees are considered as representative of the 
olive orchard and are equipped with 2 sap flow sensors 
for each tree. The half-hourly sap flow of the olive tree 
in L dm-2 of sapwood is calculated from the mean of 
its two sensors. To estimate the half-hourly 
transpiration (Tobs), it is necessary to convert sap flow 
values to mm day-1. To do so, we estimated the 
conductive sapwood area as discussed by Ramos and 
Santos (2009) and then we multiplied the sap flow per 
tree by the ratio between the number of trees and the 
whole surface of the orchard. To estimate the water 
status of the tree, we calculated using the Penman 
Monteith equation (FAO 56) a potential transpiration 
(Tpot), which is defined as the amount of transpiration 
that would occur if a sufficient water source were 
available. In order to identify the plant water stress 
level, we applied the equation (3) to give the potential 
transpiration index (ITP). 

 ITP= 1- (Tobs/ Tpot)   (3) 

When water is not a limiting condition for 
evapotranspiration, the observed transpiration is close 
to the potential transpiration, the ITP is close to 0. ITP 
increases with the olive tree water stress level. 

2.3 proxy for water stress detection 

2.3.1 surface Temperature above the Vegetation (Tv) 

An infra-red thermal radiometer (IR 120) was placed 
over the instrumented tree in order to continuously 
monitor crown temperature. (Tv-Ta) was calculated 
over the years of the study. Tv-Ta values were 
averaged over the 11h-13h time slot which 
corresponds to the maximum daily radiation.  

2.3.2 The Photochemical Reflectance Index (PRI) 

The PRI was recorded half hourly since June 2014. 
Data of reflectance at 531nm and 570nm as well were 

  328

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



collected and then the PRI was calculated. The crown 
of the tree instrumented with sap flow sensors has 
been seen from the PRI sensor (SKYE instrument). 
The outliers values (usually at the beginning and the 
end of each day) are removed due to the low elevation 
angles of the sun.  

2.5 The Plant Available Water (PAW) estimation 

In order to measure the vegetation stress level, we 
estimated the plant available water. The maximum 
PAW is the maximum amount of extractable water 
from the soil by roots. It represents the difference of 
soil water contents at the field capacity level and at the 
wilting point for a specified soil thickness. The 
horizon 0-40cm contains 70% of rooting according to 
in-situ root density measurements that allows the 
maximum of water extraction for the olive trees. Thus, 
the PAW of the horizon 0-40 cm has been calculated as 
follows: 

PAW0-40cm (mm) = PAW0-10cm+ PAW10-20cm+ PAW20-40cm 

PAWmax 0-40cm (mm) = (HFC-HWilt)*400 

The fraction of the PAWmax of the 0-40 cm horizon 
first calculated using the following equation. 

PAW0-40cm (%) = (PAW0-40cm (mm)/PAWmax) x 100   (4) 

The fraction of the PAWmax is needed to define the 
plant water stress levels due to soil moisture deficit. 
The PAW value below 60% correspond to moderate 
water stress. When the PAW becomes less than 40%, 
the plant water stress becomes high (Phillips et al., 
1984). 

3 Results and discussion 

 The study was carried out from April 2014 to 
September 2016. 2014 is considered as a “wet” year 
with frequent rainfall. Precipitation is less frequent in 
2015 and 2016 with a stochastic distribution. The three 
contrasting years allow us to study the sensitivity of 
the PRI and IRT indices in different water stress 
conditions (High VPD and soil water deficit). But the 
choice of the studied periods was based on the fraction 
of PAWmax. After a large rain event, the PAW 
decreases simultaneously with the soil water content. 
During the drydown, it is relevant to monitor the plant 
functioning and to study response of both indices to 
the water deficit slope.  

Fig.2:  the dynamics of the plant available water (PAW) between 0 and 40 cm of soil over the period of study 

Fig.3:  the seasonal dynamics of the PRI and Tv-Ta over the period of study 
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We selected four study periods when all data are 
available: P1 from 30/07/2014 to 30/08/2014,  P2 from 
15/06/2015 to 30/07/2015, P3 from 07/04/2015 to 
08/05/2015 and P4 from 13/06/2016 to 03/08/2016. P1 
and P3 are characterized by moderate soil water stress 
conditions and P2 and P4 are characterized by high 
soil water stress conditions.  

3.1 the daily and seasonal dynamics of PRI and Tv-Ta 

Beside two gaps in the dataset in November 2014 and 
in November 2015 due to technical problems, pruning 
was performed at the end of March. The increase in 
the order of magnitude of the PRI values after this tree 
pruning is due to the decrease in the fraction cover 
included in the field of view of the PRI sensor. PRI 
values range from 0.12 to 0.15 before the tree pruning 
and from 0.15 to 0.24 during the remaining period. 
The PRI, was, as expected, usually larger in 2015 and 
in 2016 in response to a change in xanthophyll 
pigments caused by high water deficit conditions. 
However, The Tv-Ta dynamics were widely scattered 
and values ranged from 1.2 to 5 degrees during clear 
days. The maxima in 2015 and 2016  were relatively 
higher and reach 4.5 ° C. 

Fig. 4 : the relationship between the transpiration and 
PRI for the four periods. 

Fig. 5: the relationship between the transpiration and 
Tv-Ta for the four periods. 

At the daily scale, the relationship between the sap 
flow and the PRI is  linear during the period P1 and in 
the expected direction under moderate water deficit 
(Fig. 4 ). The relationship is less strong during P3 
which can be explained by phenological stage of the 
olive tree during the spring (the flowering). The PRI 

curve of P2 and P4 flattens to the top at low values of 
transpiration (between 0.01 and 0.05 mm/30min). 
These values were affected by the increase of the bare 
soil fraction included in the field of view of the PRI 
sensor and the decrease of the evaporative leaf area. In 
contrario, the relationship between Tv-Ta and sap flow 
is more marked during  P2 and P4 (Fig. 5) due to the 
increase of the crown temperature at high water deficit 
conditions.  

Fig. 6: scatter plot of daily PRI vs ITP at the rainfed 
olive tree site   

Fig. 7: scatter plot of daily Tv-Ta vs ITP at the rainfed 
olive tree site 

As reported by Thenot et al. (2002), the correlation 
between the PRI and the water deficit indicator ITP 
was clear at moderate water stress conditions (i.e, 
during P1). The pigment changes are effective in 
response to moderate water deficit. In contrario, at 
high water stress conditions (P2 and P4) (Fig. 6), no 
relationship has been established. The PRI values did 
not vary for ITP values higher than 0.7. This behavior 
reflects complete de-epoxidation of xanthophyll. On 
the other hand, (Tv-Ta) is correlated with the ITP at 
moderate and high water stress conditions (Fig. 7). 
During P3, the relationship between (Tv-Ta) and ITP 
was not clear. The vegetation temperature was thus 
more sensitive to meteorological conditions (during 
the spring: lower temperature and radiation) which 
explain the high variability of the values of (Tv-Ta) 
found over this period. Sepulcre-Canto et al. (2006) 
shows that the correlation between crown temperature 
and in-situ measurements of the water potential is 
higher early in the morning because the soil thermal 
effects at midday affect the crown temperature.  
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4 CONCLUSION 

The present study focus on two indicators for 
monitoring the olive tree water stress: PRI and Tv-Ta. 
However, the relevance of these indicators in 
monitoring the functioning of the plant depends on the 
water deficit level. The moderate soil water deficit is 
difficult to track and the PRI can be a good indicator. 
(Tv-Ta) gave positive and significant results under 
different soil water deficit levels and the correlation is 
higher at high water deficit levels but it is sensitive to 
weather conditions. The prediction of the transpiration 
from these indicators will be relevant. A ZIM sensors 
for measuring the turgor pressure were also installed at 
the leaf level and data will be investigated in further 
study. 
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ABSTRACT - In radar sensing of natural surface, which in nature is multi-scale, it is of practical importance to 
understand the control mechanisms over the different spatial scales in order to maximize the information content 
that may attain. It has been known that the multi-scale entropy (MSE), by incorporating interrelationship of 
entropy and scale, is capable of revealing long-range correlations on multi-scale random process. In this paper, 
we apply the MSE to quantitatively characterize the information content in radar sensing of random surface. The 
dependence of the surface size, auto-correlation function (ACF), correlation length (l), and root-mean-square 
(rms) height on the radar scattering signal is examined. Results shows that the MSE is a simple and yet effective 
approach to measuring the effect of sampling scales in sensing random surface, and thus to choosing the proper 
resolution cell size in term of radar wavelength. Moreover, the choice of spatial resolution is more sensitive for 
surface with smaller correlation length, and No rms height effect on the resolution scaling is observed. In 
addition, finer resolution is required for surface with exponential ACF compared to that with Gaussian ACF. 

1 INTRODUCTION 

Rough surface observation is a subject of extensive 
research for its wide applications in remote sensing of 
terrain and ocean. With rapidly increasing availability 
of high-resolution airborne and space-borne radar 
sensors, studies have found that measuring signals 
(amplitude and phase) are always poised to sampling 
size effects as far as information content is concerned 
(eg., Nesti et al., 1996). It is of practically important to 
understand the control mechanisms over the different 
spatial scales in radar sensing of natural surface to 
ensure better use of microwave scattering data in 
natural surface monitoring.  

In the past decades, there has been some works 
concerning scaling effect on radar sensing of rough 
surface, such as experiment analyses (eg., Nesti et al., 
1996), and numerical simulations (Sarabandi and Oh, 
1995; Allain et al., 2003; Park et al., 2008). Those 
studies were always carried out based on some 
qualitative analysis with casual cases. The scale effects 
identified by various researchers are inconsistent. 
Considering that, in radar sensing of natural surface, 
the goal is to preserve the maximum information 
content, among others, of the parameters of interest 
that are transferred from inputs to outputs of the radar 
response. Thus, the information theory, which is 
capable characterize the information content, is 
expected to be able to quantitatively and objectively 

evaluate the information in radar observation, and thus 
to maximize the information content that may attain.  

In addition, considering that the rough surface in 
nature is multi-scale, the multi-scale entropy (MSE) 
(Costa et al., 2005), a typical information parameter 
concerning scale characters, is expected to be 
applicable to indicate the scaling effect of radar 
sensing of rough surface. The reason lies in that, the 
MSE, using scale factor to construct consecutive 
coarse-grained data series, incorporates 
interrelationship of entropy and scale, and reveals 
long-range correlations on multi-scale random process. 
It has been widely used to characterize the information 
content in multi-scale time series of physical and 
biological systems. Theoretically, for rough surface 
profile, the scale factor in MSE analysis is consistent 
with spatial resolution size. Motivated by this fact, in 
this paper, we apply MSE to characterize 
quantitatively, the information content in observing 
random surface, in order to gain deeper insights into 
the control mechanisms over the different spatial 
scales, as well as to figure out proper spatial resolution 
in term of radar wavelength.  

In this study, Section 2 introduces the method to 
describe random surface. Section 3 gives the 
formulation of the problem of scale effect. Section 4, 
the main body of this paper, the dependence of surface 
size, auto-correlation function (ACF), correlation 
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length (l), and root-mean-square (rms) height are 
examined. Finally, in Section 5, a summary and the 
conclusion are drawn to close the paper. 
2 ISOTROPIC SURFACE DESCRIPTIONS 

For naturally occurring surfaces, such as terrain and 
sea, are best and, perhaps, only can be modelled by 
random processes. To describe such random surface, 
we adopted the lσ - approach, which is a classical and 
commonly used statistical approach. It used two 
roughness parameters: the rms height σ , and the 
correlation length l , which measure the horizontal- 
and vertical- roughness scale, respectively. The ratio 
of σ  to l  is the surface rms slope.  

Specifically, assuming a randomly rough surface 
( ),z x y and a real stationary process with zero mean 

and standard deviation σ , then

( ) ( ) ( )2, , ,x y x yz x y z x yτ τ σ ρ τ τ+ + = where 
22 2= -z zσ

 and 
z

follows a Gaussian 
distribution such that: 

( ) 2 2/21=
2

zp z e σ

σ π
−

                      (1)
 

For an isotropic surface, we have x yτ τ τ= =  . In 
what follows, for simplicity, but without loss of 
generality, we have only discussed the isotropic 
surface. Thus, the joint probability density function 
between two points on the surface can be written as, 

( )
( ) ( )( ){ }2 2 2 2

2 2

exp ' ' / 2 1
, ' =

2 1

z zz z
p z z

ρ σ ρ

πσ ρ

− − + −

−      (2)
 

The correlation function ρ  is defined as: 

( ) ( ) ( )
0

1= lim
L

L
z r z r dr

L

τ

ρ τ τ
−

→∞
+∫

                 (3)
 

where 2 2r x y= + ; and L is the surface length. 
According to the Wiener Khintchine Theorem, the 

surface spectrum and correlation function ACF are 
related to form a Fourier transform pair: 

( ) ( ) ( )2 cos

0 0
, = , jkW k e d d

π τ ϕ φϕ ρ τ φ τ τ φ
∞ −∫ ∫   (4)

 

For an isotropic surface, the autocorrelation 
function ( ),ρ τ φ  is independent of direction and 
dependent only on lag distance τ . The relation 
reduces to: 

.
( ) ( ) ( )00

, =W k r J Kr rdrϕ ρ
∞

∫ .                (5)
 

where 0J is zeroth order Bessel function. 

For natural surfaces, because of their formation 
mechanisms, the actual ACF from field measurements 
are complicated and usually vary between Gaussian 
and exponential functions (Oh et al., 1992). Their ACF 
and corresponding surface spectrum are given as: 

For the Gaussian function 

( ) ( )2 2 2 2/ / 2,r l K llr e W K eρ
π

− −= =
          (6)

 

Similarly, for the exponential function 

( ) ( ) ( )
/

2 21
, 1r lr e W K

l K l
ρ

π
−= =

+         (7)
 

Note that, for simplicity, we only consider 1-D 
rough surface in this study.  

3 FORMULATION OF THE PROBLEM OF 
EFFECTIVE RESOLUTION 

In (Costa et al., 2005), the authors considered the 
multi-scale characters of biological signals based on 
the MSE analysis. Following the same procedure 
elaborated in the formulation of MSE (Costa et al., 
2005), to analyze the effect of spatial resolution on 
radar sensing rough surface, we first produce a one-
dimensional discrete rough surface series , 
{ } { }1, , , ,i i Nx x x x=   , with the sample segment 
length of τ . Then we construct consecutive coarse-

grained series of surface, ( ){ }y τ , corresponding to the 

scale factor, τ  , as shown in Fig.1.  
 

x1 x2 x3 x4 x5 x6 xi xi+1

y1 y2 y3 yj = (xi+1+xi+1) / 2

x1 x2 x3 x4 x5 x6

y1 y2

xi xi+1

yj = (xi+1+xi+1+xi+2) / 3

xi+2

Scale 2

Scale 3

 
Fig.1 Schematic illustration of the coarse-graining. Adapted 
from Ref. (Costa et al., 2005). 

 
In general, each element of a coarse-grained series 

is calculated according to the equation 

( )

( )1 1

1 , 1
j

j i
i j

y x j N
τ

τ

τ

τ
τ = − +

= ≤ ≤∑             (8) 

For scale one, the series ( ){ }1y  is simply the 

original series. From the definition in Eq.(8), we can 
obviously see that the scale factor is corresponding to 
the spatial observation resolution. From the Fig.1, it 
can be found that statistical properties of random 
rough surfaces vary with spatial resolution cell size. 
For example, when the scale factor increases, the 
topography tends to be more flat due to coarse-grained 
series progressively “smoothed out” . 
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Fig.2 A generated random surface with scale factor 

0 0 0= 20 50τ τ τ τ， ， . The surface ( 0.06σ λ= and 

0.5l λ= ) has exponential ACF and the profile length of 

25λ with 0 =0.τ λ0016 . The scale factor, τ , is
corresponding to the spatial observation resolution. 

 Then, we calculate an entropy measure ES  for 
each coarse-grained series which is equal to the 
negative of the natural logarithm of the conditional 

probability. Taking the scale one ( ){ }1y as an example,

which is composed of m -length vectors 

( ) { }1 1, , ,m i i i mu i x x x+ − +=   , 1 1i N m≤ ≤ − + . 
The Euclidean distance between two vectors as the 
maximum absolute difference between their 
components can be writen as, 

( ) ( ) ( ) ( )
, max

0 1
m m

x i k x j k
d u i u j

k m

 + − + =     ≤ ≤ −  
  (9) 

Let ( )
i

mn r  represents the number of vectors ( )mu j

that are close to the vector ( )mu i ,i.e., the number of 

vectors that satisfy ( ) ( ),m md u i u j r≤   . The

probability that any vector ( )mu j  is close to the 

vector ( )mu i can be written as 

( ) ( ) ( )/ 1
i i

m mC r n r N m= − + (10) 

Then the average of the 
i

mC is 

( ) ( ) ( )
1

1
1/ 1

N m
m m

i
i

C r N m C r
− +

=

= − + ∑ (11) 

Thus, the ES  can be written as, 

( ) ( )
( )

1

, , = -ln
m

E m

C r
S m r N

C r

+

   (12) 

In general, the MSE reflects the variance of data 
series as well as their correlation properties. It 
incorporates interrelationship of entropy and scale, and 
is capable of revealing long-range correlations on 
multi-scale random process. Generally, data sets with 
higher variability or greater randomness tend to be 
more entropic. Moreover, a monotonic decrease of the 
entropy values indicates the original signal contains 
information only in the smallest scale, and vice versa.  

In this paper, unless otherwise specified, ES  are 
calculated based on 50 generated infinite random 
surfaces with length of 100l≥  , sampling point 

83600N = , and 2m = . The r  is sets as 15%  of 
the original data series, with reference to similar MSE 
analysis in (Costa et al., 2005).  

4 RESULTS 

In order to quantifying the scale effect on radar 
sensing of rough surface for different resolution and 
illustrate the optimal resolution selection, we analyzed 
the dependence of profile length, as well as the effect 
of roughness characterization associated, including the 
correlation length, ACFs and rms height.  

4.1 The effect of Surface length 

In theory simulation, the random surface is always 
treated as infinite. However, in practical measurement, 
roughness profile for the resolution cell is truncated 
with rectangular window. To illustrate the effect of 
truncated length on surface information and optimal 
resolution selection, we plot the MSE as a function of 
surface length, as shown in Fig. 3.  

0.0 0.6 1.2 1.8 2.4
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τ ( λ )

 L = 10 l
 L = 20 l
 L = 60 l
 L = 300 l

Fig.3 MSE as a function of resolution cell size for infinite 
surface ( 300L l= ) and truncated surfaces 

( 10 ,20 ,60L l l l= ). Solid line represents the mean values
of SE for 50 simulated surfaces, and error region represent the 
standard deviation. The surface ( 0.06σ λ= and 

0.5l λ= ) has exponential ACF. =0.5lτ λ= . 
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The surface ( 0.06σ λ= and 0.5l λ= ) has 
exponential ACF and τ0=0.0016λ. The result shows 
that the MSE generally increase as spatial scale 
increases. For infinite surface ( 300L l= ), the 
observation of surface parameters are almost 
insensitive to measurements with different resolution, 
if only the pixel cell greater than 0.2λ  . For truncated 
surfaces, entropy fluctuates greatly, and decreases 
slightly at greater cell scales, which indicates that, the 
observation may lose some information when 
resolution is coarse. 

4.2 The effect of Surface ACF 

Fig. 4 shows MSE for surface with exponential and 
Gaussian ACF. The result shows that, both for infinite 
and truncated surface, the largest difference between 
the entropy values of two ACFs is obtained at high 
resolution, and the MSE Curve almost overlap at 
coarse cell. Moreover, it can be seen that, 
comparatively, observation of surface with exponential 
ACF is less dependent on the resolution cell due to its 
relatively flat MSE curve. This result is consistent 
with the fact that, unlike Gaussian, exponential surface 
contains complex structures across small scales. 
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 (b) 
Fig.4 Similar to Fig.3 but for surface with exponential and 
Gaussian ACF. (a) truncated surface (L=20l), and (b) infinite 
surface (L=300l)). 

4.3 The effect of Surface correlation length 

Fig.5 is the MSE for infinite surface with different 
correlation length. It can be observed, in the case of 
surface with small correlation length (eg., 0.6l λ≤ ), 
MSE increase firstly, and then decease with increasing 
cell size, and it arrives at the peak around with τ = l. 
For surface with greater correlation length ( )0.8l λ= ,
MSE keeps stable at coarse resolution. This suggests 
that the spatial resolution choice is comparably more 
important for surface with small correlation length, 
while resolution cell size around correlation length
( )lτ =  is preferable to observe random surface.
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Fig.5 Similar to Fig.3 but for infinite surface with different 
correlation length  

4.4 The effect of Surface rms height 

Fig. 6 shows MSE for surface with different rms 
height. The results show that the rms height do not 
change the information observed in high-resolution 
images, for almost all lines are overlapped. Thus, there 
is no need to consider rms height in the optimal 
resolution selection. 
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Fig.6 Similar to Fig.3 but for infinite surface with different 
rms height 
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5 CONCLUSIONS 

In this paper, we introduces MSE concept, which 
incorporates the interrelationship of entropy and scale, 
to understand the control mechanisms over the 
different spatial scales in order to maximize the 
information content that may attain. The effect of 
roughness characterization associated, including the 
correlation length, rms height and ACF is estimated, 
and the dependence of profile length is investigated 
which is always treated as infinite. The results show 
that the information content contained for different 
resolution cell size varies greatly over different surface 
correlation length, ACF, surface length, and is 
strongly dependent on surface length. In general, the 
choice of spatial resolution is more sensitive for 
surface with smaller correlation length. No rms height 
effect on the resolution scaling is observed. In addition, 
finer resolution is required for surface with 
exponential ACF compared to that with Gaussian ACF. 
From the results, we can see that, the MSE is a simple, 
as well as effective approach to measuring the effect 
of sampling scales in sensing random surface, and thus 
to choosing the proper resolution cell size in term of 
radar wavelength. 
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ABSTRACT - Metropolitan areas account for 75% of the world’s energy consumption and much of its CO2 
emissions. In some Spanish towns and cities, public lighting is responsible for 50% of power consumption. As 
lighting and management systems are nowadays being developed and improved, street lighting is one of the 
sectors with a larger potential in energy savings. The current auditing process to evaluate the level of lighting 
systems of municipalities is costly and tedious. Night-light remote sensing provides data concerning luminance 
and type of light source. Satellite and space platform, as DMSP and SUOMI satellites or the International Space 
Station (ISS), provide data with moderate spatial and spectral resolution. Airborne hyperspectral imaging 
spectrometers can achieve data with better spatial and spectral resolution. At the Institut Cartogràfic i Geològic 
de Catalunya (ICGC) we have developed a data fusion methodology by using our own airborne VNIR 
hyperspectral sensors and photogrammetric cameras to provide local authorities with data at a very high spatial 
resolution (up to 25 cm GSD) concerning luminance and sources of lighting (incandescent, mercury vapour, high 
pressure sodium vapour, metal halide and light-emitting diode-LEDs). The paper presents operational and 
practical results over large urban areas. Transforming this quantitative information into knowledge will become 
a key issue for a better and sustainable urban planning at next future. 

1  INTRODUCTION 

Nocturnal light pollution is a side effect of 
industrial civilization and accounts for excessive, 
misdirected or undesired artificial light produced by 
dwellings, factories, offices, sport fields, billboards, 
street lights and so on. Metropolitan areas account for 
75% of the world’s energy consumption and much of 
its CO2 emissions. For instance, in Spain, in some 
towns and cities, public lighting is responsible for 50% 
of power consumption. Thus, street lighting is one of 
the sectors with a larger potential in energy saving 
(between 30% and 40%): lighting and management 
systems are nowadays being developed and improved, 
by using more efficient lights with less energy 
consumption.  

Reliable methods to quantify the amount of 
artificial light radiation are a prerequisite to detect 
light/energy waste and to assess the effectiveness of 
policies and actions. Current auditing processes based 
on field campaigns are time consuming, thus costly 
and tedious. Field campaigns are unable to provide a 
synoptic view over a large area. In this work, remotely 
sensed night-lights observations are used to 
distinguish different sources of lighting depending on 
their spectral signature and to quantify their level of 
light emission. 

Concerning data acquisition as a part of such 
methods, space-borne imagery provides a moderate 
spatial and spectral resolution (currently available 
from instruments on board satellites and space 
platforms, such as the data taken by DMSP and 
SUOMI satellites or taken from the International 
Space Station). Such data have limited spectral bands 
and coarse spatial resolution, and the dynamic range of 
the sensors is optimized for daytime rather than 
nocturnal capture. Accurate quantification and 
characterization of artificial light radiated at ground 
level from remote sensing imagery requires high 
spectral and spatial resolutions, with a high dynamic 
range. Images with these characteristics can be 
achieved with airborne hyperspectral imaging 
spectrometers. 

At the ICGC we have developed a methodology to 
fusion data simultaneously recorded with a 
hyperspectral sensor (an AISA Eagle II from 
SPECIM), which combines a synoptic view with 
multiple narrow spectral bands, and a digital 
photogrammetric camera (a DMC-I from Z/I-
Hexagon). As a result we are providing to local 
authorities luminance maps at a resolution up to 0.25 
cm and maps of main source of lights (incandescent, 
mercury vapour, high pressure sodium vapour, metal 
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halide and light-emitting diode-LEDs) at a resolution 
up to 1.5 m. 

2  SENSORS AND DATA ACQUISITION 

2.1 AISA Eagle II  

The AISA Eagle II is a hyperspectral VisNIR 
pushbroom imager with a reflection grating and a two-
dimensional CCD (charge coupled device) solid-state 
array detector, manufactured by SPECIM. The 
instrument operates by looking down in a fixed 
direction and imaging successive lines of the flown 
scene, building up a two-dimensional image as the 
platform moves forward (main parameters are 
described in table 1). One dimension of the CCD 
covers the across-track spatial direction (configurable 
in 512 or 1024 spatial pixels); the other one accounts 
for the spectral domain (configurable up to 256 bands 
covering the spectral range 400-1000 nm). 
 
Table 1. AISA Eagle II main parameters 
FOV [º] 37.7 
no. FOV pixels Configurable 512 or 1024 
no. spectral pixels Configurable up to 256 
spectral range [nm] 400-1000 
Focal length [mm] 17.8 
GSD @ 2500 m [m] 1.5 

2.2 DMC-I  

DMC is a high-resolution photogrammetric frame 
camera, manufactured by Z/I imaging (currently 
Hexagon) (Dörstel 2003), which simultaneously 
captures one high-resolution (HR) panchromatic and 
four low-resolution (LR) multi-spectral (red, green, 
blue and near-infrared) images (main parameters are 
described in table 2). The across-track and along-track 
ratio between multispectral and panchromatic imaging 
is 1:4. The high resolution image is the result of 
mosaicking four sub-images acquired by four inclined 
panchromatic camera heads. Each of them covers 
approximately a quarter of the final image, called 
virtual image. The four low resolution multi-spectral 
images in the red, green, blue and near-infrared colour 
bands are acquired with four additional nadir-looking 
camera heads with a focal length of 25 mm. Note that 
the four images completely cover the virtual high 
resolution image. 

Table 2. DMC-I main parameters 
FOV [º] 69.9x42 
no. FOV pixels (HR) 13824x7680 
no. FOV pixels (LR) 3072 x1920 
no. spectral bands 1 panHR / 4(RGBNir)LR 
Focal length [mm] 120(panHR)/25(LR) 
GSD @ 2500 m [m] 0.25(panHR)/1(LR) 

2.3 Data acquisition 

Data is acquired in a single nocturnal flight where both 
sensors (AISA and DMC) are operated simultaneously 
in an airborne platform, which is able to carry both 
sensors.  

As the goal is the analysis of artificial nocturnal lights, 
it is required to avoid natural light sources, which 
means avoid moon light. Night flights must be ideally 
performed close to the New Moon phase when moon 
has been already set.  

Moreover, due to safety reasons according to aerial 
control authorities, nocturnal flights may have some 
operational restrictions, which depend on capabilities 
of the airplane, terrain and distance to the nearest 
airport. Such restrictions may limit the resolution of 
the resulting luminance map.  

3 LUMINANCE MAP  

This section is dedicated to the description of the 
retrieval of luminance from the hyperspectral sensor 
and the subsequent fusion with the photogrammetric 
camera data. A more detailed explanation can be found 
in Pipia et al. 2014. 

3.1 Luminance Map (retrieved from the Hyperspectral 
sensor)  

For each pixel, the VisNIR sensor collects a spectral 
sampling of the radiation in 400-900nm spectral range 
emitted by the surface. Since the luminance map 
should represent how the human visual system 
perceives the radiance of light at ground level, the 
radiance values of the 126 bands must be converted to 
luminance values at ground level and then combined 
to retrieve the visual perception of human beings. The 
spectral sensitivity of the human visual system is 
described by the photopic luminosity function which 
indicates the sensitivity of human eye to incoming 
light radiation at different wavelengths (CIE 1931). 
The conversion from measured radiance to luminance 
at ground level is performed in several steps. Firstly, a 
radiometric calibration converts digital numbers 
captured by VisNIR sensor into radiances at flying 
height. These radiances are transferred to radiances at 
ground level by compensating for the atmospheric 
hyperspectral attenuation and combining the 126 band 
radiances using the photopic luminosity function. 
Finally, a low resolution luminance map (at a 
resolution of 1.5 m GSD) of the entire area is created 
by mosaicking the imagery from the different flight 
tracks of the hyperspectral sensor. Figure 1 shows a 
detail of the low resolution luminance map segmented 
into 10 classes from 0.35 to 10 cd/m2. 
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3.2 DMC and AISA data fusion 

The dynamic range of the DMC panchromatic band is 
higher compared to the VisNIR sensor as the DMC 
spectral bands are much broader and, consequently, 
more photons can reach the charge-coupled device 
(CCD) in the image plane. The fusion consists of fitting 
the radiance values of the DMC images to the 
luminance map retrieved from the hyperspectral sensor. 
Once this calibration process has been completed, the 
luminance map at 0.25m GSD can be computed from 
DMC imagery alone. Figure 2 shows a detail (the same 
area that in figure 1) of the high resolution luminance 
map segmented into 10 classes from 0.35 to 10 cd/m2. 

Figure 1. Low resolution luminance map derived from 
AISA Eagle II hyperspectral sensor. 

Figure 2. High resolution luminance map derived from 
the AISA Eagle II and DMC-I fusion. 

A visual comparison of the retrieved luminance at the 
two spatial resolutions (1.5 m, AISA luminance map, 
and 0.25 m, DMC-I luminance map, respectively 

shown in figures 1 and 2) stress the noteworthy 
improvement in the quality of the images in terms of 
spatial resolution. The slight geometrical discrepancies 
between AISA and DMC are due to two main reasons: 
the different way the pushbroom and frame sensors 
observed the same pixels on the ground, and the 
coarser resolution of the hyperspectral sensor, which is 
expected to introduce some distortions. Yet, the details 
contained the high resolution map, may become 
extremely useful in order to activate any artificial 
illumination optimization strategy. The blurred 
description provided by AISA at 1.5 m sharpens in the 
HR luminance map, where single street lamps are 
detectable. The high resolution map allows giving a 
step further. In fact, it becomes feasible to move from 
the detection of the brightest point close to the light 
source to the characterization of a wider crown around 
this bright spot, where the illumination decreases 
proportionally to the distance from the source. 

Concerning the luminance absolute estimation, the 
radiometric information was preserved in the DMC 
map generation process. This can be observed in 
figures 1 and 2. It is clearly observed that the 
information that was recovered using AISA has been 
well preserved for luminance values higher than 
1.5 cd/m2. Moreover, the lower noise floor of DMC 
has enhanced the dynamic range of the retrieved 
luminance from 1.5 cd/m2 down to 0.35 cd/m2. 

4 LIGHT SOURCE TYPE MAP  

In the literature, hyperspectral and multispectral 
airborne sensors have been often used for nocturnal 
image analysis. Yet, all these studies have been 
focused on the detection of artificial light sources or 
classification based on specific spectral signature 
detection (Aubé et al. 2005, Barducci et al. 2006, 
Elvidge et al. 2010 and Tardà et al. 2011).  

As shown in figure 3, artificial light sources have 
specific spectral signatures. The hyperspectral 
capabilities of the AISA Eagle II sensor allow deriving 
a set of spectral indexes focusing in particular features 
of the light spectral signatures, which are used to 
discriminate them. 

The hyperspectral instrument AISA Eagle II has been 
designed for recording reflected sunlight and not for 
capturing artificial light at night. Then, the relatively 
low intensity of artificial light at night and the limited 
exposure time by operational restrictions causes 
hyperspectral images to be affected by high noise 
level. 
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Figure 3. Spectral signature of usual different types of 
artificial light sources. (Units on x-axis are 
nanometers) 

In order to overcome with this handicap a two steps 
strategy has been designed. Firstly, punctual source 
lights and their illuminated neighborhood are detected 
in the DMC nocturnal images. Afterthat, a set of light 
spectral indexes is computed as a weighted average of 
spectral indexes derived from the AISA hyperspectral 
data. 

Punctual source lights are detected as the point (pixel) 
with the highest light intensity in its neighborhood. In 
a first step, for each image pixel the pixel with a 
maximum light intensity is detected in a 6 m radius 
neighborhood. Finally, for each pixel that is a local 
maxima in a 6 m radius neighborhood (punctual light 
source), its neighborhood is grown up to the area that 
is mainly illuminated by the punctual light source. 
Such point-like source describes the position where 
light intensity is the highest in its neighborhood, and is 
likely to correspond to the lamp center.  

Figure 4. Detection of punctual source lights and their 
illuminated neighbourhood. 

Figure 4 shows a detail of detected punctual source 
lights (grey-blue dots) and their illuminated 
neighborhood (grey polygons). The theoretical 
locations of public lamps (colored circles) are 
superimposed on the image. Notice that most of the 
public lamps are close to a detected punctual source 
light. Nevertheless, in low light intensity area there are 
punctual source lights that correspond to vehicles 
lights or reflective surfaces (for example, ground 
painted lanes, metal surfaces…) instead of known 
public lamps. 

Taking advantage of the different spectral signatures of 
the light sources (fig 3), a set of indexes has been 
derived. 

For each neighborhood of a punctual source light a set 
of light spectral indexes is computed as a weighted (by 
the light intensity over the whole light intensity in the 
neighborhood) average of the spectral indexes derived 
from AISA data. This set of indexes is used to derive 
the main type of the light source in the neighborhood 
of the punctual source light. Notice that each 
neighborhood may be mainly influenced by the 
principal light source: the maximum in the 
neighborhood. Despite of this, such neighborhood may 
be also influenced by other light sources as car lamps 
or showcase lights and light source type will be also 
influenced by the reflectivity features of the imaged 
surface. Figure 5 shows a detail of the resulting light 
source type map. The classification categories are the 
following: in yellow high pressure sodium lamps, in 
orange metal-halide lamps, in blue mercury vapor 
lamps, in green fluorescent lights, in violet LED 
lamps, in red halogen or incandescent lamps and in 
grey not classified lamps. 

Figure 5. Light source type map derived from 
hyperspectral sensor.  

5 CONCLUSIONS 

The operational approach of the ICGC is providing 
high resolution luminance maps (up to 25 cm GSD) 
and light source typology maps (up to 1.5 m GSD). 
Such maps are generated from simultaneous 
hyperspectral and photogrammetric airborne 
acquisitions. As acquisitions are carried out in a single 
flight session, these maps provide a synoptic view of 
the public and private illumination of whole 
municipalities, urban and peri-urban areas.  
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Figure 6. Distribution of type of light source versus 
light intensity in cd/m2. Legend is the same that in 
figure 5. 

These maps are thematic information of the nocturnal 
urban landscape and become a tool to: analyse and 
monitor both public and private illumination, check 
whether policies on light pollution are fulfilled in 
terms of intensity (mainly excess of light emitted 
towards the sky due to reflection or misdirection of the 
lamps) or typology of light sources, in particular the 
detection of unwanted type of lamps as mercury 
vapour lamps, cross usage of typology of light versus 
intensity or facilities (as in figure 6 where it can be 
seen that LED lamps has a larger deployment in the 
range of intensities between the 3 and 7.5 cd/m2) and 
the ICGC approach offers a decision support tool to 
evaluate street lighting policies and actuations. 
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ABSTRACT- INTA Aerial Platforms for Research is a large infrastructure which main component is a fleet of 
instrumented aircraft suited to collect airborne data. Its priority goal is to attend the demand of access coming 
from the technical and scientific community, that require a suitable and flexible aerial platform to carry out 
studies in fields so diverse as aeronautical science, Earth observation, atmospheric research or R & D of new 
airborne devices that need to be tested in actual flight conditions. The infrastructure so configured was 
acknowledged in November 2009 by the Spanish Ministry of Economy, Industry and Innovation (MINECO) as to 
National Large Scale Facility to support Science and Research (ICTS-PAI). 

1 INTRODUCTION 

An aerial research platform is an aircraft modified for 
the installation and operation of scientific 
instrumentation, which is prepared to perform flight 
campaigns to collect data used in scientific 
experiments, and the testing of equipment and systems 
under real flight conditions. 

INTA (National Institute for Aerospace 
Technology) has three manned platforms: two C212-
200 aircraft, manufactured by CASA-EADS, and a 
motorglider Stemme S15, all modified and adapted as 
aerial platforms to provide service support 
for scientific activities. They provide support for the 
needs of the technical and scientific communities so as 
to undertake trials with aircraft in flight, atmospheric 
research, data collection from remote 
sensing/observation of the Earth and tests for the 
development and qualification of new scientific 
instrumentation, among others. 

Since November 2009 INTA aircraft belong to the 
Spanish network of unique scientific and technical 
infrastructures (ICTS), coordinated by the Ministry of 
Economy, Industry and Competitiveness 
(MINECO). They are managed and operated by the 
Institute with the collaboration of the Spanish Air 
Force. 

The complete system is offered to the scientific 
community nationally and internationally through 
agreements and public and private partnership 
programs without discarding commercial operations. 

2 COMPONENTS OF THE ICTS-PAI 

The ICTS-PAI infrastructure consists of facilities and 
equipment which, depending on their location can be 
grouped into: 

 Air segment. Includes aircraft, the onboard
scientific instrumentation: sensors, detectors,
etc.; for monitoring, pre-processing and
registration of all data and all of the
auxiliary modules needed to perform the
data acquisition campaigns: power supplies,
racks, stands, mission communications
systems , etc.

 Ground segment. Consists of a base located
in the Rozas Centre for Airborne Research
(CIAR) located in the aerodrome of Rozas,
Lugo, that features all of the required
aviation infrastructure so as to allow for the
safe operating of the aircraft: operations
control centre, taxiway, platforms, hangars,
etc. In addition, we have planned to also
install the facilities required to support the
activities of the ICTS-PAI, such as
laboratories, workshops, offices, meeting
rooms, warehouses, additional halls, etc. The
ground segment includes also the necessary
fixed and mobile instrumentation to acquire
complementary field data to those taken
from the air: weather station,
instrumentation for the calibration data and
the maintenance of the sensors, modules for
the analysis and validation of the data, etc.

The data obtained by the instrumentation of the 
PAI are often complex and unique in their format, 
structure, variable measure, technique of 
measurement, etc. INTA in association with the PAI 
staff provides the users of ICTS with the support 
necessary to exploit and interpret the data generated, 
and extract from them useful information. 
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The PAI also includes a facility for processing, 
analysis and archiving (PAF) of data from airborne 
sensors. 

 
Figure 1. C212 “Aviocar”. 

 

 
Figure 2. Motorglider Stemme S15. 

 

 
Figura 3. Probe PCAPS mounted under the left wing 

of the C212 s/n 30 airplane. 
 

.  
Figura 4. Control tower and auxiliary buildings in 

Research Center airborne Rozas - CIAR 
Castro de Rei, Lugo 

 
Figura 5. Detectors modules of the AHS (above) and 
CASI 1500i (bottom) hyperspectral imaging sensors 
mounted on the C212 n/s 270 cabin. 

 

3 APLICATIONS OF ICTS-PAI  

The primary fields of application in which the ICTS 
develops its activity and gives support to users who 
request access to it are: 

 Flight testing. Undertaking flights to test 
the characteristics and performance of the 
C212 aircraft in flight was the original 
mission that motivated putting in operation 
PAI. The objective is to test the aircraft in 
multi-mission settings, with distinct flight 
configurations, under real world operational 
conditions, on occasion to the limit of the 
flight envelope to which it has been certified 
safe and thus learn about its behaviour in 
such circumstances. 

 Atmospheric research. In this case, the 
objective is monitor the physics and 
chemistry of the atmosphere during flights, 
in which atmospheric data is taken on-
site. The aircraft is configured as a airborne 
lab with the appropriate team and 
measurement instruments to collect the data 
in the environmental conditions that are 
required and will depend on the atmospheric 
environment being studied. In particular, our 
team has specialized in measuring the 
characteristics of atmospheric particles in 
suspension: size, composition, shape and 
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concentration. Another line of research that 
is increasingly active is that related to the 
study of the formation and accretion of ice 
on aeronautical surfaces, under real flight 
conditions. 

 Remote sensing in the optical
spectrum. An activity that has acquired
some relevance in recent years is the support
provided by the ICTS-PAI for campaigns of
remote sensing sensors of imaging 
hyperspectral to monitor the Earth's surface,
objects and the phenomena on it. In this
case, there are sensors that collect passive
imagery covering the entire optical spectrum
and provide calibrated data with high
spectral, radiometric and geometric detail.

 SAR campaigns. This activity aims to make
the flights needed to qualify, the SAR
(Synthetic Aperture Radar) sensors 
developed by the Institute's Area of radio
frequency in real operating conditions. This
support extends to undertaking "production"
flights for SAR images of the Earth's surface
and the objects located there.

 Assistance in the installation and 
qualification in flight of new 
instrumentation.  A support activity for the
R&D of instruments for data collection,
whose purpose is to adapt the prototypes
developed and already tested on land for
flight operations mounted on aerial 
platforms. This includes support for 
installation, certification and qualification of
new instrumentation, as and when 
appropriate.

4 HOW TO ACCESS ICTS-PAI 

The capabilities of the ICTS-PAI are offered to the 
scientific and research community, both nationally and 
internationally, with the only limitation being the 
distance between the base of operations (CIAR, Castro 
de Rei, Lugo) and the proposed location of the area 
that is to be studied. Currently the PAI fleet consists of 
aircraft with a maximum speed of 200 knots (370 
km/h) cruise and whose maximum autonomy is that of 
5 hours, this being the factor that determines the 
'reasonable' operating radius that for all practical 
purposes, covers the Central-European space. 

The ICTS-PAI is part of the European consortium 
of aircraft instrumented for environmental research, 
EUFAR (European Facility for Airborne 
Research) www.eufar.net. EUFAR is supported by the 
European Commission through the successive R&D 
European framework programmes, which is made up 

of 24 operators from 11 countries and since the year 
2000, through the transnational access instrument or 
TA funds the implementation of proposals that pass a 
selection process, covering the costs to access an 
aircraft and the instruments offered by its operators, 
who are also consortium members. 

It is important to mention that the capabilities of 
the ICTS-PAI are among the most sought after by 
European users, especially among those of the Earth 
observation community, and that as a result, there have 
been numerous campaigns throughout the European 
space: GREASEMH, CALABRIA, T-Mapp-FP7, 
Edocros, Hymoweb, Biohype, HyperForest, 
CalValHyp, UrbSense, DehesHyRe are some of them. 

Among the campaigns whose purpose was the 
study of the atmosphere and of the phenomena 
occurring within it, those of note include EURICE, 
TRUMPET, validate, EXTICE, VERDRILLT, 
MISPALIDAR, VOAS, TECOAGUA, CLIMARENO, 
etc; these have been financed with funds from the 
European R&D programmes in some cases, and in 
others, with funds allocated within the framework of 
national R&D programmes. 

It is also relatively frequent for access to be 
financed by specialized public entities which select 
proposals and projects of the greatest interest among 
those presented by universities and research 
centres. As it is the case of BELSPO in Belgium that 
has funded the activities of successive editions of the 
STEREOs program and in 2005 and 2007 were 
entrusted to the ICTS-PAI. 

The European Space Agency (ESA) has since 
2004 been one of the primary users of the ICTS-PAI, 
an agency with which it frequently collaborates with in 
campaigns of remote sensing as support for future 
Earth observation missions from space: SPARC, 
CEFLES2, AgriSAR, SEN2FLEX, DESIREX, 
THERMOPOLIS, SEN3EXP, etc. 

At the national level, the ICTS-PAI provides 
competitive access to the projects selected by the 
national R&D Plan, proposals that often involve the 
Institute, some of which mentioned previously. 

Finally, mention that the ICTS-PAI is also 
available to companies requiring an aerial platform to 
complete studies and trials. 

5 CONCLUSIONS 

The ICTS-PAI should be seen and understood as a key 
infrastructure that is unique in its scope, whose 
purpose is to give support and boost air 
instrumentation research and development. 

The primary objective of the Strategic Plan 2016-
2020 is the increase of the number of users that get 
access  to the ICTS-PAI, increase access in absolute 
terms while maintaining or improving the quality of 
the performed service. 
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Under this Plan, the obsolescence of the fleet of 
the ICTS has been identified as the main risk factor in 
maintaining the continuity of the service. FENYX 
"Future Aircraft for Research and Experimentation" a 
proposal selected by MINECO in March 2017 is to be 
co-financed and emerges as a response to that critical 
analysis. 

The financing of access to ICTS-PAI is a key 
factor to consider to promote and "democratize" its use 
between the different communities within the 
scientific and research fields, with often limited and 
always scarce economic resources, to cover the high 
costs associated with the operation of complex 
manned aircraft. 

Also of note is the situation created by the 
instrument of "transnational access" offered by 
EUFAR, which finances users access to the aerial 
research platforms from States that are part of the 
Consortium and which expressly excludes the co-
national researchers of each operator, in our case not 
including Spanish applicants to the ITS-PAI. An 
agency similar of that of EUFAR but on national level 
allowing us avoid such asymmetry is expected. 

The current European scene, dominated by the 
EUFAR2 program of FP7 (EUFAR continued) and that 
it will end January 31, 2018, according to the 
recommendations of the Commission, will give way to 
a new collaboration model based on the creation of the 
AISBL* " EUFAR" and the establishment of the figure 
of the "open access" that will regulate the exchange of 
resources and access to infrastructures, model which is 
currently in the phase of design and discussion among 
the participants in the Consortium, and that 
once agreed and approved is expected to attract new 
public financing of State authorities and the European 
Commission. 

* AISBL, Association Internationale Sans But Lucratif.
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ABSTRACT- Processing and distribution of big space data still implies the treatment of massive and large-
sized data obtained from Earth Observation satellite recordings. Remote sensing industries implement on-site 
conventional infrastructures to acquire, store, process and distribute the geo-information generated. However, 
these solutions present several drawbacks: (i) the cost of acquiring recent Earth images is limiting, (ii) clients 
have no direct and fast access to needed data as information is processed and distributed spontaneously, and 
(iii) the service is not flexible, in other words, it does not cover significant changes in the demand of services and 
the access to the information presents large latencies. Deimos’ research focuses on the development of future 
internet technologies in order to improve Earth Observation (EO) services and reduce the associated costs. In 
particular, a cloud infrastructure based on OpenNebula is used, and the Deimos-2 PDGS is optimised by using 
the ENTICE open source middleware. Experimental results of the implemented system are presented. 

1  INTRODUCTION 

Until now, Earth Observation (EO) satellite systems 
have commonly been operated by public 
organizations. However, in recent years the Earth 
Observation from space paradigm is changing. The 
market is being boosted, mainly due to the increased 
performance of the commercial satellites, the 
agreements signed between private and public 
customers and the appearance of the New Space 
paradigm (Denis, 2017). Besides, new countries (not 
traditionally involved with the Earth Observation 
industry) are investing in EO, while those countries 
with EO programmes are increasing their budgets in 
this field (Keith, 2015).  These facts together with the 
fast evolution of the information and communication 
technologies during the last decade, and the increase 
of revenues in the market of the generated data (Keith, 
2016) are contributing to the evolution of the space 
sector because there is a better performance of the 
systems at a lower cost. In addition, the launch of 
satellite constellations is a spreading trend to reduce 
the revisit time, which is one of the main limitations to 
develop new applications.  

Nevertheless, the infrastructures commonly used to 
manage EO data are still based on traditional IT 
technology, i.e. systems that were designed to be 
monolithic, completely controllable and localized in a 
single and specific location. This requirement of full 
controllability of the traditional Earth Observation 
Payload Data Ground Segments (PDGS) made the 
systems present the following limitations: 

a) Traditional infrastructures are not flexible
neither easily scalable to operate. 
b) There exists the risk of 
oversizing/undersizing the infrastructure to offer 
services when highly variable demand exists. 
c) They make the cost of acquiring recent
images of the Earth very high. 
d) The customers cannot access directly neither
fast to the information they need because this has 
to be processed and ad-hoc distributed.  

The use of cloud computing technology can eliminate 
the previous drawbacks because it is elastic, scalable, 
it works on demand through virtualization of resources 
(Armbrust, 2010), offers virtually unlimited storage 
and computation capability, it is worldwide connected 
and it is based on a pay per use model (Botta, 2016). 

Nevertheless, the current cloud computing 
technology still presents some limitations (Ramos, 
2016):   

a) The virtual machine images (VMIs) are not
optimized, being highly over-sized,
impacting in the costs of using the
infrastructure and in the dynamic resources
provisioning.

b) The deployment of Virtual Machines (VM)
in cloud is not in real time. The deployment
normally takes between 10 and 20 minutes,
which directly affects to the flexibility and
dynamic scalability of the system.

c) The costs of using cloud computing are still
high.

d) Cloud infrastructure vendor lock-in limits
the democratization of services.
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We propose the cloud-based implementation of the 
Deimos-2 PDGS to optimize the system and increase 
the efficiency by using the ENTICE middleware. The 
system is named as Earth Observation Data (EOD) 
pilot (Prodan, 2016). The EOD pilot is optimized and 
results of parallel processing of satellite imagery are 
presented. 

2  EARTH OBSERVATION DATA PROCESSING 
AND DISTRIBUTION PILOT  

2.1 ENTICE environment 

The EOD pilot makes use of the ENTICE middleware, 
which facilitates auto-scaling and flexibility to the 
ingestion of satellite imagery, its processing and 
distribution to end users with variable demands 
(Kecskemeti, 2016). The ENTICE environment 
consists of a ubiquitous repository-based technology 
which provides optimised Virtual Machine (VM) 
image creation, assembly, migration and storage in 
federated clouds. The expected ENTICE features are 
the following: 

a) Reduction of up 80% storage.
b) 95% elastic Quality of Service.
c) VMIs creation 25% faster.
d) Reduction on the costs of deployment.
e) VMIs optimization up to 60%.
f) VMIs delivery 30% faster.
g) Scalability and elasticity.
h) Elimination of cloud infrastructure vendor

lock-in.
In the EOD pilot, ENTICE is used as a middleware 
between the federated cloud infrastructure and the 
adapted gs4EO application software. 

2.2 EOD pilot description 

The Earth Observation Data Processing and 
Distribution Pilot (EOD) consists of the 
implementation of the Elecnor Deimos’ gs4EO 
software, which is a software developed for the 
processing, storage and distribution of satellite 
imagery. It was implemented for the Deimos-2 
satellite, and here we adapted it and implemented in 
cloud.  Its architecture is composed by the following 
components: 

a) monitor4EO:  it is a ground station monitor
which ingests the available raw data from 
the ground stations to the Cloud system.  

b) process4EOserver: it generates the Job
Orders that contain all the necessary 
information that the processors need, and 
controls the processing chain by 
communicating with the product processors. 

c) process4EOnode: it includes one product
processor for each level of processing: L0 
(raw data decoded), L0R (transformation of 

L0 into image), L1A (geolocated and 
radiometric calibrated image), L1BR 
(resampled image and more precise 
geolocation) and L1CR (orthorectification).  

d) archive4EO: stores and catalogues the
processed images in a Catalogue Service for 
the Web (CSW) interface. 

e) user4EO: it is a web service in which the end
users can access to the products. 

f) Shared Storage: it is a storage in which all
the inputs and outputs of all the modules of 
the architecture are stored. 

g) 
Figure 1 depicts the EOD pilot architecture with all the 
elements and their interrelations by means of the work 
and data flows. 

Figure 1. EOD pilot architecture. 

3 EXPERIMENT SETUP  

3.1 Testing infrastructure 

The federated cloud infrastructure implemented for 
testing purposes was based on OpenNebula. The 
Kernel-based Virtual Machine (KVM) was used as 
hypervisor. The virtual machines were created with 
Packer, and Ansible was used to automate the 
deployment of the virtual machines generated.  Figure 
2 shows a scheme of the automatic generation of the 
virtual machines. The process was the following: 
1. The Python script received the configuration file

and launched the Packer command after 
configuring some parameters in the Kickstart file 
in order to build the VMIs required to deploy the 
EOD pilot. 

2. Packer made use of the template and built all the
VMIs by using KVM. The Packer template had 
the provisioners which defined the recipes in 
Ansible for configuring the machines and 
installing the applications. 

3. Once the image was built, Packer launched all
the provisioners. Thus, Ansible carried out 
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several steps: it configured all the repositories, 
installed all the dependencies and software 
packages of the EOD modules, configured the 
EOD software, and installed a context package 
to deploy the VMI in OpenNebula. 

The hardware of the infrastructure used in the 
experiment was constituted by different nodes, 
distributed in three different countries and managed in 
a federated manner: DMU infrastructure in United 
Kingdom, DMS infrastructure in Spain and DME 
infrastructure in Portugal. The DMU infrastructure 
was the master of the infrastructure. It had the 
ENTICE middleware installed, an object store with 
interface to Amazon S3, and the cloudware of 
OpenNebula. DMS and DME infrastructures were 
slaves of the DMU infrastructure. Both of them had an 
object store with interface to Amazon S3 and the 
cloudware in OpenNebula. Table 1 shows the features 
of the hardware integrating the federated cloud for 
testing. The operative system installed in the different 
resources was CentOS 7.2.1511.  
In addition, two different tools were used to record the 
experimental data and to monitor the cloud resources. 
On the one hand, the open source application Apache 
JmeterTM was used to measure the behaviour of the 
EOD system functionality in the runtime. On the other 
hand, Nagios® was used to monitor the infrastructure. 

Figure 2. Diagram of the automatic genereation of the 
EOD virtual machines. 

Table 1. Hardware Infrastructure. 

Place Name CPU RAM 
(GB) 

HD 
(GB) 

DMU 

Node-1 Intel Core i7 – 
2600 3.4 GHz 8 160 

Node-2 Intel Core i7 – 
2600 3.4 GHz 16 250 

Open-
nebula-

fe 

Intel Core 2 6300 
1.86 GHz 4 250 

DMS 
Node-2 Intel 8 Core 2.37 

GHz 16 2048 

Node1 Intel 2 Core 3 
GHz 6 230 

DME Node1 
AMD Athlon 64 

X2 Dual Core 
3800+ 

4 256 

3.2 Experiment description 

The aim of this experiment is to demonstrate the 
feasibility of implementing the EOD system in cloud 
and evaluate the benefits obtained. For that purpose, 
the VM containing the processing chain (process4EO) 
of the EOD pilot was optimized and experiments were 
carried out with both optimized and not optimized 
VMs to facilitate comparison. The scenario was that of 
a common image acquisition with the Deimos-2 
satellite. In the emulation, the recording in raw data 
was ingested into the EOD system and it was 
automatically processed in the different levels to 
obtain the imagery products: L0, L0R, L1A, L1BR 
and L1CR. To validate the scalability of the system, 
parallel processing of ten images was done. The 
testing image used in the processing had the following 
features: 3MB size, four multispectral bands (R, G, B 
and NIR), one panchromatic band, and the recorded 
area was a rectangle of 8.86 x 16.59 km2. 

To establish a comparison in the performance of the 
system the following evaluation metrics were defined: 
VMI size, VMI creation time, VMI delivery time and 
VMI deployment time. These were measured in the 
EOD pilot with optimised and not optimised VMs. 
Notice that all previous metrics are not runtime 
related.  However, in order to demonstrate that the 
functionality of the system remained intact after the 
optimisation process, the processing time and the size 
of the imagery produces were measured. 

4 EXPERIMENT RESULTS 

The virtual machine image was created, delivered and 
deployed in the cloud infrastructure. This VMI had a 
size of 2 GB. Then, the virtual machine image was 
optimized and created, delivered and deployed as an 
optimized application. In this case, the optimized VMI 
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had a size of 1.4 GB, i.e 30% less. The results 
obtained in the creation, delivery and deployment of 
the not optimized virtual machine are presented in 
Figure 3. On the one hand, The VMI creation of the 
not optimized VM was done in 19.70 minutes, the 
VMI delivery in 20.42 minutes and the VMI 
deployment in 6.78 minutes. The whole process was 
done in 46.90 minutes. On the other hand, in the case 
of the optimized VM, the time to create the VMI was 
12.35 minutes, the delivery time was 13.37 minutes 
and the deployment time was 3.12 minutes, the sum of 
them being 28.84 minutes (see Figure 4).  Then, the 
reduction in the creation, delivery and deployment 
times of the optimized VM were 37.31%, 34.52% and 
53.98% respectively, the difference in the total time 
required from the creation time to the deployment time 
being 38.51%. 

Next, for both optimized and not optimized EOD 
pilots ten images in raw data were ingested in the 
shared storage. Then ten processing chains started 
running in parallel. They were monitored and their 
statistics were measured. The processing time required 
to obtain the imagery products, i.e the processing time 
per processing stage obtained are depicted in Table 2. 

Figure 3. VMI creation, delivery and deployment time 
of the not optimized VM. 

Figure 4. VMI creation, delivery and deployment time 
of the optimized VM. 

The processing time of the imagery products with the 
not optimized EOD pilot was of 50.20 minutes mean 
with 7.69 minutes standard deviation, while the 
processing time with the optimized EOD pilot was a of 
49.19 minutes mean with 7.94 minutes standard 
deviation. Although slightly different, we can affirm 
that the processing time of the EOD pilot was similar 
in both cases. The processing time per processing 
stage of the not optimized system is shown in Figure 5 
and that of the optimized system in Figure 6.  

Table 2. Processing time per stage. 

Not optimized Optimized 
Stage Mean 

(min) 
STD 
(min) 

Mean 
(min) 

STD 
(min) 

L0 6.41 0.83 5.69 0.72 
L0R 7.74 0.96 7.70 1.00 
L1A 3.87 0.30 3.68 0.82 
L1BR 22.32 4.57 22.42 3.98 
L1CR 9.86 1.03 9.69 1.41 

Figure 5. Processing time of the not optimized pilot. 

Figure 6. Processing time of the optimized pilot. 

Notice that the parallel processing of ten images was 
done. In a monolithic system without scalability the 
processing of ten images could have taken ten times 
more, more than 8 hours of continuous processing. 
This demonstrates the benefits in time to user terms of 
distributing and making scalable an application. 
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Finally, the size of the different imagery products 
obtained in all the tests was the following: 

• L0: 764MB
• L0R: 789MB
• L1BR: 749MB
• L1CR: 1140MB

5 CONCLUSIONS 

In this work a PDGS was implemented in a federated 
cloud with the support of the ENTICE middleware. 
The virtual machine containing the processing chain of 
the PDGS was optimized and results were obtained 
with the not optimized and the optimized system. The 
optimization of the virtual machine provided a virtual 
machine image with 30% less size, i.e. the VMI passed 
from 2GB to 1.4GB. Furthermore the creation, 
delivery and deployment time of the optimized VMI 
was 38.51% less, with respect to the not optimized 
VMI. These results indicate that the optimization of 
the system can reduce the costs of storage, the size of 
the repository and the time to deploy the application in 
the cloud.  
Furthermore, it was demonstrated that the optimization 
of the system did not affect its functionality, providing 
a correct execution of the system: the different 
imagery products were correctly obtained and in a 
similar time. 
In addition, the scalability of the system was tested by 
processing in parallel ten images at the same time. 
This demonstrates (independently from the 
optimization of the system) that making the 
application distributed in cloud can dramatically 
reduce the processing of several recordings at the same 
time. In a monolithic system, the system would wait 
until the system has finished the processing of one 
image to start with the processing of a new one. The 
parallelization thus presents a clear advantage over the 
traditional application. 
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ABSTRACT - Rice is the staple food for more than half of humanity - over 90% of the world’s rice crop 
produced and consumed in Asia. In the context of price instability and threatened food security, accurate 
information are needed on the spatial distribution of rice fields, water use, risk occurrence, annual production 
projections. Long term inter-annual monitoring is also required in order to study impacts of environmental 
issues and of changes in cultural practices on the rice grown area and the production. With the launch of 
Sentinel-1 (S1) in April 2014, C-band SAR data are available worldwide, which present an unprecedented 
opportunity to monitor the rice growth at high spatial and temporal resolution (10 m, every 12 or 6 days). This is 
particularly important for rice grown regions under frequent cloud cover. In this paper, the methods are 
developed for rice monitoring in the Mekong River Delta (MRD) in Vietnam, one of the most important rice 
growing region. The methods are based on the temporal change of the backscatter intensity at VV, VH and 
VH/VV ratio of S1 time series. The results on rice area and rice crop density (every 6 days at present) have 
shown good agreement with in-situ data. The methods have been discussed regarding the generality of the 
methods to be applied for a diversity of rice growing practices. 

1  INTRODUCTION 

Among EO data, SAR data have been proved efficient 
for rice monitoring since late 80’s (Le Toan, 1989) 
with all-weather capacity and also are well adapted to 
distinguish rice from the other land cover types 
because of the specific response of the radar 
backscatter from the rice fields. Rice area mapping, 
rice production estimation (Mosleh, 2015) and 
retrieval of rice parameters (Inoue, 2014) were well 
demonstrated, but applications have been hampered by 
lack of systematic and cost effective data. The 
Sentinel-1A satellite launched in April 2014 presents 
an unprecedented opportunity for rice monitoring 
applications over large areas. Over the Mekong River 
Delta, (MRD) in Vietnam, S1 IW with dual-
polarization data are currently acquired every 6 days 
over a 300 km x 300 km. In this study, the time series 
data are analysed and interpreted using knowledge of 
the SAR scattering mechanisms. The results lead to a 
development of mapping methods for rice monitoring. 
The results obtained in 2015, 2016 and 2017 are used 
to assess the inter-annual changes in rice grown areas 
in the region, under the impact of El Niño in 2016. 

2  MATERIALS 

2.1 Study site 

The study site is the MRD, a region constituted by 13 
provinces in the southern tip of Vietnam, covering 
around 40000 km², 275 km from North to South, 260 
km from West to East, where the Mekong River 
empties into the sea through a network of nine main 

distributaries. The topography is very flat, with most 
of the land below 5m. The MRD is the major rice- area 
in Vietnam producing more than half of national 
production. Rice farmers in the region have relatively 
small farms that are of 1 to 2 hectares on average and 
generally cultivate three major cropping seasons 
during a year: winter-spring or early season; summer-
autumn or midseason; and autumn-winter or a longer 
rainy season crop. It can be noted that the crop 
calendar, rice varieties and water management are very 
diverse, changing from one region to another, and 
from one field to the next. 

2.2 SAR Data 

The data used in this study are Sentinel 1 (S1), images 
at C-band (5.405 GHz) operating in Interferometric 
WideSwath Mode at VV+VH polarizations, high 
resolution (10 m), large coverage (up to 300 km), 
having short revisit time (every 12 days for S1-A and 
every 6 days with S1-A and B) and rapid and free of 
charge data delivery. A processing chain has been 
developed at CESBIO for automatically collecting and 
preprocessing a stack of time series S1 data. In this 
study, time series of 108 S1 scenes have been 
preprocessed and analyzed.  

2.3 Ground Data 

Ground data are necessary to the understanding of the 
radar backscatter for algorithm development, and also 
for result validation. For algorithm development, 60 
rice fields located in the An Giang province were 
surveyed during each rice season in 2015 and 2016. 

  351

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



General parameters include rice varieties, date of 
sowing, planting methods (direct sowing, line sowing), 
date of harvesting, and final yield. Moreover, data 
collected randomly for rice/non-rice validation (100 
independent samples of rice fields and 30 samples of 
other LULC) in the major rice regions across the 
Mekong delta in 2016 and 2017.  For validation of rice 
grown area per season, statistics in rice planted areas 
from the 13 provinces in the MRD in the Summer-
Autumn rice season 2016 have been used. 

3 METHODS 

3.1 Analysis of the SAR data 

In order to derive the temporal variation of the 
backscattering coefficient of rice fields, the S1 VV and 
VH polarization have been analyzed over 60 sampled 
fields, in the An Giang province, Vietnam. The 
backscatter values have been derived from series of S1 
(A + B) including 108 acquisitions from 06 October 
2014 to 08 September 2017.  

Figure 1. Variation of VH, VV backscattering coefficient, 
and polarization ratio VH/VV of the 18 sampled fields 
extracted from S1 images of 15 dates, versus the sowing date 
of each field. 

It is noted that the planting calendar differs among the 
60 rice fields under study, depending on the varieties, 
planting practices and farmer schedule. As a result, at 

a given date, rice fields are displayed on S1 images 
with a large range of backscatter values. To 
understand the polarisation and temporal behaviour of 
rice field backscatter, the sampled fields following the 
same calendar were selected for analysis. Fig. 1 shows 
the VH, VV and VH/VV backscatter analysed as a 
function of plant age (days after sowing) of 18 rice 
sampled fields in the Autumn-Winter 2016 rice season 
in An Giang province.  
The temporal variation differs between VH and VV 
between 10 days after sowing and until the end of the 
reproductive stage. The rice is sown on wet soil and 
the fields are flooded at 10 days, when the backscatter 
values are the lowest during this first period. Before 
the sowing, the ploughed soil has been smoothed, this 
explains the early decrease of the backscatter. After 10 
days, VV backscatter increases during 10 days, both 
due to the double bounce scattering and the volume 
scattering. At 20 days, when the plants are developed, 
the attenuation increases in double bounce scattering, 
causing a decrease in the backscatter. Towards the end 
of the reproductive stage, around 60 days, the rice 
grain increases in biomass, contributing to an increase 
of the volume scattering until maturation stage. After 
harvest, the backscatter decreases to values 
corresponding to smooth bare soil. After 10 days, VH 
backscatter increases until 40 days, then decreases 
slightly until 60 days, toward the end of reproductive 
phase. 
The most interesting feature is the ratio between VH 
and VV, which shows an increase from 20 to 60 days, 
then decrease to 70 days. The VH/VV ratio (or 
difference in dB) in Fig. 1 shows that two periods can 
be distinguished during each rice season: on the first 
period (up to 50-60 days) where the ratio increases 
with plant age (from about -12 dB to -4 dB), and the 
second period where the ratio slightly increases or 
keeps a stable evolution during the ripening stage then 
decreases until harvest. This large increase in VH/VV 
can be interpreted as caused by the differential 
contribution of the double bounce scattering, and the 
differential attenuation in VH and VV. As a 
consequence, the ground contribution is minimised in 
the ratio, and it is expected that the backscatter ratio 
has higher correlation with the plants parameters such 
as biomass or LAI, as reported by (Bernardis, 2016, 
Veloso, 2017). Fig. 2 shows the backscatter of rice 
fields compared to that of the main other land use 
classes present in the Mekong Delta, here, forest, 
water, and urban areas, which have much more 
temporal stability, and which have very different VH 
backscatter levels. These observations lead to the use 
of the VH and VH/VV temporal change as a classifier 
of rice fields. 

  352

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Figure 2. Variation of VH backscatter of forest, river, urban 
and rice extracted from S1 images versus observation date in 
the Mekong Delta. 

Since the beginning of the acquisitions of Sentinel-1 
data over the Mekong Delta around October 2014, 
time-series covering almost 9 growing seasons have 
been acquired. Fig. 3 shows the VH, VV and VH/VV 
backscatter profiles of 60 rice fields situated in the An 
Giang province. Three rice seasons per year are clearly 
shown by the backscattering coefficient trend in the 
Fig. 3. 

Figure 3. Temporal variation of S1 VH (blue) and VH/VV 
(red) of the 18 experimental fields in the province of An 
Giang. The data are from 6/10/2014 to 08/09/2017, with 12 
day repeat frequency with S1A until October 2016, followed 
by 6 day repeat frequency of both S1A and S1B. 

Fig. 3 shows similar temporal behaviour of VH/VV 
backscatter across rice seasons, with maximum values 
of about -3 dB and minimum of about -17 dB, making 
the largest dynamic range in backscatter (maximum – 
minimum of 14 dB) as compared to other crops or 
LULC types. These analyses reveal that the VH and 
VH/VV maximum temporal change are robust 
classifier of rice fields, and they could be used for 
phenological stage estimation.  

 Effect of incident angle 
The incidence angle (in degrees) of the IWS data used 
for rice mapping corresponding to the 3 different sub-
swaths. As the range of incidence angle is quite large 
(roughly 31° to 46°), it is necessary to assess the 
variability of the rice backscatter profiles across the 
incidence range. The analysis shows that the 
maximum temporal increase of VV rises with the 
incidence, from about 4.5 - 5.5 dB in near range to 
about 8.5 - 11.5 dB in far range, due to the difference 
in both the backscatter of smooth surface at the start of 
the season, and that of the multiple scattering at the 

peak season. Similar analysis results are obtained with 
VH, where 3 - 4 dB was found at near range and 8 – 9 
dB at far range. In all cases however, the maximum 
temporal increase is high (above 4 dB) compared to 
other land use land cover types. The maximum 
temporal increase of the other targets is found to be 
around 1 – 2 dB. A threshold of 4 dB could be used to 
map rice at different incidence angles. However, 
confusion with other targets is expected to be more 
important at near range. The methodology to calculate 
the optimal threshold is described in (Bouvet, 2010). 
In this work in the Mekong Delta, the threshold was 
determined for each of the beams of S1 images. For 
this purpose, rice fields have been located within each 
incidence range and their temporal change is analysed 
to define the relevant threshold. These thresholds can 
be used for rice mapping in the Mekong Delta using 
S1 images acquired every 12 days. To extend the 
method to other regions, there is a need to assess 
experimentally these thresholds, which depend on the 
backscatter temporal change of other land use land 
cover types, and also on the time interval between 
acquisitions (6 days, 12 days to 24 days).  

3.2 Rice monitoring methods 

The methods for rice mapping and monitoring is 
backscatter temporal change using maximum increase, 
which is shown in the previous section that the VH 
backscattering coefficients increase 8-14 dB during the 
rice growth cycle. 
The Fig. 4 has shown the optimized rice mapping 
algorithms, which follows (Bouvet, 2011). A pre-
processing is needed as a first step in order to reduce 
the speckle noise by calibration, registered, terrain 
correction, multi-temporal filter by using the 
automatically processing chain. To avoid confusion of 
the rice map, other land cover maps are created: water 
map, tree map and urban map have been created. The 
analysis shows the difference temporal change of each 
cover types. The tree map based on the low temporal 
change of backscatter (1-2 dB). The backscatter of 
water shows lower than -24 dB as seen in Fig. 2. 

Figure 4. Rice mapping methodology 

The retained rice mapping algorithm is composed of 
the three following rules:  
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1. If VH_max_inc > (Threshold) dB then rice
2. Else if VH_min > -18 dB then trees/built-up areas
3. Else if VH_mean < -22 dB then water.

The first rules describe the typical backscatter increase 
of rice fields in each rice season, from the flooding 
stage to the mature stage, with the optimal threshold 
for each S1 incidence angle range mentioned in 3.1. 
Only VH is used here, because of its robustness to 
discriminate rice from the other major classes (trees, 
built-up areas, water) in the region. An additional test 
using time series of VH, VV and VH/VV of pixels (or 
polygons) is performed, to assess the consistency of 
the rice backscatter temporal profiles. Until now, this 
test is performed manually. The second rule accounts 
for the fact that built-up areas and trees have a 
consistently high backscatter at cross-polarization 
compared to the other land use types in this area. The 
third rule is based on the fact that the backscatter of 
water bodies, though slightly variable, is consistently 
low. 
When applying the threshold algorithms to Sentinel-1 
images, we need to consider the various imperfections 
that may affect the rice map accuracy and must take 
them into account while evaluating the performance of 
such algorithms; therefore the thresholds are defined 
within each incidence range, their temporal change 
and the time interval between acquisitions (6 days vs 
12 days). Probability of error (PE) in classification 
methods between rice and non-rice classes used to 
assess the accuracy (Bouvet, 2010). 

4 RESULTS AND DISCUSSIONS 

The analysis results in the previous section have 
shown that the method using the backscatter temporal 
change is a good classifier for rice mapping during the 
period of rice cycle. The method makes use of 
temporal change of the backscatter intensity at VH and 
provides mapping results every 6 days at present. Nine 
maps of nine rice seasons since October 2014 to 
present have been derived. They can be used to 
observe the temporal evolution of rice cultivation in 
the Mekong River Delta in Vietnam. Fig. 5 shows the 
comparison of rice mapping results in 2015, 2016 and 
2017 winter-spring rice season in the MRD. The rice 
areas in Winter-Spring season in 2016 decreases of 
283000 ha or 16.8%; i.e. 1.39M ha vs 1.67M ha as 
compared to Winter-Spring season in 2015 and 1.69M 
ha in Winter-Spring season in 2017. The decrease of 
rice areas in Winter-Spring in 2016 is interpreted as 
due to El Niño effect. This is attributed to by shortage 
of water and saline water intrusion (CCAFS-SEA, 
2016).  
The rice/non-rice map has been validated using 413 
check points including 299 rice fields during the 
campaign, 23 fields before or after the rice season and 

91 check points of other crops (pepper, sweet potatoes, 
corn, etc.), during the 3-8 July 2016 campaign in 9 
provinces in the Mekong Delta. The comparison has 
shown good agreement (407/413 check points), that is 
98,5% of good rice detection. 
For the rice grown area estimates, the rice map in the 
Summer-Autumn rice season based on S1 data from 
April to August 2016 is used to calculate the number 
of rice pixels, and the area of rice planted area in each 
of the 13 provinces. Fig. 6 shows the comparison 
between the estimated area and the Province Agency 
statistics of rice planted areas for the Summer-Autumn 
2016 rice season. 

Figure 5. Comparison of rice mapping results  in 2015, 2016 
and 2017 winter-spring rice season in the Mekong River 
Delta, Vietnam. 

Figure 6. Comparison in rice planted areas estimated from the 
Sensinel-1 rice map and the Province Agency statistics for 
the Summer-Autumn 2016 rice season. 

The result provides good agreement in the overall 
comparison (95,6% for the 13 provinces in the 
Mekong Delta). Two important under estimated areas 
were found in Dong Thap and Hau Giang, that could 
be interpreted as due to the early start of season in 
2016 (in January and February instead of March-April, 
to avoid the impact of El Niño), whereas the test was 
done using S1 data starting in April 2016. The start of 
the season is important (as well as the peak period of 
the season) because the method is based on the 
backscatter maximum variation (maximum – 

Dong Thap

Kien Giang

Hau Giang
Can Tho

R2 = 0.9785

Estimated area (thousands of ha)
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minimum for peak and start of the season). For the 
other 11 provinces, the error due to the crop calendar 
is reduced. The estimated areas using S1 product for 
these 11 provinces (with Dong Thap and Hau Giang 
excluded) account for 99.3% of the Agency data. 
The estimates could be improved when the crop 
calendar is automatically determined at province level 
by the time series of data, e.g. the temporal curves of 
VH/VV. Also to be tested is the use of medium 
resolution optical data such as Sentinel-3, to determine 
the start of the season. To apply the method to other 
regions, the knowledge of the duration of the rice 
growing season and the phenological development of 
rice plants are required.  

5 Conclusion 

This study evaluates the use of earth observation data 
for a large-scale near-real-time monitoring system of 
rice crops in the Mekong Delta, Vietnam and provides 
results for rice area, rice cropping density and the 
assessment the inter-annual changes in rice grown 
areas in the region. The resulting information on rice 
crop extent is essential for planning, monitoring and 
food security applications. Results from this study 
have demonstrated that Sentinel-1 data can provide 
useful information for mapping rice crops at near real 
time and high accuracy. Especially the very short 
revisit time (6 days at present), high resolution (10m) 
and large coverage demonstrate the advantages of 
Sentinel-1 data for operational mapping of rice fields 
at region and national level. 
Finally, further works need to be carried out to bring 
the methodology towards operational rice monitoring: 
(1) experiments and analysis across sites in different 
regions and countries, (2) refinement of methods for 
the retrieval of rice parameters (biomass, sowing date, 
phenological stages, inundation status), and (3) 
integration of EO products in crop production models.  
Remote sensing of crops is of prime interest for social-
economic and global environmental aspects. The 
current methods and techniques may be applied to 
national scale to assess their capabilities in monitoring 
rice growth and production under different effects of 
diverse environmental and field management 
conditions. 
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ABSTRACT - The Multitemporal analysis of the huge quantities of satellite remotely sensed data (i.e., 
Pathfinder AVHRR land database, LTDR database, MODIS database, Landsat database, etc.) need an enormous 
increasing in both hardware power and algorithms architecture development. Nowadays, using Graphics 
Processing Units (GPU) computing, a substantial amounts of compute power and time optimization is provided. 
It has been done so by making it possible for enormous numbers of compute cores to work in parallel. However, 
GPU Hardware architectures (i.e., Fermi, Kepler, Maxwell, etc.), advanced memory Hierarchy (i.e., Cache, 
Unified, Shared, Local and Global memories, etc.), and bottlenecks management programming have made 
software development a very hard and heavy charge. In this paper, The Multi-temporal, Multi-threading Multi-
core computation framework (3MCF) has been extended to support Compute Unified Device Architecture 
(CUDA) optimized GPU remote sensing algorithms computing biophysical indices (i.e., Split-Window Land 
Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), etc.). Thus, to improve 
performance and reduce computing time of multitemporal analysis and using the most commune GPU graphics 
cards like GeForce GTX1080 and GeForce GTX480 with respectively 2560 cores running at 1,6 GHz and 480 
cores running at 1.4GHz. In order to study the improvement of the computation time performance, 336 
benchmarking tests was applied (i.e., 2 hardware architectures, 2 algorithms, 7 image sizes, one year monthly 
temporal resolution). Final adapted benchmark results show a gain reaching more than 700% for the GTX1080 
and more than 500% for the GTX480 depending on hardware architecture, image size and algorithm complexity.  

1  INTRODUCTION 

The exponential growing of satellite data during the 
last two decades (due to the use of increasingly 
number of satellites and continuously higher 
resolutions), and the development of more than 40 
biophysical indices (i.e., Land Surface Temperature 
(LST), Thermal Inertia (TI) (Sobrino et al., 1998), 
emissivity (ε) (Sobrino et al., 2001), Normalized 
Difference Vegetation Index (NDVI), Leaf Area Index 
(LAI), atmospheric Water vapour (W), Global 
Environmental Monitoring Index (GEMI), Soil 
Adjusted Vegetation Index (SAVI) (Baret et al.,1989), 
etc.), has transformed multitemporal study into very 
complex task. Hens, a huge quantity of satellite 
remotely sensed data has been accumulated waiting 
for new software and hardware capability treatments. 
These treatments are both time and memory 
consuming for the huge amount of data (Ben Achhab 
et al. 2010). Therefore, the need of new High 
Performance Computing (HPC) techniques able to 
compute Remote Sensing (RS) algorithms on such 

huge quantity of data has been intensified. Therefore, 
computer hardware industry has provided more 
computational power with computer systems 
containing powerful Graphics Processing Units (GPU) 
(Glenn and rtun, 2009) used as co-processors firstly 
designed for gaming and then well used by the 
scientific community (Kingyens, 2009). 

With the push of the GPU systems, software 
developers are confronted with an increasing 
complexity: i) complex transferring and loading data 
to the GPU, ii) GPU caches memory are more 
pipelined as more cores are implemented (Brodtkorb, 
Hagen, and Sætra 2013), and iii) software developers 
must implement parallel programming instead of serial 
one. Thus, using techniques such as: multiprocessing, 
MultiTHreading (MTH), special libraries (i.e. CUDA, 
OpenCL. etc.), etc.  
In this work, a framework has been built to implement 
Remote Sensing (RS) algorithms with Simultaneous 
MultiThreading (SMT) on GPU architectures. It has 
been integrated into the core of Multitemporal 
Multithreading on Multicore Computations 
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Framework (3MCF). 3MCF proposes an approach to 
compute automatically whole RS databases -in order 
to carry out multitemporal studies- to:  

i) avoid the memory overflow,
ii) accelerate the execution with full and/or partial
parallelization, 
iii) optimize system and device memory
reservations, 
iv) maximize the speedup, and
v) exploit the full hardware power.

2 GPU overview 

2.1 Hardware architecture 

NVIDIA's Fermi architecture have marked an 
important change in GPUs architecture design 
involving many Graphics Processing Clusters (GPCs) 
(Xuan, Li, and Han 2018), each one encompassing 
numerous Streaming Multiprocessors (SM), and each 
SM contains several processors called SM Cores 
(SMC) (see Figure 1). 

Fig.1. Modern Graphics Processing Architecture 

This architecture has been also adopted for both 
Kepler (Purawat et al., 2017) and pascal (Peternier, et 
al., 2017) architectures and changing the number of 
GPC, SM, and SMC to increase the Total Number of 
Cores (TNC). During the last few years, GPU 
architectures have implemented from 2 to 4 GPC each 
one encompassing from 2 to 20 SM. Table1 gives an 
overview of some commune Nvidia graphics cards. 

Table1. Overview of some Nvidia's graphics cards. 

Archi tecture Nvidia  graphics  card GPC SM SMC TNC

Cermi GeCorce GTX480 4 4 32 480

GeCorce GTX680 4 2 192 1536

GeCorce GTX980 4 16 32 2048

GeCorce GTX1060 2 20 32 1280

GeCorce GTX1070 3 20 32 1920

GeCorce GTX1080 4 20 32 2560

Pasca l

Kepler 

2.2 CUDA architecture 

The Compute Unified Device Architecture 
(CUDA) is a programming model (Kalaiselvi et al., 
2017) created by Nvidia to assist software developers 
to use the GPU cores. It is also a parallel computing 
platform designed to work using programming 
languages like C and C++. CUDA uses multithreading 
coarse and fine-grained models to enable execution of 
many concurrent threads. Commands are distributed to 
a collection of threads called a warp. This last is a part 
of block mapped to SM. Finally, the grid is number of 
blocks (See Fig.2). 

Fig.2. Compute Unified Device Architecture 
The number of threads per block and the number of 
blocks per grid is limited by the GPU hardware. In the 
case of Nvidia GeForce GTX1080Ti the maximum 
number of threads per multiprocessor is 2048 and the 
maximum number of threads per block is 1024. It is 
true that every block of threads can work together by 
sharing data through device shared memory and 
thread-synchronisation but just inside a single block. 
More generally, the computer or commonly called 
Host send data and instructions to the graphics card 
called Device, it wait executions on the Device to be 
done, and the computed data is sent to the Host.  

3 FRAMEWORK FOR MULTITEMPORAL GPU 
COMPUTATION  

3.1 Huge Remote sensing databases 

Nowadays, collecting data from a variety of satellite -
and aircraft- based sensors some RS databases store 
huge amounts of data every day (i.e., Landsat8 with 
86.15 Tera byte/year, Radarsat-2 with 20.56 Tera 
bytes/year, SPOT5 with 19.58 Tera bytes/year, etc.) 
(Ma et al., 2014). Hence, Actual RS databases have 
reached thousands of Tera bytes (i.e., MODIS- 
TERRA/AQUA, Landsat OLI/TIRS, Landsat TM, 
etc.) and numerous RS databases have reached 
hundreds of Tera bytes (i.e., ASTER/TERRA, 
PALSAR Radar, Sentinel-2, etc.). Table 2 resumes 
some archived huge remote sensing databases sorted 
by total data size.  
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Table 2. Some archived huge remote sensing databases. 

Platform/Sensor Acquisition 
Dates 

Number of 
images /files 

Total size 
(Tera Bytes) Notes / Relevant Citations 

 MODIS - TERRA/AQUA NASA  2001-2017 94907847 8571.4 NASA/-EROS  
 Landsat OLI/TIRS  2013-2017 1080003 3732.6 NASA / USGS -EROS  
 Landsat ETM+        1999-2017 2375646 2206.7 NASA / USGS -EROS  
 Landsat TM        1982-2012 2414179 1211.1 USGS -EROS  
 Sentinel-2  2016-2017 2181595 912.7 ESA -ESA/EROS  
 ASTER - TERRA  2001-2017 7838585 755.7 NASA -NASA/EROS  
 HRO original data files  2008-2017 3694381 434.1 USGS -MCMC/EROS  
 ASF PALSAR Radar Consortium Data Pool  2006-2017 563230 290.1 USGS -ASF  
 Landsat MSS        1972-1992 1312592 80.1 USGS -EROS  
 Earth Observation EO-1 Hyperion  2000-2017 91398 50.6 USGS -EROS  
 Indian Space Research Organisation  2016-2017 31329 34.2 ISRO -ISRO/EROS  
 Scanned Satellite Film (CORONA, ARGON, LANYARD)  1960-1972 24505 30.8 USGS -EROS  
 SPOT         2009-2013 941945 29.0 USGS -EROS  
 Earth Observation EO-1 ALI  2000-2017 91613 18.8 USGS -EROS  
 Landsat OLI        2013-2017 4069 11.9 NASA / USGS -EROS  
 DOQ - QUARTER QUAD (3.75 MINUTE) CIR  1997-2009 74776 10.1 USGS -WMC/EROS  
 DOQ - QUARTER QUAD (3.75 MINUTE) B/W  1997-2009 205201 9.1 USGS -WMC/EROS  
 LAC Data Received via FTP  1980-2017 176395 8.7 NOAA -NOAA/EROS  
 Declassification II (KH-7, KH-9)  1963-1980 3109 8.1 USGS -EROS  
 AVHRR 1-KM Orbital Segment  1992-1999 32008  4.3 USGS -EROS  
The Atmospheric Infrared Sounder (AIRS/EOS) 2002-2016 5147  2.65 (AIRS Science Team 2013) 
 Landsat TIRS 2013-2017 3363  2.3 NASA / USGS -EROS  
Global gridded monthly/daily precipitation averages 2009-2017 3165  0.83 (GPM Science Team 2016) 
AIRX3SPD: AIRS/Aqua L3 Daily (AIRS+AMSU)  2002-2016 5141  1.88 (AIRS Science Team 2013) 
Long Term Data Record MODIS 2 LTDR 2000-2016 14219  5.8 (Pedelty et al. 2007) 
Long Term Data Record version 4 - NOAA07 1981-1985 38002  0.43 (Pedelty et al. 2007) 
Long Term Data Record version 4 - NOAA09 1985-1988 4082  0.47 (Pedelty et al. 2007) 
Long Term Data Record version 4 – NOAA11 1988-1994 6253  0.73 (Pedelty et al. 2007) 
Long Term Data Record version 4 – NOAA14 1995-1999 5426  0.64 (Pedelty et al. 2007) 
Long Term Data Record version 4 – NOAA16 2000-2005 5638  0.70 (Pedelty et al. 2007) 
Long Term Data Record version 4 – NOAA18 2005-2009 4664  0.59 NASA- GSFC 
Long Term Data Record version 4 – NOAA19 2009-2017 9051  1.2 NASA- GSFC 
 GLS 1990  1984-1997 7375  2.6 USGS -EROS  
 TM Scene-based  1984-1997 7106  2.8 NASA -EROS  
 SIR-C Precision Processed  1994 19402  3.0 USGS -EROS  
 ETM+ Pansharpened Uncompressed Mosaics  1999-2003 2489  3.2 NASA -EROS  
 GLS 2010  2008-2012 8555  4.2 USGS -EROS  
 GLS 2005  2003-2008 9718  5.2 USGS -EROS  
 GLS 2000  1999-2003 8756  5.4 USGS -EROS  
 ETM+ Scene-based  1999-2003 8756  5.9 NASA -EROS  
 ETM+ Pansharpened Scene-based  1999-2003 8767  6.7 NASA -EROS  
 AVHRR EDC-HRPT Data  1981-2017 138859 6.9 NOAA -NOAA/EROS  

3.2 Remote sensing algorithms 

In order to choose two types of algorithms, we have 
selected the most important RS algorithms: The NDVI 
algorithm using two images and LST using five 
images. The NDVI can be defined by the following 
equation: 

NDVI=(NIR – Red)/ (NIR + Red) (1) 

where NIR and Red are radiances in the near-infrared 
band (AVHRR Channel 2, Landsat8 band 5, etc.) and 
the red band (AVHRR Channel 1, Landsat8 band 4, 
etc.), respectively. The LST using the split-window 
algorithm for AVHRR images is as follow. 

LST= T4 + 1.40(T4 –T5) + 0.32(T4 –T5)2 + 
0.83 + (57–5W)(1–ε) - (161–30W)∆ε  (2)

where T4 and T5, are the total atmospheric 
transmittances in Channels 4 and 5 of the AVHRR, ε 
and ∆ε are the effective emissivity and the difference 
emissivity respectively and W (g cm-2) the 
atmospheric water vapour. Similarly, LST algorithm 
for Landsat images is given by the following equation. 

LST= Ti + 1.378(Ti –Tj) + 0.183(Ti –Tj)2 -0.268 
+ (54.30–2.238W)(1–ε) - (16.40W–129.20)∆ε  (3)

where Ti and Tj are the Landsat8 at-sensor brightness 
temperatures at the SW bands i and j. 

3.3 3MCF Framework  

The Multi-temporal, Multi-threading Multi-core 
computation framework (3MCF) (BenAchhab et al., 
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2010), 3MCF has been designed to: a) Automation: 
automatic computation for a whole temporal database, 
b) Performance: system performance increases by
fully using multicore and GPU capabilities, c) Low 
cost: hardware cost reduction by running on a common 
personal computer, d) Portability: compatibility with 
multiple hardware and software platforms, e) 
Simplicity: remote sensing software parallelism 
complexity minimization. Designed for multithreaded 
implementation, 3MCF is basically composed of C++ 
classes structured following the multiple layers 
architecture shown in Fig.3. 

Fig. 3: 3MCF architecture diagram 

Due to portability intend, threads scheduling are given 
in part to the operating system with a high priority 
require. The configuration layer permits an automatic 
computation of RS images. It is also responsible of the 
accomplishment of user preferences (i.e., maximum 
number of threads to execute over a CPU, threads 
priorities, algorithm to be executed, RS database to 
compute, memory reservation depending on the 
number of images to be integrated in the corresponding 
RS algorithm). The core implementation and 
management layer is charge of all computations 
executed over this framework, it includes GPU 
computing core which is in charge of all GPU 
computations. It is also in charge of transferring 
computed images to and from the Device.  

Default, preferences load RS images from the 
sensor images database using the multitemporal raster 
data layer, and store the computed images (using MTH 
computation layer) in the biophysical indices database 
using multitemporal raster output layer. Sensor images 
and biophysical indices databases structure has been 
designed on the basis of separating and storing the data 
within folders classed by years and months. This data, 
can be stored under different formats (i.e., Raster, 
Hierarchical Data Format, GeoTIFF, Erdas Imagine, 
Oracle Spatial GeoRaster, VTK, etc.) using RS images 
drivers layer. This last, is based on some developed 
files drivers and the Geospatial Data Abstraction 
Library (GDAL). RS algorithm layer regroups the most 
used algorithms subdivided in two categories: i) 1D 

algorithm section compute the biophysical indices 
requiring pixel by pixel computation (i.e., NDVI, LAI, 
GEMI, WDVI, SAVI, LST, etc.), and ii) 2D algorithm 
section compute the biophysical indices requiring 
multiples pixels by multiples pixels computation like 
water vapour algorithm. The 3MCF framework 
computational approach is built up from a divide-and-
conquer approach, by dividing the remote sensing 
image into regions and the algorithm application into 
multiples simultaneous threads. Instead of cropping the 
image into sub images with corresponding reserved 
memory, the 3MCF segmentation layer has been 
structured on the basis of executing multiple CUDA 
threads on the original image itself which is already 
reserved in the Device and Host memories.  

4 PERFORMANCE ANALYSIS 

To evaluate the performance of the 3MCF remote 
sensing GPU computation core 7 RS image types have 
been used as shown in Table 3.  

Table 3. RS images used in the tests performance. 

Remote sensing 
image type Lines Rows NDVI 

Elements 
LST 

Elements 

 IM1 Landsat data 
(North of Morocco)

7061 6781 95761282 287283846 

 IM2 Landsat data 
(North of Morocco)

6820 3580 48831200 146493600 

 IM3 Landsat data 
(North of Morocco)

6432 2530 32545920 97637760 

 IM4 NOAA/AVHRR 
Global PAL Data

5004 2168 21697344 65092032 

 IM5 NOAA/AVHRR 
Cropped PAL Data

4250 1850 15725000 47175000 

 IM6 NOAA/AVHRR 
Cropped PAL Data

4048 1296 10492416 31477248 

 IM7 NOAA/AVHRR 
Cropped PAL Data

2703 970 5243820 15731460 

where the number of elements is total number of image 
pixels multiplied by the number of images used by the 
algorithm. For accuracy commitment, i) all execution 
have been made using the same system: Intel Core i7-
960 3.2GHz. ii) the execution time is the average 
computing time of 12 algorithm executions. The 
different picked time positions are indicated in Fig. 4. 
tS is indicating the start pick time directly after memory 
reservation, tE the end pick time directly after file result 
saving, tSC the start computation pick time indicating 
the start of running on the GPU Device and tEC the end 
pick time computation just after ending of all the 
algorithms' parts computation and before file result 
saving. 
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Fig. 4. 3MCF execution diagram and picked time 
positions. 

5 RESULTS 

Results show an important gain in computing time for 
both NDVI and LST algorithms. See Table4 and 
Table5  

Table 4. NDVI average computation time 

Images 
CPU 

(GTX1080) 
(ms) 

GTX1080 
(ms) 

CPU 
(GTX480) 

(ms) 
GTX480 

(ms) 

IM1 1370.89 181.32 1245.63 359.68 

IM2 604.26 91.05 604.00 130.37 

IM3 410.00 68.79 407.11 78.58 

IM4 272.42 49.84 275.63 56.68 

IM5 200.00 42.37 195.26 41.74 

IM6 133.05 33.05 132.11 38.26 

IM7 67.16 23.58 67.95 28.21 

Table 5. LST average computation time 

Images 
CPU 

(GTX1080) 
(ms) 

GTX1080 
(ms) 

CPU 
(GTX480) 

(ms) 
GTX480 

(ms) 

IM1 1245.37 371.42 1268.47 470.95 

IM2 637.74 197.95 632.16 248.74 

IM3 429.32 139.32 434.16 169.89 

IM4 1245.37 445.63 288.79 117.58 

IM5 211.21 77.11 211.53 88.95 

IM6 140.63 58.42 140.58 69.32 

IM7 71.42 36.21 73.89 66.47 

The SpeedUp, as non unit index, is defined as a ratio 
of execution times with the aim of quantifying the gain 
in time comparing the serialized and parallelized 
programs. It is given by the following equation.  

SpeedUp = tserial / tGPU
 (4) 

where tserial is the computing time using the CPU, tGPU 
is the computing time running on the GPU including 
loading and transferring times. In order to show the 
linear tendency with the image elements increasing, 
Figures 5 and 6 has been constructed for all the 
images.  

Fig. 5. 3MCF execution diagram and picked time 
positions. 

Fig. 6. 3MCF execution diagram and picked time 
positions. 

6 CONCLUSION 

The potential of the developed Multitemporal 
Multithreading on Multicore Computations 
Framework (3MCF) GPU core applied to Remote 
Sensing (RS) algorithms computations has been 
shown (in our case NDVI and LST algorithms). The 
GPU approach has potentially increases the 
multitemporal performance computing of the huge 
quantity of satellite remotely sensed data. 
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ABSTRACT:Sea Surface Height is an important parameter that affecting human living environments. Since 
GNSS-MR owns long-term stability and high temporal and spatial resolution as well as other characteristics, the 
SNR data of BDS (L1, L5, L7), GPS (L1, L2, L5), and GLONASS (L1, L2) over a period of seven days were 
used to estimate the SSH. The results show that the RMSE is better than 32.3cm, the correlation coefficient is 
better than 0.83. To improve the accuracy of the estimated results, a new method was proposed that using the 
estmated results to reconstructe the tidal waveforms by applying wavelet denoising. The results demonstrated 
that the wavelet denoising result shows a high precision with the correlation coefficient and RMSE of 0.95 and 
18.7cm, which is improved about 14.5% and reduced by 42.1% compared with the results from the SNR method. 
Keywords: Multi-GNSS-MR·Sea Surface Height ·SNR·wavelet denoising·accuracy 

1 INTRODUCTION 

Sea Surface Height (SSH) is an important physical 
parameter in oceanography, ocean shipping, marine 
fisheries and ocean engineering. It can be used for the 
establishment of oceanic and oceanic tidal models and 
the study of mesoscale climate models and tsunami 
warning. In recent years, with the continuous 
development of GNSS technique,GNSS-R (Global 
Navigation Satellite System Reflectometry) remote 
sensing technique could be applied in many fields 
such as soil moisture, snow thickness and earth power 
in addition to sea level, sea surface wind, wave height 
and sea surface salinity Learning and so on. GNSS-R 
has a high temporal and spatial resolution, which is 
important in the real-time monitoring of SSH.This 
remore sensing technique is also termed GNSS 
interferometry reflectometry (GNSS-IR), GNSS 
interference pattern technique (GNSS-IPT), or GNSS 
multipath reflectometry (GNSS-MR), when the direct 
and reflected signals are received by the same antenna 
such as a zenith-looking geodetic antenna. The GNSS-
MR remote sensing technique can monitor the surface 
environment parameters changes such as snowfall, soil 
moisture, vegetation growth and SSH by using the 
SNR or carrier phase observation recorded by the 
conventional GNSS receiver, which makes this 
technique become GNSS remote sensing the latest 

research hot spots. At present, the use of GNSS-MR 
technology for surface environmental monitoring has a 
certain research foundation. (Larson et al., 2008; 
Larson et al., 2008; Larson et al., 2010) first 
demonstrated how to make positive use of multipath 
signals observed by the existing geodetic GPS 
network. They pointed out that the amplitude and 
phase of a multipath signal change with surface soil 
moisture around the receiver antenna. Later, (OZEKI 
M et al., 2011) put forward a new snow depth 
estimation method base on GPS L4 observation no 
geometric distance due to the problem of lack of 
observation using GPS-MR technique, and it is 
consistent with SNR’s inversion results. And then, (Yu 
K et al., 2015) proposed a snow depth estimation 
method by using a linear phase combination of GPS 
triple-frequency(L1, L2, L5) signals, which is not 
affected by ionospheric delay. (Jin S et al., 2017)  first 
use the SNR and phase combination of BDS to obtain 
a high correlation coefficient of 0.81-0.91 and RMSE 
over 0.5m for estimating sea surface height changing 
compared to tide gauge observations. 
With the steady progress of BDS, Galileo and other 
systems, it is possible to make multi-GNSS-MR to 
monitor global environmental change. In this paper, 
the SNR data of BDS (L1, L5, L7), GPS (L1, L2, L5) 
and GLONASS (L1, L2) are used to estimate SSH, 
with elevation angles between 5°~20° over a period of 
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seven days. The SNR method results are further 
evaluated by comparing with tide gauge observations. 
Some effects are also discussed. Then reconstructing 
the tidal waveform with the discrete data of the SNR 
results by using wavelet denoising, and then 
processing the residual data, and obtaining the height 
sequence statistics after processing. Finally, 
conclusions are given. 

2 THE THEORY OF MONITORING THE SSH OF 
GNSS-MR 

GNSS multipath is the main source of error that 
constrains high-precision positioning of GNSS. The 
multipath is caused by the difference of the phase 
between the direct signals and the reflected signals, 
which is related to the antenna height h in Fig.1. Fig.1 
illustrates the case where both direct and reflected 
signals arrive at zenith-looking GPS antenna. The 
interference between the direct and reflected signals 
will affect GNSS observations and cause oscillations 
in observations. This interference phenomenon is 
recorded in the form of amplitude in the Signal Noise 
to Ratio (SNR), which can reflect the SSH change. 
Fig.2 shows the SNR Variations of BDS. 

 
Fig.1 Diagram of GNSS-MR for SSH Variation.The h 
is the antenna height from reflected surface,θ  is the 
angle between the direct signal and the instantaneous 

sea surface. 
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Fig.2 SNR Variations of BDS 

2.1 Signal-Noise to Ratio (SNR) method 

SNR is one of main observables of GNSS receiver, 
which mainly related to the satellite signal 
transmission power, antenna gain, the distance 
between satellite and receiver and multipath effect. 
When the elevation angle is high, the antenna gain 
increases cause increasing of SNR. When the elevation 
angle is low, SNR is reduced due to the multipath 
effect and the decreasing of the antenna gain. So if 
there is no multipath effect, the SNR value will rise 
smoothly with the increasing of elevation angle. In this 
paper, we use the observed SNR data from the receiver 
to estimate SSH, which is proportional to the squared 
amplitude, i.e., 
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Where nP  is the noise power, dA is amplitude of

direct signal, rA is amplitude of reflected signal,

( )tcosδϕ is the reflection excess phase with respect
to direct phase to direct phase(also known as the 
interferometric phase),where 

( ) ( )tht θ
λ
πδϕ sin4

=   (2)

In order to receive the direct signal effectively, the 
receivers suppress the multipath reflected signal, the 
relationship between dA and rA as following:

rd AA >>   (3) 
In combination with Fig. 2, Eq.(1) and Eq.(3), the 
direct signal determines the overall trend of the SNR 
observations (Fig.2). So we can use low-order 
polynomial to obtain SNR detrended time series 
formed by the multipath, which can be used to 
estimate the surface parameters such as SSH. After 
removing the SNR trend, the multipath pattern can be 
expressed as following: 

)sin4cos( φθ
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n
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h is antenna height from the reflected surface in Fig. 1.
λ  is the carrier wavelength, θ  is the elevation angle 
and φ is the phase. We can definit:

θsin=t and λ/2hf = in Eq.(4), which can
expressed as following: 

)2cos( φπ += φtAdSNR            (6) 
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Supposed that the reflector height h  in Fig.1 does not
change during the period of satellite arc and the 
reflected surface is horizontal, the frequency of 
multipath is pattern is a constant with respect to the 
Sine of satellite elevation angle. Though the SSH 
change with the time, this constant frequency model is 
sufficient for this station whose maximum tide range is 
4m, which is less than the tide range 7m that should 
consider the varying reflector height. Through Eq.(6), 
the frequency of multipath pattern can be obtained as 
following: 

2/λfh =                           (7)

From Eq.(7), it is clear to see that h  is proportional to
f . Spectral analysis is applied to obtain the spectral

peak frequency of the dSNR time series. The
estimated peak frequency and Eq.(7) are applied to 
obtain the antenna height and hence SSH in a 
straightforward way. In this paper, the Lomb Scargle 
method was used to obtain the peak frequency.  
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3 SSH MONITORING ANALYSIS OF Multi-GNSS-
MR 

To verify the feasibility and effectiveness of 
monitoring SSH based on Multi-GNSS-MR, the the 
observation data of MAYG station, which is located in 
Mayotte, France near the Indian Ocean, are used to be 
experimented. The TRIMBLE NETR9 receiver and 
TRM59800.00(latitude: -12.78°,longitude: 45.26°and 
height: -16.35m) antenna are installed in MAYG 
station, and the data sampling rate is 1Hz. Because 
MAYG is one of the Multi-GNSS Experiment (MGEX) 
stations, it receives not only the GPS and GLONASS 
signals but also BDS signals with three frequencies 
(L1, L5 and L7). In this paper, the observation and 
navigation data published by IGS  are applied to 
estimate the SSH. According to evaluating the 
circumference of the receiver and the sky view of the 
observation satellite, the azimuths is used from 20° ~ 
80° and 110° ~ 170°. 

The SNR data of BDS (L1, L5, L7), GPS (L1, L2, L5), 
and GLONASS (L1, L2) with elevation angles 
between 5°~20° over a period of seven days from 191 
to 196 in 2017 were used to estimate the antenna 
height from reflected surface base on the L-S spectral 
analysis. Fig.5 shows the results of L-S spectral 
analysis of PRN09 of BDS. In order to verify the 
accuracy of estimating SSH of Multi-GNSS-MR, the 
Dzaoudzi tide gauge observations, which is about ten 
meters from the MAYG station, are compared and 
analyzed. 
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Fig.4 The BDS-MR、GPS-MR and GLONASS-MR 
Inversion Results 

Fig.4 shows the results of SSH, which obtained by the 
above method, and truth comparison. Where the 
horizontal axis represents the day of year (DOY), and 
the black line is the relative average (low) tidal surface 
of the SSH estimated by GNSS-MR and the asterisk is 
the estimated SSH. 
As observed in Fig.4, there is a significant daily 
periodicity of SSH changes monitored by tide stations, 
which mainly due to tidal effects. There is a good 
agreement with tide gauge observtions based on BDS, 
GPS, GLONASS inversion in the 190-196 days.  
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 Fig.5 The BDS-MR、GPS-MR and GLONASS-MR Inversion Results  
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Fig.6 The BDS-MR、GPS-MR and GLONASS-MR Inversion Results 

Because of a limited number of satellites’ signals 
reflected from sea surface, each carrier did not monitor 
the SSH changes in a certain period of time. The time 
resolution of GPS is better than GLONASS, BDS, the 
reason may be the number of satellites of each 
GLONASS and BDS less than GPS. In order to better 
analyze the effect of the monitoring of three systems, 
the statistical results of the three systems are shown in 
Fig.5. 
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Fig.7 Histogram of sea surface height estimates by 
BDS-MR, GPS-MR and GLONASS-MR. Tide gauge 

data are treated as ground-truth. 

As observed from Fig.5, the monitoring sampling time 
of three systems is complementary, thus monitoring 
the time resolution to be greatly improved. What’s 
more, when the observation period is shorter and the 
observation environment is poor, the superiority of 
multi-GNSS-MR monitoring SSH is more obvious. 
Tab.1 presents detailed correlation and RMSE (root-
mean-square) values for BDS, GPS, GLONASS 
estimate results, then the bias probalility distribution 
of estimated SSH are shown in Fig.6.  

Tab.1 The Accuracy of Inversion base on BDS-MR、
GPS-MR and GLONASS-MR 

Carrier RMSE/m R 
BDS L1 0.357 0.78 
BDS L5 0.317 0.80 
BDS L7 0.368 0.77 
GPS L1 0.226 0.91 
GPS L2 0.340 0.87 
GPS L5 0.336 0.88 

GLONASS L1 0.310 0.80 
GLONASS L2 0.331 0.84 

In table 1, the estimations from GPS L1 with the 
correlation(R) of 0.91 and RMSE of 0.226m are better 
than the others. From Fig.6, the estimated results is 
similar to the normal distribution.Fig.6 and Fig.7 show 
a good correlation with tide gauge observations. In 
summary, by using the SNR data of BDS, GPS and 
GLONASS to estimate the SSH not only improves the 
continuity and time resolution of monitoring, but also 
has good global inversion accuracy. 

4 WAVELET DENOISING AND IMPROVEMRNT 

As observed from Fig.5, there are some noise in the 
results. In order to improve the accuracy of the 
estimated results, tidal waveforms are reconstructed 
after wavelet denoising base on the acquired discrete 
estimated results. In order to get a better denoising 
effect, different wavelet basises and time of 
decompositions used to be compared. The results 
shows that when using db6 wavelet basis and 6 time of 
decomposition we can get the best denoising results. 
And Fig.8, Fig.9 shows the results by using this 
method. 
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Fig.8 SSH from estimated results and denoising results 
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Fig.9 Bias between Denoising results and tide 
gauge observations 

After wavelet denoising, it is clear that the denoising 
curve shows a good agreement with the tide gauge 
observations. The correlation coefficient and RMSE of 
this method is respectively 0.95, 0.187m, which is 
improved about 14.5% and reduced by 42.1% 
compared with the results from the SNR method. 
Furthermore, the temporal resolution of monitoring is 
greatly increased. 

5 CONCLUDING REMARKS 

In this paper, the SNR data of BDS (L1, L5, L7), GPS 
(L1, L2, L5), and GLONASS (L1, L2) to estimate the 
sea surface height (SSH). After obtaining the SSH,we 
use the inversion results to reconstructe the tidal 
waveforms by wave filtering. Compared with tide 
gauge observations, the results demonstrated that the 
estimated SSH show a high precision and after wave 
filtering, the RMSE reach 0.153m, which is reduced 
by 42.1% compared with the SNR method. 
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ABSTRACT- Leaf Area Index (LAI) provides key information for earth surface process simulations and climate 
change research from local to global scale. However, when the LAI retrieval model built at local scale (high 
resolution) was directly applied at a large scale (low resolution), a spatial scaling bias may be caused. In this 
study, we try to explore the potential application of wavelet transform in spatial up-scaling. Hence, an algorithm 
based on the relation between the bias rate in scaling and the detail lost rate in Discrete Wavelet Transform 
(DWT) was proposed to remove scaling bias at a large scale. To evaluate the proposed algorithm, a study site 
with high heterogeneity from Validation of Land European Remote Sensing Instruments (VALERI) database was 
chosen. Additionally, the up-scaling accuracy between the algorithm based on Taylor Series Expansion (TSE) 
and that based on DWT was compared. Generally speaking, both two algorithms can provide a good 
performance on the correction of the scaling bias at four different scales. However, unlike the method based on 
TSE, the proposed method is simpler and is not constrained by the characteristic of the retrieval model. Over 
high heterogonous landscape, the accuracy of the proposed algorithm is more obvious, with the root mean 
square error (RMSE) from 0.36 to 0.09 with the corresponding synchronous prior knowledge. When the 
synchronous prior knowledge is not available, the RMSE can also be reduced to 0.13. 

1  INTRODUCTION 

The Leaf area index (LAI) is a significant variable for 
many land surface biophysical and biogeochemical 
models and serves as a useful indicator of the 
vegetation cover change. It can be obtained from 
ground measurements (Chen et al. 1992) or remote 
sensing methods (Chen 1996; Garrigues et al. 2006; 
Jacquemoud 2009). Advanced satellite systems and 
sensors provide us massive information covering large 
spatial and temporal range, which is critical to the 
modeling of natural phenomena both at local and 
global scales. Estimating LAI with remote sensing 
technique has become one of the primary methods. 
Although the LAI can be estimated from remotely 
sensed measurements by using various retrieval 
methods, there is an inevitable and critical scaling 
problem in the retrieval process (Raffy 1992; Chen 
1999; Garrigues et al. 2006; Wu et al. 2013). 
Generally, most retrieval models are mainly derived at 
a local scale, assuming that the land surface at that 
scale is homogeneous. When those models are directly 

applied for heterogeneous land surface at a large scale 
(low resolution), unforeseeable scaling errors may be 
induced (Wu et al. 2013). These errors will have 
obvious influence on the quality of the products and 
make the LAI products unreliable. It was reported that 
the relative scaling bias of the LAI may be up to 50% 
if these scaling effects are ignored (Chen 1999). 
Additionally, Zhang et al. (2006) indicated that the 
mixing of distinctive surfaces of vegetation and water 
may result in a relative scaling bias of up to 400%. 
The existence of scaling effects has prevented the 
improvement in the accuracy of retrieval and the 
development of remote-sensing applications (Wu and 
Li 2009). Therefore, when the retrieval models are 
used in other scales, it is completely necessary to take 
the scaling effect into account in generating LAI 
products. There are a lot of studies focused on where 
the scaling effect comes from, finding that the scaling 
errors are mainly caused by the nonlinearity of 
retrieval model and heterogeneity of land surface. (Hu 
and Islam 1997a) 
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For decades, to solve the scaling issue, several 
spatial up-scaling algorithms have been developed to 
eliminate the scaling errors. Raffy (1992) proposed the 
computational geometry method (CGM), using the 
lower and upper boundaries of the retrieval model to 
correct for the products at large scales to reduce the 
scaling effects. Hu and Islam (1997a) proposed the 
method based on Taylor Series Expansion (TSE) with 
textural parameters to characterize the scaling effects. 
Chen (1999) focused on the ground contextural 
characteristics and built the relation between the 
scaling effects and land-cover component fractions. 
Garrigues et al. (2006) further extended the TSE-based 
scaling method to analytically compute the scaling 
bias for the retrieval model with two or more 
variables. All of those methods have already been 
employed to correct for the scaling errors of various 
remotely sensed products (Hu and Islam 1997b, 1998; 
Raffy and Gregoire 1998; Pelgrum et al. 2000; Simic 
et al. 2004; El Maayar and Chen 2006; Garrigues et al. 
2006; Ma et al. 2008; Wu et al. 2013). Because of the 
clear physical interpretation and high correction 
accuracy, the TSE-based scaling method is more 
widely used than the other up-scaling methods. 
However, the TSE-based up-scaling method will be 
subject to many other restrictions. It is shown that 
when the degree of nonlinearity is large, ignoring the 
items higher than three-order may cause great error 
(Pelgrum 2000). When applied in complicated 
retrieval models with a large number of variables, it 
would be difficult to get the derivatives of the model. 
Moreover, the variance and covariance among each 
variable would also be difficult to be estimated 
because very few synchronous high- and low-
resolution data exist in reality. Generally speaking, the 
difficulty of obtaining the scaling correction item 
would greatly reduce the applicability of that method. 

As well known, Wavelet Transform is a 
mathematical tool widely used to dissect the signal or 
image into different frequency components in many 
subjects (Mallat 1989). In remote sensing, with the 
Discrete Wavelet Transform (DWT) the image can be 
decomposed into the low-frequency components 
representing the information kept at large scale and the 
high-frequency components corresponding to the 
details lost during scaling. Those high- and low-
frequency components contain important information 
between different scales, which may be useful for the 
study of spatial up-scaling. 

In this paper, we try to present a new up-scaling 
method based on DWT to eliminate the scaling effect 
instead of the TSE-based up-scaling method when the 
retrieval model is not continuous or derivable. Section 
2 describes the three contrasted landscapes with 
different degrees of heterogeneity extracted from the 
Validation of Land European Remote Sensing 

Instruments (VALERI) database and used in this 
study. A semi-empirical retrieval model is also built to 
relate the normalized difference vegetation index 
(NDVI) directly to the LAI. In Section 3, two different 
processes of spatial aggregation for remote sensing 
products are provided to indicate the scale problems. 
In addition, a new up-scaling method that correct for 
the scaling effects is proposed on the basis of the 
DWT. In Section 4, the DWT-based method is applied 
to the multi-scale data of VALERI to evaluate the 
accuracy of spatial up-scaling. The performance of the 
proposed method is analysed under two conditions: 
with and without the corresponding synchronous high-
resolution images. Finally, conclusions are given in 
Section 5. 

2  DESCRIPTION OF THE DATA 

VALERI is a European remote sensing validation 
program launched by the European Space Agency 
(ESA) in early twenty-first century. There are 21 sites 
located in 11 countries, providing plenty of in situ 
observed data and high-resolution satellite image data 
for validating the biophysical products (LAI, fAPAR 
and fCover). Since the scaling characteristics would 
change with different LAI retrieval model and 
heterogeneity of the study area, one site (Fundulea in 
Romania) with high spatial heterogeneity are selected 
in this study. This site is flat topography and covered 
by one or two types of vegetation. The SPOT NDVI 
imagery for this site is shown in Figure 1. 

Fig.1 the selected study site of Fundulea 

The high spatial resolution (20m) SPOT images 
with cloud-free conditions on May 2 2001 for 
Fundulea were selected. The original SPOT image is 
simple aggregated from 20m to 40m, 80m, 160m and 
320m to form a nested hierarchy, corresponding to the 
four different aggregated scales of 2×2、4×4、8×8 
and 16×16. Here, the SPOT image will be used to 
evaluate the up-scaling performance where the 
corresponding synchronous high-resolution images are 
assumed to be available and are used as a priori 
knowledge. Two days of Landsat 8 TM images with 
spatial resolution of 30m on April 13 and May 15 
2015 for Fundulea were also selected for further study. 
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The aggregated scales are consistent with those for 
SPOT images. For TM images, the corresponding 
synchronous high-resolution images are assumed to be 
not available. One TM image will be used to evaluate 
the up-scaling performance, while the other will be 
used to get the required information for the proposed 
DWT-based method.  

For this study site, an NDVI value is first 
calculated for its sensitivity to the vegetation cover as 
following: 

  (1) 

where  and  represent the near infrared and 
red reflectance, respectively. With the ground 
measurement LAI data and corresponding NDVI value 
for each study site, an exponential empirical model 
representing the relation between NDVI and LAI is 
built for simplicity as:  

  (2) 

where a and b are model coefficients, depending 
on the characteristics of sites. The accuracy and 
applicability of the retrieval model will not be 
discussed because the model is just taken as a case 
study to analyse the scaling effect of LAI caused by 
the nonlinearity of retrieval model and spatial 
heterogeneity. The exponential model is chosen for it 
has higher fitting accuracies than other models. 
Additionally, for simplicity we only consider the 
retrieval model with univariate variable, ignoring the 
scaling effect caused by the nonlinearity of the NDVI 
as a function of red and near infrared reflectance. 

3 METHODOLOGY 

3.1. Procedure of the scaling aggregation 

To fully show the reason why scaling bias would 
happen, the spatial aggregation processes shown in 
Figure 2 should be first recalled. Here, a semi-
empirical retrieval model between the NDVI and the 
LAI is also used in this demonstrating example. The 
non-linearity of the NDVI as a function of the near 
infrared and red reflectances is ignored. Obviouly 
there are two distinguished path to get LAI at a large 
scale (coarse resolution). The first path is applying the 
retrieval model f at a local scale (high resolution) and 
then aggregating the result to get the distributed LAID 
(path A in Fig. 2). The second path is the aggragation 
of NDVI befor use in the retrieval model f to get the 
lumped LAIL (Path B in Fig.2).  

Generaly, aggregation procedure takes the 
arithmetic average of corresponding high-resolution 
results. Thus, LAID and LAIL can be rewritten in math 
as: 

  (3) 

where N is the number of aggregated pixels, is 
the arithmetic average value of pixel at large scale, f is 
the retrieval model built at a high spatial resolution at 
which the surface is assumed to be homogeneous 
within each pixel. Acocording to the defniniton of 
LAI, the distributed LAID is considered to be the exact 
value of the LAI at a large scale. Corespondingly, 
LAIL is thought as the approximation value of the LAI 
at large scale. The change of scale will cause the 
discrepancy between the LAID and LAIL. This 
discrepancy is regarded as the scaling bias: 

  (4) 

Only when the surface is homogenous or the retrieval 
model is linear, the LAI will be scale-invariant without 
any scaling bias. However, this rarely happens because 
of spatial heterogeneity and model nonlinearity (Raffy 
1992; Hu and Islam 1997a; Chen 1999; Wu & Li, 
2009). The goal of scaling is to make the LAI values 
calculated from coarse resolution data equal to the 
arithmetic average values derived independently at 
local scale. To ensure that the LAI derived at coarse 
spatial resolutions are of better accuracy and 
consistency, the scaling bias in Eq. (4) must be 
corrected for. 

Fig.2 Sketch map of spatial aggregation and scaling 
bias 

3.2. Wavelet transform theory 

Wavelets are mathematical functions that are used to 
dissect data into different frequency components, each 
of which is characterized with a resolution appropriate 
to its scale (Mallat 1989). DWT analyzes the image in 
a discrete set of scale, wildly used in data fusion, 
especially that among multi-sensor images with 
different resolutions (Amolins et al., 2007). DWT is 
also suitable for remote sensing image data processing 
technology reflecting the characteristics of surface 
ecological environment. As shown in Figure 3, DWT 
provides a framework to decompose a signal or image 
into a multi-resolution representation with a low-
frequency approximation image and a set of high-
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frequency detail images. With the DWT, the LAI 
image at local scale can be decomposed into an 
orthogonal wavelet representation at a given coarser 
resolution. No extra data are produced in the 
decomposition procedures because of the 
orthogonality of the wavelet representation 
(Mallat,1989). According to the wavelet theory, an 
inclusion relation exists in the adjacent scales that the 
information at a local scale consists of the information 
in a larger scale and the loss of information during 
scaling as well. With the DWT, we can find where 
changes take place and simultaneously measure the 
rate of the change. Therefore, DWT is a suitable tool 
to analyse the multi-scale relationships in remote 
sensing scaling.  

During the DWT decomposition, the resolution 
decreases exponentially at the base of two, the original 
image can be decomposed into four parts (as shown in 
Fig.3), including a low-frequency coefficient ( ) and 
high-frequency coefficients ( , , ) in 
horizontal, vertical and diagonal direction. In the 
second decomposition, the low-frequency coefficient 
( ) from the first decomposition will continue to be 
decomposed into a new low-frequency coefficient ( ) 
and three new high-frequency coefficients ( , , 

). The low-frequency coefficient represents the 
approximate value at a large scale, while the high-
frequency coefficients represent the information lost 
between adjacent scales. 

Fig.3 The decomposition of the image (the 
approximation and details coefficients) 

3.3. DWT-based scaling bias modeling 

To build the DWT-based scaling bias model, two 
parameters (  and ) are first defined. The 

 describes the bias rate in scaling, while 
indicates the detail lost rate in wavelet transform. 
Those two parameters are calculated as following: 

 (5) 

 (6) 

where LAID and LAIL are the exact value and the 
approximation value of the LAI at a large scale, 
respectively.  represents the low-frequency 
coefficient. ,  represent the high-
frequency coefficients in horizontal, vertical and 
diagonal direction, respectively. The subscript i 
represents the DWT decomposition level. 

As reported previously, there is intrinsic relation 
between the wavelet coefficients and the scaling bias. 
Therefore, the bias rate  can be expressed as the 
function of the detail lost rate  as following: 

  (7) 

where f represents the transfer function from 
to . 

Consequently, the corrected LAI, , based 
on the low-frequency coefficient and the high-
frequency coefficients at the larger scale, can be 
estimated by combining Eq. (5)-(7) to give: 

  (8) 

4 RESULTS 

4.1. Application with the priori knowledge 

To fully verify the reliability, the proposed DWT-
based scaling model is applied to four different 
aggregation scales. Here,  are calculated from 
the corresponding synchronous high-resolution 
images. Fig. 4 shows the scaling performance at the 4 
× 4 aggregation scale based on the proposed scaling 
models.  

Fig.4 The scatter plot between actual LAI 
and estimated LAI, actual LAI and corrected 

LAI in Fundulea 
(at 4×4 aggregation scale) 
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It could be easily seen that the correlation 
between  and  after correction was greatly 
improved in this site after scaling. These results 
demonstrate that the spatial scaling algorithms 
developed using the proposed method could greatly 
reduce the error of LAI at four aggregation scales. 

To evaluate the accuracy of proposed scaling 
model (Eq. (8)), the RMSE (Root Mean Square Error) 
are used to analyze the scaling performance. 

Fig.5 show the model performance of LAI 
estimation at four different aggregation scales based 
on the DWT and TSE methods. One can easily find 
that the scaling effect of LAI generally increases with 
the aggregation scale. With the proposed method, the 
RMSE of retrieved LAI are both reduced rapidly.  

Fig.5 RMSE of retrieved LAI at 4×4 aggregation 
scales 

As shown in Fig.5, our proposed scaling models 
can correct for the scale effects caused by spatial 
heterogeneity and model nonlinearity. If the wavelet 
coefficients within a large pixel are known, the scaling 
effect can be corrected effectively. Using either of the 
correction method shows great improvement. Our 
method can decrease the RMSE from 0.36 to 0.09 at 
the 16 × 16 aggregation scale. Thus, if wavelet 
coefficients are available at large scale, the proposed 
DWT-based method could be used to correct the 
coarse resolution LAI product.  

4.2. Application without the priori knowledge 

To further verify the reliability, the proposed DWT-
based scaling model is also applied to the Fundulea 
site. However, the prior knowledge about  is 
gained from different time. The Landsat 8 TM image 
on May 15 2015 is used to estimate  and that 
on April 13 2015 is to evaluate the scaling 
performance (Fig. 6). Fig.6 shows the scatter plot 
between actual LAI and estimated LAI at 4 × 4 
aggregation scale in Fundulea site. The estimated LAI 
after scaling bias correction become closer to the 1:1 
line. 

Fig.6 The scatter plot between actual LAI and 
estimated LAI at 4 × 4 aggregation scale in Fundulea 
site 

Here, the TSE- and DWT- based methods are 
also compared and shown in Fig. 7.  RMSE for the 
DWT method shows a better result at the 16×16 
aggregation scale. However, the above results of TSE 
are under the condition that complete high-resolution 
data at the same time are available. In contrast, the 
proposed DWT-based method can achieve a good 
performance without the high-resolution data at the 
same time. 

Fig.7 RMSE of retrieved LAI at different aggregation 
scales 
5 CONCLUSIONS 

In this study, we propose a new method for correcting 
the spatial scaling bias caused by nonlinearity of LAI 
retrieval model and the spatial heterogeneity. Based on 
characteristics of the binary discrete wavelet 
transform, a new DWT-based method is proposed to 
analyse the scaling bias. We investigated the 
possibility of using the relation to eliminate the scaling 
bias. The validation of the proposed method was 
carried out in different areas chosen from the VALERI 
database. The results show that the proposed DWT-
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based method behaved a satisfactory estimation and 
strong flexibility, because wavelet coefficients and 
scaling bias have a good consist power-law 
relationship at different aggregation resolutions. The 
wavelet coefficients are adopted to represent the loss 
rate of scaling. It is found that it is possible to resolve 
the scaling bias with DWT.  
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Abstract : Several methodological studies have shown the interest of using thermal infrared, microwave and 
optical remote sensing to constrain land surface models, more particularly water and energy budget models. 
Studies based on non simulated remote sensing data are however sparse because of the lack of a suitable dataset. 
We study the behavior of thermal infrared and C-band radar signals with time over several crops of the south-
west of France, wheat and sunflower mainly, at the field level. Our objective is to make use of the strength of 
each wavelength domain to provide information about field heterogeneity on the same crop to take advantage of 
the synergy between Sentinel suite and Landsat 8 (and future TIR satellite missions in preparation as 
TRISHNA). We  aim to identify discrepancies between remote sensing data in order to better point out specific 
signatures of surface and crop behavior. Remote sensing data is compared to in situ measurement, such as top 
soil moisture, texture, plant height, realized during the MCM’10 experiment, which covered an entire crop cycle, 
and coupled in-situ acquisition with satellite overpass. Visible optical remote sensing is also used for signal 
interpretation with green area index values recovered from the NDVI vegetation index. The heterogeneities 
highlighted between fields thanks to the remote sensing signals dynamics aim us to precise and distribute the 
value and ranges of parameters of a Soil-Vegetation-Atmosphere-Transfer (SVAT) model in order to constrain it 
better when it is distributed at landscape scale. 

1. Introduction

Remote sensing data are widely used in continental 
surface modeling, whether as input or assimilation 
data. Among the surface models types using these data 
are Soil-Vegetation-Atmosphere-Transfer (SVAT) 
models. Two families can be distinguished (Crow et 
al, 2005): Water and energy balance (WEB-SVAT) 
and remote sensing (RS-SVAT) models. The former 
relying on a more detailed description of the processes 
to estimate surface states (e.g., soil water root zone 
dynamic) and energy and water budget partitioning, 
and the later requiring remote sensing data in input, 
more precisely thermal infrared (TIR) one, to simulate 
the  surface fluxes.  
Different wavelength domains can inform surface 
models, most of the time there are optical and TIR. 
The information provided is specific to the observation 
wavelength. Visible provide reflectance information 
from which are derived vegetation indexes while 
thermal infrared measure surface temperature and can 
inform about water stress (Jackson et al, 
1981;Sandholt et al, 2002). Among the other type of 
sensor available is radar. Such data are mostly used to 
retrieve information such as soil moisture, and surface 
roughness (Zribi et al, 2005) and to provide additional 
information to classification (McNairn et al, 2009).  
The combined use of TIR and radar data has been 
studied in the literature (Barret et al, 2009; Li et al, 

2010 among others) to improve the monitoring of 
crops water budget over agricultural areas. Most of the 
studies focus on assimilating model output to surface 
properties inverted from remote sensing, generally top 
soil and root zone moisture, using Kalman ensemble 
filtering.  
Another approach to better constrain SVAT model is 
to dynamically limit the variation interval of modeling 
parameters. Minimization methods based on Pareto 
ranking have shown an increase in model 
performances using the best set and ranges of 
parameters (Bastidas et al, 1999; Gupta et al, 1999; 
Demarty et al, 2005, Coudert et al., 2006).  
We aim to use the second method using TIR, C-band 
radar and optical data to identify heterogeneities 
within fields of a same crop for wheat, sunflower and 
maize.  
First we use data from the MCM’10 experiment (Baup 
et al, 2012) to relate TIR and C-band radar remote 
sensing signals evolution along multi-dates series to 
surface and vegetation properties and heterogeneities. 
Then we plan to use such temporal signatures and 
complementarities between radar and TIR to i) better 
select parameters set and ranges values for 
simulations, ii) improve the use of TIR to constrain the 
model during specific temporal windows and iii) 
propose a new methodology of radar and TIR dynamic 
coupling in order to select the better scenarios of 
SVAT simulation for crop water budget monitoring. 
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2. Dataset

Most of our data originates from the MCM’10 
experiment conducted by CESBIO in the south-west 
of France (Figure 1). The purpose was to collect 
multispectral data in optical and radar domains to 
study the behavior of the signal over crops in each 
domain. Images have been collected in optical domain 
with SPOT4/5 and FORMOSAT-2, in radar with 
TERRASAR-X (X band), Radarsat-2 (C band) and 
ALOS (L band). A survey of thermal images available, 
from LANDSAT 5/7 was also conducted. Enough 
images are available to allow a characterization of 
surface changes (vegetation geometry, surface water 
status, water stress) 

Figure 1: Localization of the studied sites 

In situ information has also been compiled, with 
qualitative data over 300 fields and quantitative data 
for 37 fields. The crops studied are wheat, rapeseed, 
soybean, maize and sunflower. They represent the 
majority of the cultivated surface in this area (Dejoux 
et al, 2012). 
Quantitative data collected range from top soil 
moisture (TSM) (Figure 2), aerial biomass 
measurements, height and soil texture. They will be 
used to understand the dynamics and variations of the 
signal between fields. 

Figure 2: In-situ Mean Top Soil Moisture measured 
per crop type 

For the work presented in this paper, thermal infrared 
images have been corrected from atmospheric 
radiation using the LANDARTS tool (Tardy, 2015). 
Corrected images are available at a 30 m resolution, 
compared to the original resolution at 120m. This 
resampling is obtained with the emissivity image 

which is created using the visible bands of the 
instrument (Sobrino et al. 2004). We kept 30 m 
resolution to maximize our number of points on each 
field and to leave the opportunity to study intra-fields 
variability available assuming the associated 
uncertainties.  
In the radar domain, we use the quad-polarization 
images from Radarsat-2 (C-band). These images have 
been normalized for the incidence angle effect using 
an empirical relationship based on NDVI (Fieuzal et 
al, 2012), in order to be able to compare successive 
acquisition dates independently from the view angle. 
We then extracted the backscattering coefficients by 
fields, choosing the polarization providing the better 
dynamic (Fieuzal, 2013).   
This work is focused on wheat, maize and sunflower, 
one winter crop and two summer crops (Table 1). It 
allows sampling different culture practices, some 
fields are irrigated, other are not. The fields will be 
described using the first letter of the crop and the 
number of the field (eg W5 for the fifth field of 
wheat). 

Crop Number of fields 
Wheat 13 
Maize 8 

Sunflower 6 
Table 1: Number of fields studied by crop 

Two weather stations are situated in fields W10 and 
M3. Reanalysis from SAFRAN Meteo-France 
(Quintana-Segui et al. 2008) have also been used. It 
provides meteorological variables (temperature, global 
and atmospheric radiation, precipitations) on a 8km by 
8km grid (Figure 1) with an hourly resolution. 
Remote sensing surface temperature measurement has 
been normalized using SAFRAN air temperature in 
Kelvin using the relation (1). 

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
               (1)

As the LANDSAT overpass of the studied area is 
around 10:30, we used the average air temperature of 
the day between 9:00 and 12h00. 
Lastly, an extraction of the green area index (GAI) 
over the studied fields was performed (Figure 3). The 
GAI was calculated using the BVnet method (Baret et 
al, 2007).  
In the two following parts, we study the behavior of 
the C-band radar and thermal infrared signal over 
wheat and sunflower more specifically. The cultural 
cycle is separated into 4 parts representing the main 
stages of the cultural cycle. The division is the 
following: bare soil before emergence, growth, 
maximum of vegetation and senescence. 
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Figure 3: Mean GAI per crop from the BVnet method 

3. Analysis of radar C-band and thermal infrared
signature on wheat crop 

To study the heterogeneity between wheat fields, we 
analyzed the dynamics of multidates radar backscatter 
coefficient versus normalized relative temperature. 
The objective was to pick up global and more specific 
behaviors in signals responses in order to be 
intercompared in terms of heterogeneities. To do so, 
each of the radar and thermal signature where first of 
all interpreted according to their stage of development, 
GAI dynamics and top soil moisture in situ 
measurement. 
 The normalized relative surface temperature versus 
backscattering coefficient plots were obtained 
assuming acceptable interpolation of the 
backscattering coefficient on the day of thermal 
infrared acquisition. 

Figure 4: Normalized relative surface temperature 
versus C-band backscattering coefficient for wheat 

Such representation (Figure 4) illustrates the evolution 
of the backscattered radar signal with the changes of 
the vegetation and hints at the water stress periods 
with normalized relative temperature. It has been 
shown (Mattia et al, 2003 that in VV polarization the 
backscattering coefficient decreases with the vertical 
development of the plant. It then increases slowly as 
the canopy is drying. However, even when wheat is 
the densest there is still some sensitivity to soil 
moisture (Mattia et al, 2003).  
During the early stages of growth, before DoY 70, the 
plant height is still low (<30 cm), the GAI is also 

small (Figure 6) and the radar signal is dominated by 
the response from soil moisture. During this period, 
surface temperature cannot provide information on soil 
moisture status because of the mixed response of soil 
and vegetation. On the other hand C-band 
backscattering signal allows identifying three types of 
behaviors. The first one is field W2 which displays a 
higher than average backscattering coefficient on days 
57 and 64, hinting at higher top soil moisture. In an 
opposite fashion, fields W11, W12 and W13 have a 
backscatter coefficient about 1dB lower which 
indicates lower soil moisture.  

Figure 5: In-situ measurement of TSM for wheat fields 

Figure 6: GAI profiles for wheat fields 

Soil moisture and precipitations indicate that between 
DOY 105 and DOY 120, fields experiment a drought 
episode. As we are at the maximum of plant 
development, variations between fields are likely to be 
related to a difference in soil water status.  During this 
period, field W2 shows a lower relative surface 
temperature, about 1%, and a higher backscattering 
coefficient, of 1dB. This would suggest a higher TSM 
for this field during this period, as the plant has access 
to more water and is then more capable of 
transpiration and to regulate its temperature. The radar 
indicator confirms this tendency, as a higher soil 
moisture results in more energy being backscattered. 
On the other hand Field W11 shows the opposite 
behavior, which we relate to a higher water stress 
level. This observation is confirmed two ways. First 
by the in-situ measurements, which show that field 
W2 consistently has higher soil moisture and W11 a 
lower one (Figure 5). Then the data from DoY 128 
corroborate our reasoning. Indeed, the region 
experienced a large precipitation event on DoY 123 
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(≈30mm), with a direct repercussion on top soil 
moisture, and most of the fields show the same 
tendency on relative surface temperature, which 
decreases, and backscattering coefficient, which 
increases. Different hydrodynamic properties, such as 
water reserve and hydraulic conductivity, would then 
be attributed based on the tendencies observed during 
this time window. 
The analysis can also be done between main stages of 
development to precise tendencies we observed. For 
example during growth, fields W11 and W13 signals 
indicated lower soil moisture, which we could have 
related to the same origin. Nevertheless, the data from 
DoY 105, with W13 presenting a lower relative 
temperature difference and a higher backscattering 
signal, shows a different response to the water stress 
period. In situ measurement confirms that field W13 
keeps a higher TSM, about 10%, compared to W11. 
Additional data shows that W13 has a higher clay 
percentage, which would result on a higher water 
reserve and a higher hydraulic conductivity limiting 
vertical water transfer in soil. The initial assumption 
that both fields would have similar soil properties can 
then be nuanced and precised.  

4. Analysis of radar C-band and thermal infrared
signature on sunflower crop 

The methodology used for sunflower is the same than 
for wheat, we used the same relative surface 
temperature versus backscattering coefficient 
representation (Figure 7). However the temporal 
sampling is not as good as the one we had for wheat, 
with a large time period, from DoY 145 to 192 without 
thermal images. 
We used the VV polarization from Radarsat-2 images. 
The evolution of the signal is different than the one 
presented for wheat. Here, plant growth is 
accompanied by an increase of the backscattering 
coefficient, followed by a plateau during the maximum 
of vegetation. Senescence is marked by a decrease of 
the backscattering coefficient.  

Figure 7: Normalized relative surface temperature 
versus C-band backscattering coefficient for sunflower 

On DOY 105 and 128 three groups can be identified: 
S3 and S4, S1 and S2, S5 and S6. These groups are 
consistent during this period but no clear relation to 
TSM can be made. The only observation possible is 
the effect of the rain even on DoY 123, which causes 
the decrease of temperature and increase of the 
backscattering coefficient. 
On DOY 145, field S5 displays a lower surface 
temperature of about 4%. This is related to the higher 
top soil moisture observed during this period.  No 
clear relation appears between backscattering 
coefficient and TSM (Figure 8). Our GAI vales are of 
no use at this time, as they under sample the growing 
period and can’t inform development discrepancies 
that could be exposed by the different backscattering 
coefficients.  
During senescence, on DoY 232 and 241, two groups 
can be identified: S1 and S3, S2 and S4. The signal is 
evolving the same way, with an increase of relative 
temperature difference caused by the drying of the 
plant and the decrease on the backscattered coefficient, 
because leaves are falling. However the magnitude of 
the evolution is different, S1 and S3 show a larger 
evolution than S2 and S4 for the same dates. This 
would indicate a later senescence phase for the latter 
fields. This evolution is confirmed by the GAI data 
(Figure 9), where fields S3 and S1 have a decreasing 
GAI at least from DoY 212. Fields S2 and S4 display 
a higher GAI from this day to the end of the cultural 
cycle. In our modeling perspective, we would start 
using parameters optimized for senescence sooner for 
fields S1 and S3. 

Figure 8: In-situ measurements of TSM for sunflower 
fields 

Figure 9: GAI profiles for sunflower fields 
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5. Conclusion

This paper presented the dataset used to study the 
combined use of thermal infrared and C-band radar 
remote sensing data to distinguish heterogeneities 
between fields of the same crop. Examples of analysis 
and possible model parameterizations have been 
presented. Our aim is now to make use of the 
differences between fields to run a model simulation 
of the water and energy budget in order to better 
constrain them. 
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ABSTRACT - Accurate estimating grassland above-ground biomass (AGB) is important to estimate grassland 
productivity and to assess global carbon balance. This study used the regression kriging (RK) method to estimate 
grassland AGB in northeast China based on the Landsat8 OLI images, three remote sensing variables (band4, 
normalized difference vegetation index (NDVI), and enhanced vegetation index (EVI)) were used to build RK 
models separately and to explore their capability for modeling spatial distribution of grassland AGB. The results 
were validated using the ground measurements and compared with the results of the simple regression (SR) 
method. The results showed an improved performance of the RK method compared to the SR method. For the SR 
method, model based on band4 had the best performance in terms of root mean square errors (RMSE, 21.37 
g/m2), while for the RK method, models based on NDVI (RMSE=17.78 g/m2) and EVI (RMSE=17.48 g/m2) had 
a similar performance and provided a better estimation than that of band4 (RMSE=20.14 g/m2). The total 
grassland AGB in the study region is 1681.20 kiloton and mean AGB density is 100.85 g/m2, the density is 
decreasing with an order of mountain meadow steppe, temperate meadow steppe, lowland meadow steppe, 
temperate steppe, and desert steppe. 

1  INTRODUCTION 

Above ground biomass (AGB) is defined as the 
dry weight of all above ground live mass per unit area 
(Dong et al., 2003). it provides the basis to estimate 
aboveground net primary productivity (Lauenroth et 
al., 1986). In the pasture area, the amount of grassland 
AGB determines forage availability and herbivore 
carrying capacity (Jobbágy et al., 2002;Mutanga and 
Skidmore, 2004;Yahdjian and Sala, 2006). Timely and 
accurate monitoring of the quantity of grass-land AGB 
can provide the scientific data to regulate stocking 
rates for sustainable use of grassland resources 
(Tucker, C. and Sellers, 1986;Wang et al., 2006). 
Traditional method to estimate AGB is mainly 
conducted by field surveys, although it can provide a 
better estimation of vegetation AGB, they are too 
labor- and time-consuming over large areas (Xie et al., 
2009;Paul et al., 2013) which limited its use over large 
areas (Viana et al., 2012). Remotely sensed data, 
which are endowed with high temporal resolution and 
the capacity for large-scale observation, are widely 
used for large area AGB estimation.  

A number of AGB estimation methods have been 
developed from remote sensing data. The most popular 
and commonly used approaches are empirical 
statistical methods, which link various predictor 
variables derived from remotely sensed data to AGB 

values measured on the ground. Another approach 
widely used is the machine learning method, such as 
artificial neural networks, support vector machines, 
and random forests (RFs). Geostatistical prediction 
methods, including ordinary kriging (OK), universal 
kriging (UK), and regression kriging (RK), which 
model the data structure of spatial autocorrelation and 
incorporate this information in the response variables 
for unsampled locations, have also been used to map 
environmental variables (Li et al., 2016). Recent 
studies have shown the superiority of RK when 
compared to the other two methods (Hernández-
Stefanoni et al., 2011;Li et al., 2016).        

To better estimate grassland AGB, this study 
used the RK method to build models with three remote 
sensing variables (band4, normalized difference 
vegetation index (NDVI), and enhanced vegetation 
index (EVI)) from Landsat8 OLI images. The model 
for each variable was then validated using the ground 
measurements, a simple regression (SR) model for 
each variable was also built to compare the result with 
that of RK method. 

2  METHODS AND DATA 

2.1 Study Area 

Hulunber is located in the northeastern part of 
Inner Mongolian, China, and is a part of Mongolian 
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Plateau in central Asia. Chenbarhu Banner is located 
in the backland of Hulunber (48º48’-50º12’ N, 118º22’
–121º02’ E), this region is characterized by a semi-
arid inland climate with an annual mean precipitation 
of 300-550 mm and annual mean temperature about 
1 ℃(Nie et al., 2005). The average elevation is 677 m, 
and rise from the west to the east. The length of 
growing season is approximately 140 days and lasts 
from May to September (Tang et al., 2015). Grassland 
is the biggest ecosystem in this region and five main 
grassland types are included: lowland meadow steppe, 
mountain meadow steppe, temperate steppe, temperate 
meadow steppe and desert steppe. The total area of 
available steppe is about 1.67×106 hm2. 

Figure 1. Study area and sampling plots 

2.2 Sample Design and Field Measurements 

Field survey was performed from July 9 to July 16 
in 2015. The 1:1,000,000 digital vegetation map of 
People's Republic of China was used to guide the 
location of the survey plots relative to the different 
vegetation types. Each survey sample plot was 30 m 
× 30 m with homogeneous canopy, which is well-
suited for the 30 m resolution Landsat data. Three 1 m 
× 1 m quadrats were randomly selected in each sample 
plot. The grassland AGB was obtained using the 
harvest method. Firstly, cut off the fresh grass from the 
ground with a stubble no more the 0.5 cm, and then 
brought the fresh grass to the laboratory, dried it under 
the temperature of 65℃ for 48h in the oven, finally, 
measured and recorded the weight. The quadrat’s AGB 
is the total dry grass weight of each species. The 
sample plot’s AGB is the average weights of three 
quadrats. A Global Positioning System (GPS) receiver, 
capable of providing real-time positioning with 2m 
accuracy, was used to obtain the coordinates for these 
sample plots. In total, data for 89 sample plots were 
obtained. Then, 56 samples (2/3 of the total) was 
randomly selected to train the models, and the 
remaining of 28 sample plots (1/3 of the total) was 
independently used to validate model performance. 

2.3 Satellite Data 

Landsat8 OLI lever-1 standard data products 
were acquired from USGS Earth Explorer website 

(http://earthexplorer.usgs.gov/). The images were 
radiometrically and geometrically corrected and were 
projected as UTM coordinates (WGS84 datum, Zone 
51N). In order to cover the study area, four scenes of 
Landsat8 images corresponding to the dates of the 
field survey were collected in this study. Two of the 
images (Path 123, row 25 and 26) were acquired on 
July 5; the other two scenes (Path 124, row 25 and 26) 
were acquired on July 12. All images were with high 
quality, and minimal (<10%) or no cloud 
contamination. To obtain the reflectance of the top of 
canopy (TOA), the images were atmospherically 
corrected using the FLAASH (Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes) 
program embedded in ENVI 4.8 software (Agrawal et 
al., 2011).  

Two vegetation indices were calculated from the 
TOA reflectance images and were used in this study 
for regression and geostatstical analysis, they are 
Normalized Difference Vegetation Index (NDVI) 
(Rouse et al., 1974) and Enhanced Vegetation Index 
(EVI) (Huete, A.R. et al., 1997;Huete, A. et al., 1999). 
The  indices  were  computed  using  the  following 
equations:   

NDVI=(NIR-R)/(NIR+R) (1) 

EVI=(2.5(NIR-R))/(1+NIR+6R-7.5B+L2 )   (2) 

Where B, R, NIR refers to the reflectances in the 
blue, red and near infrared bands, respectively. 

2.4 Regression Kriging 

RK is a hybrid geostatistics method that 
combines a linear regression method with the ordinary 
kriging of the residuals (Castillo-Santiago et al., 2013). 
In the process of RK, the predictions are combined 
from two parts: one is the predictied trend (obtained 
by regressing the primary variable on the auxiliary 
predictor using generalized least-squares regression, 
the other is the residuals, which are interpolated using 
OK (Viana et al., 2012). Finally, predictions at 
unvisited locations  are performed by 
summing the predicted trend and residuals(Hengl et al., 
2007). 

(3) 

where corresponds to the estimated trend 
model coefficients,  represents the predictive 
variables at the location ,  is the regression 
residual,  is the kriging weight determined by the 
spatial autocorrelation structure of the residual, and p 
is the number of auxiliary predictors. The analysis was 
accomplished using the “gstat” package (Pebesma, 
2004) within the statistical software package R 3.3.3. 
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2.5 Model Assessment 

The results were validated with data from the field 
sampling. The root mean square error (RMSE) was 
used to determine which models have more precision 
in the estimation of grassland AGB in the. 

(4) 

where  the predicted AGB value, is the 
measured AGB value,  is the number of the sample 
plot, and n is the number of measured values in the 
validation data. 

3 RESULTS AND DISCUSSION 

3.1 Correlation and Regression Analysis 

The linear correlation analysis is shown as Table 1. 
All spectral bands are significantly correlated with 
AGB, the band4 (red band) was nore noticeable for its 
highest negative coefficient value. The B5 (NIR band) 
is the only one have a positive correlation. NDVI and 
EVI also showed a strong correlation with AGB with 
the correlation coefficients larger than 0.7, NDVI has 
higher correlation values than EVI. The band4, NDVI, 
and EVI were chosen for the following regressing and 
geostatstical analysis.  

Table 1. Correlation coefficients between image 
variables and AGB 

Variable Correlation coefficients (n=84) 
band1 -0.731** 
band2 -0.735** 
band3 -0.719** 
band4 -0.746** 
band5 0.471** 
band6 -0.744** 
band7 -0.721** 
NDVI 0.731** 
EVI 0.708** 

**refers to a significant correlation between image 
variables and AGB (P < 0.01). 

3.2 Geostatistical Analysis 

The empirical variograms built from the residuals 
of the regression models clearly show spatial 
autocorrelation, the variance of residuals increasing 
with distance between plots reaching an inflection point 
at different range for the three variables (Table 2 and 
Figure. 2). The three theoretical models fit the data 
well, independently of the variables employed: band4, 
NDVI and EVI. The adjusted theoretical models ranged 
from 13.05 to 43.68 km, distances at which the 
observations were independent. 

 Table 2. Parameters of the fitted empirical variogram 
models built from the residuals for RK  

Variable 
RK 

Model Sill Range Nugget 

band4 
Exponential 595.29 14111.75 456.80 

Gaussian 599.20 17408.81 487.52 
Spherical 583.10 24559.61 448.08 

NDVI 
Exponential 631.22 33950.91 375.91 

Gaussian 583.69 24498.59 416.30 
Spherical 563.05 43684.25 374.03 

EVI 
Exponential 647.71 15222.55 66.67 

Gaussian 616.79 13046.56 240.11 
Spherical 605.59 37128.79 181.53 

Figure 2. Plot of experimental and theoretical 
variograms of residuals. 

3.3 Model Accuracy 

Validated using ground measurements, the models 
based on RK method presented the least error (Table 
3), and all had an improved accuracy from the SR 
method. The exponential model of the RK method for 
the three variables produced lowest RMSE and MAE 
and was chosen for kriging interpolation. For the SR 
method, model based on band4 had the best 
performance in terms of root mean square errors 
(RMSE, 21.37 g/m2), while for the RK method, 
models based on NDVI (RMSE=17.78 g/m2) and EVI 
(RMSE=17.48 g/m2) had a similar performance and 
provided a better estimation than that of band4 
(RMSE=20.14 g/m2). 
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Table 3. Validation of the regression kriging and 
simple regression methods using the ground 

measurements. 

Variable 
RK SR 

Model RMSE 
(g/m²) 

RMSE 
(g/m²) 

band4 Exponential 20.14 21.37 
NDVI Exponential 17.78 22.19 
EVI Exponential 17.48 23.75 

3.4  Biomass Distribution in Different Grassland 
Types  

According to the regression and accuracy analysis, 
the result of exponential model of the RK method built 
with EVI was used to estimate grassland AGB (Table 
4). In general, the AGB shows an increasing trend 
from west to east. The total grassland AGB in the 
study region is 1681.20 kiloton and mean AGB density 
is 100.85 g/m2, the AGB density is decreasing with an 
order of mountain meadow steppe, temperate meadow 
steppe, lowland meadow steppe, temperate steppe, and 
sandy steppe.Temperate meadow steppe was estimated 
to have the largest AGB, sandy steppe have the 
smallest AGB. 

Figure 4. The above ground biomass spatial 
distribution of Chenbarhu Banner 

Table 4. The above ground biomass of different 
grassland types 

Grassland 
types 

Area 
(104 hm2) 

AGB density 
(g/m2) 

Total 
AGB (kt) 

MMS 18.64 179.79 335.19 
LMS 29.95 108.97 326.34 
TMS 42.78 110.92 474.51 
TS 63.72 72.82 463.99 
SS 11.61 69.92 81.17 

WR 166.70 100.85 1681.20 

MMS, LMS, TMS, TS, SS, WR represent 
Mountain meadow steppe, Lowland meadow steppe, 
Temperate meadow steppe, Temperate steppe and 
Sandy steppe respectively. 

4 CONCLUSION 

This study explored the RK method in estimating 
grassland AGB in northeast China, the band4, NDVI 
and EVI were used as the indenpent variables to built 
RK models separately. Validation results showed that 
RK models for the three variables all had an improved 
accuracy than the SR method, the exponential model 
of the RK method produced better estimation. 
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Cirrus cloud removal in Sentinel-3 SLSTR images using an empirical 
algorithm in the Cirrus band 

J.C. Fortea and J. Moreno 
Laboratory for Earth Observation, University of Valencia 
juan.fortea@uv.es 

ABSTRACT   Cloud identification is one of the first tasks usually carried out when using satellite imagery for 
land and ocean applications. Cirrus clouds are thin, transparent, or semi-transparent in most visible spectral 
bands and so they are one of the most elusive cloud types.  
A spectral band centred near the strong 1.38 µm water vapor absorption band is useful for monitoring cirrus 
clouds (Gao et al. 1993), thus that band has been incorporated into the latest sensors and platforms. Cirrus 
clouds comprise ice crystals and form at high altitudes at the highest layers of the troposphere, normally 7-
20 km above the Earth’s surface. Recent observations have shown that cirrus cover can reach as high as 30% of 
the globe, and has doubled over the past 40 years.  
This work contributes to how the effect of cirrus clouds can be removed from the surface reflectance at the top of 
the atmosphere instead of eliminating pixels identified as being covered by cirrus clouds. Here we apply an 
empirical algorithm (Gao et al. 2002) to the SLSTR sensor on board the Sentinel-3A satellite, using the cirrus 
spectral band. 

1. INTRODUCTION

Because of the absorption of water vapor, which is 
mainly concentrated in the lower atmospheric layers, 
reflected solar radiation in the cirrus band is mainly 
absorbed at these wavelengths. This approach attempts 
to detect light from this spectral region, i.e. light 
reflected by high-altitude cirrus clouds and not 
completely absorbed by the small amount of 
atmospheric water vapor above these cirrus clouds 
(figure 1). 

Figure 1. Solar and view geometry. The atmosphere-
earth system can be viewed as comprising three layers. 

Thus, this empirical algorithm (Gao et al. 2002) uses 
the information from the cirrus band to correct other 
spectral bands for the effects of cirrus clouds. This 
methodology is based on the quasi-linear relationship 
between the reflectance of cirrus clouds in the cirrus 

band and the cirrus reflectance in other visible and 
shortwave IR bands. Here we combine this algorithm 
with cirrus band information to eliminate the effects of 
these clouds in SLSTR Sentinel-3 images, therefore 
obtaining surface parameters from pixels previously 
defined as cirrus clouds. 

2. MATERIAL AND METHODOLOGY 

2.1. Methodology 

The top of the atmosphere (TOA) reflectance can be 
expressed for each band as: 

ρ* = (π∙L)/(μ0∙E0) (1) 

where L is the band radiance, µ0 is cosine solar zenith 
angle, and E0 is the solar irradiance at the TOA. Thus, 
in the case of a cirrus cloud, for each spectral band we 
have: 

ρ* = ρc + Tc∙ρ (2) 

where ρc is the cirrus reflectance, Tc is the two-way 
transmission (direct and diffuse) through the cirrus 
cloud, and ρ is the reflectance of the surface. With the 
linear relationship between the cirrus reflectance in the 
cirrus band ρc (1378 nm) and another selected band, ρc 
(λ): 

ρc(1378 nm) = Kλ ∙ρc(λ) (3)

where Kλ is the empirical parameter, we can obtain the 
‘cirrus-path-radiance corrected image’ as: 

Tc ∙ ρ = ρ* − ρc (1378 nm) (4)
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2.2. Material 

We applied this methodology to the SLSTR 
Copernicus Sentinel-3 images acquired on the January 
31, 2017 at 10:23 h (UTC) over the south-east of the 
Iberian Peninsula (figure 2). 
 

 
Figure 2. SLSTR-Sentinel-3 spectral bands. The cirrus 
band is at S4 (1374 nm). 
 
The meteorological situation was defined by a cold 
front arriving to the west of the Iberian Peninsula, 
pushing the air mass over the Peninsula to the east, 
with the presence of low, medium, and high clouds 
(figures 3 and 4). 
 

 
Figure 3. Image of the south-east of the Iberian 
Peninsula on January 31, 2017. SLSTR Sentinel-3 
RGB(S5-S3-S2). 
 

 
Figure 4. Cirrus band image (S4 SLSTR Sentinel-3) 
for the same zone and time as in figure 3. Only cirrus 
reflectance was detected, and no surface or low-level 
cloud reflectance was detected in cirrus band. 

3. RESULTS  

There is a linear relationship between cirrus 
reflectance in bands S2, S3, and S5 with cirrus 

reflectance in the S4 (cirrus band) channel. We 
estimated and corrected the cirrus contribution to the 
S2, S3, and S5 spectral bands and the effect of cirrus 
correction in the normalized differential vegetation 
index (NDVI) was calculated. 
 

 
Figure 5. S4 vs. S2 spectral band SLSTR Sentinel-3 
reflectivity at the TOA. 
 

Figure 6. S4 vs. S3 spectral band SLSTR Sentinel-3 
reflectivity at the TOA. 
 

 
Figure 7. S4 vs. S5 spectral band SLSTR Sentinel-3 
reflectivity at the TOA. 
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We also estimated the effect of cirrus correction on the 
NDVI as: (S3-S2)/(S3+S2), as shown in figure 8. 

Figure 8. Histograms of NDVI in a zone of Valencian 
Region, with and without cirrus correction. 

The magnitude of the cirrus-induced change on the 
NDVI normally depends on the thickness of the 
clouds. Cirrus clouds decrease the NDVI values which 
causes loss of variability. With this correction the 
pixels covered with cirrus clouds can again become 
useful information. 

4. CONCLUSIONS

We applied an empirical methodology (Gao et al. 
2002) to remove the effects of cirrus clouds in SLSTR 
Sentinel-3 images using the cirrus band information. 
In this work we highlight the utility of the SLSTR 
cirrus band on the Sentinel-3 for correcting the cirrus 
effect in its visible and shortwave infrared spectral 
bands. Cirrus clouds significantly affect the satellite 
estimations of different surface parameters. The 
information from the S4 cirrus band on board 
Sentinel-3 was used to correct other spectral bands and 
thus, to obtain surface parameters from pixels that had 
already been defined as cirrus clouds. 
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ABSTRACT: 
This study carried out in the framework of the CNES TOSCA-PLEIADES-CO project of the French Space 
Agency, evaluates the relevance of remote sensing data acquired at medium resolution for the monitoring of 
seasonal cycles at the agricultural plot scale. The developed methodology uses a downscaling approach based 
on Least Squares estimation. The medium resolution data are derived from MODIS Aqua products MYD09GQ, 
which are surface reflectances acquired at a spatial resolution of 250m. These data are supplemented by the 
high-resolution land cover map and field contours of the study area (agricultural plots of the plain of Versailles) 
at a 5m spatial resolution.  
The seasonal cycles of the main agricultural species present in the study area (winter wheat, winter barley, 
maize and rapeseed) were first analysed using the Enhanced Vegetation Index 2 (EVI2) index combining RED 
and NIR bands. The method is based on three sequential steps: (i) selection of homogeneous MODIS pixels 
(covered by one single crop type), (ii) cloud filtering and (iii) temporal interpolation of EVI2 data at a daily time 
step. The seasonal variations of pure winter and summer cereals could be separated.  
The seasonal variations of the EVI2 for the various crops composing mixed pixels were then extracted by 
applying the downscaling method. The MODIS pixels composed of only two different crops (winter and summer 
crops) were selected and the downscaling method was applied. The comparison between the seasonal cycles of 
the homogeneous pixels and those inversed from the downscaling of the mixed pixels, showed a good agreement.  

1 INTRODUCTION 

The region under study is the Alluets Plateau in the 
plain of Versailles in France. This is a cropland area 
dominated by winter wheat (49%) and winter barley 
(10%), oilseed rape (20%). Summer crops like maize 
(10%) or summer barley (10%) can also be found. 

2 CLOUDS FILTERING AT PIXEL SCALE 

The EVI2 « Enhanced Vegetation Index » was used in 
this study to assess the crops seasonal cycle during the 
Year 2013. 

 (1) 

Where Ref are the surface reflectances acquired in the 
Red and NIR domain respectively. 
Two clouds filtering algorithms were tested and 
applied. The first one is based on thresholds applied on 
the surface reflectances and on combinations of them 

(NDVI, NIR/Red ratio, Ishida and Nakajima, 2009): 
observations are flagged as cloudy if NDVI is lower 
than -0.1, or if the red reflectance is higher than the 
minimum of the former 30-day period + 0.26, or if the 
NIR/Red ratio is lower than 0.70. Figure 1 (top) 
illustrates the results for one MODIS pixel, the most 
discriminating test is the one on the red reflectance. 
All cloudy observations are further discarded. 
The second filter, developed in this study, uses the 16-
day EVI MODIS product to diagnose cloudy data. The 
16-day EVI is interpolated at a daily time step. 
Various interpolation algorithms were tested 
(polynomial, univariate spline functions, sinusoids…) 
and the best results were obtained with the CCGRV 
algorithm (Bacour et al., 2006), which combines 
polynomial and sinusoidal functions and demonstrated 
previously high performances for the interpolation of 
long time series of vegetation indices (Maignan et al., 
2008). 

( ) ( )( )Re Re2 2.5* / 2.4* 1NIR d NIR dEVI Ref Ref Ref Ref= − + +
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Figure 1 - Cloud filtering. Top: Different thresholds 
are applied on NDVI (green dots), the red reflectance 
(red dots) and the ratio NIR reflectance to Red 
reflectance (violet dots), to flag cloudy observations 
following Ishida and Nakajima (2009). Bottom: Use of 
the 16-day EVI product to discard remaining cloudy 
observations (green dots). 

We compute a weighted mean absolute distance 
between the clear EVI2 observations and the 
interpolated EVI (with a weight of 0.5 for observations 
above the interpolated EVI and a weight of 1 for 
observations below): we indeed assume that the 16-
day EVI is mostly cloud-free and that cloudy EVI2 
observations will have lower values. All observations 
that are below the interpolated EVI and farther than 
the mean distance are discarded as cloudy ones. This is 
illustrated in Figure 1 (bottom) for the same MODIS 
pixel.  

3 INTERPOLATION AT FIELD SCALE AND 
DAILY TIME STEP  

After cloud filtering, the EVI2 signal was interpolated 
at a daily time step using the CCGRV algorithm.  
In order to assess the seasonal variations of the EVI2 
signal for the main crop types of the study region 
(winter wheat, winter barley, oilseed rape and maize), 
the MODIS-EVI2 were extracted for each pixel 
considered as pure (i.e. covered by a single crop) and 
cloudy observations were filtered following the 
algorithm presented in section 2.  

For each crop type, a daily median signal was 
generated. This median cycle was then interpolated at 
a daily time step with the CCGRV method.  
The results are illustrated in Figure 2 for the four main 
crops. 

Figure 2 – Median cycles for the four main crops 
present in the study area. The dots represent the 
median observations, while the line shows the daily-
interpolated signal. 
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They show expected cycles in agreement with the in 
situ observations. Winter crops like oilseed rape, 
wheat and barley present a growing season ranging 
between DOY 50 and DOY150 and a senescent period 
starting around DOY 170 and ending around DOY 
230. Summer crops like maize show a delayed cycle 
with a peak around DOY 220 and a senescence ending 
around DOY 310. 

4 DOWNSCALING METHOD AND RESULTS 

As a first approach, we have tested a least square 
inversion method to assess the reflectances of the main 
components of a mixed pixel, assuming linear 
properties and stationarity (i.e., the spatial variations 
of the surface reflectances only depend on the 
vegetation type). 
Then, the inversion problem comes down to the 
minimization of the discrepancies between the 
aggregated signal (weighted by the fractions of the 
various vegetation classes composing a mixed pixel) 
and the low resolution signal. 
Applied to the EVI2 signal and to a number of n pixels 
composed of m land cover types, the inversion 
problem sum up to the minimization of the following 
equation: 

(2) 

 Where Fi,j, is the fraction of each land cover type in 
the considered pixel, rj is the unknown EVI2 of crop j, 
Ri is the EVI2 of the mixed pixel i,  

Figure 3 – Representation of 4 neighboring pixels 
composed of various fractions Fi,j of 4 different crops.  

As a first step, we have applied the inversion method 
to the MODIS pixels covered by only two different 
crops (winter and summer crops which present very 
differentiate seasonal cycles). Then, two pixels 
covered partly by winter wheat and maize were 
selected. 
The minimization was then applied to these two pixels 
to estimate the respective EVI2 of the two mixed crops 
(in our case, wheat and maize) at each date when a 
MODIS image was available. The respective EVI2 
have been computed, interpolated and compared to the 
one calculated previously on the pure pixels. 
Figure 4 presents the preliminary results obtained. The 
EVI2 seasonal cycles inversed are in good agreement 
with the one extracted previously on the pure pixels of 
wheat and maize, even though the inversion was 
performed on only two pixels. We can see that the 
estimated maize cycle is noisier than the wheat one, 
which reflects the larger spatial variability of the 
phenology of summer crops compared to winter crops.  

Figure 4 – Seasonal cycle downscaled for mixed « 
wheat-maize » MODIS-250m pixels. The dots 
represent the least square inversion of the 
observations over the mixed pixels, to get the signal of 
the pure crops (top: wheat, bottom: maize). The thick 
line shows the daily-interpolation of the inverted 
cycle. The thin line shows for comparison the seasonal 
cycle derived from the observations of pure pixels 
only. 
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5 CONCLUSION AND PERSPECTIVES 

The contribution of a prior estimate given by the pure 
pixels should increase the performances of the 
methodology. 
The next step is indeed to add constraints in the 
inversion process and to apply the methodology to the 
other mixed pixels covered by oilseed-rape and barley, 
and to a larger number of endmembers (more than 2). 
The interpolation methodology could also be slightly 
improved to better assess the peak of the cycle. This 
could be achieved by introducing time-varying 
weights on the data. 
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ABSTRACT - Accurate and automatic detection of clouds in optical Earth observation satellite scenes is a key 
issue for a wide range of remote sensing applications. With no accurate cloud masking, undetected clouds are 
one of the most significant sources of error in both sea and land biophysical parameter retrieval. We present 
recent advances in statistical cloud detection for Proba-V imagery. 
The objective of the cloud masking algorithms is to detect clouds accurately providing a cloud flag per pixel. We 
first approach the problem from the classical machine learning perspective based on feature extraction plus 
supervised classification with neural networks (NN). Using this approach we significantly improve the cloud 
detection accuracy compared to the operational Proba-V algorithm. Then we approach the problem using deep 
learning methods based on convolutional neural networks (CNN). Experimental results show that CNN are a 
promising alternative for solving cloud masking problems. 

1 INTRODUCTION 

The main objective of this work is to propose a cloud 
detection algorithm for Proba-V (Dierckx, 2014). 
Images acquired by Proba-V instrument, which works 
in the visible and infrared (VIS-IR) ranges of the 
electromagnetic spectrum, may be affected by the 
presence of clouds. Cloud masking is the process of 
identifying the pixels in an image which are cloud 
contaminated. Cloud masking can be tackled as a two-
class classification problem. In its simplest approach, 
cloud detection can be done using a set of static 
thresholds (e.g. over reflectance) applied to every 
pixel in the image. This is the case of the current 
Proba-V cloud masking algorithm (Wolters, 2015) 
which uses a set of dynamic thresholds defined using 
monthly composites of cloud-free reflectance on the 
blue band depending on the land cover of the 
underlying pixel. 

Proba-V instrument presents a limited number of 
spectral bands (Blue, Red, NIR and SWIR) which 
makes cloud detection particularly challenging since it 
does not present thermal channels or a dedicated cirrus 
band. In this context, the European Space Agency 
(ESA) carried out a 'Proba-V Cloud detection Round 
Robin' (PV-CDRR) experiment (Iannone 2017) in 
order to propose and compare different cloud detection 
methodologies for Proba-V. This paper presents our 
contribution in the framework of this experiment as 
well as further improvements obtained using 
convolutional neural networks. 

In the context of the PV-CDRR, we present an 
algorithm that follows what we call the machine 
learning classical approach (ML). This is a 
supervised, pixel-based, classification algorithm 
trained on top of a set of manually designed set of 
features. This approach, which does not use any kind 
of ancillary data, ended up increasing the accuracy 

2.5% points over the operational algorithm on the 
external validation provided by Brockmann Consult 
(Stelzer, 2017). 

We further improve those results using 
convolutional neural networks (CNN) in what we 
called the deep learning approach (DL). The deep 
learning approach aims to automatically learn the 
feature extraction step directly from the data. Using 
convolutions we exploit the spatial information of the 
nearby pixels improving the classification accuracy. 
We present two deep learning approaches: one using 
patch classification to predict the label of the center 
pixel. The second one is a fully convolutional network 
that aims to predict the labels of the complete image 
patch. 

All in all, we show that our proposed 
methodologies are capable of exploiting the 
information of Proba-V features beyond the limits of 
the operational threshold based approach. The current 
work summarizes and extends the previous authors' 
work presented in Gómez-Chova (2017) and Mateo-
García (2017). 

The paper is organized as follows: first we explain 
both methodologies in the context of cloud detection, 
then we introduce the dataset together with the manual 
labelling process of the images to create a ground 
truth. We then present the results of the validation 
assessment from Brockmann Consult, the 
improvements using CNN and some illustrative 
examples of the generated cloud masks. 

2 METHODOLOGY 

Statistical machine learning methodologies for cloud 
detection can be divided into supervised and 
unsupervised methods. Supervised methods assume 
you have a sufficiently large set of pixels labelled; that 
is, for those pixels you have a label that indicates if the 
pixel is whether or not affected by cloud 
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contamination. On the other hand, unsupervised 
methods attempt to distinguish the underlying class 
directly from the data. Supervised methods, when 
provided with diverse and large enough amount of 
data perform better than unsupervised approaches. 
Both of our proposed methodologies can be framed 
into the supervised classification framework. Thus we 
rely on having a large enough set of pixels labelled as 
'cloud free' or 'cloudy', i.e. the ground truth. 

2.1 Machine learning classical approach 

The first of our proposed cloud masking 
methodologies works pixel-wise. It relies on the 
extraction of meaningful physically-based spectral 
features (e.g. brightness and whiteness) that are 
combined with a set spatial features to increase the 
cloud detection accuracy. Then, a supervised pixel-
based classification is trained in top of those features 
using a manually labelled training set. 

The set of extracted features can be divided into 
spectral and spatial features. For the spectral features 
we used physically-inspired features proposed in 
previous researches (Mei, 2017). Table 1 summarizes 
the spectral features considered. We also extract basic 
spatial features at different scales: we computed the 
mean and standard deviation for each feature on 3×3 
and 5×5 windows. Thus, we ended up having 70 
features for each pixel conformed by the four (4) 
Proba-V reflectance channels, the spectral features of 
Table 1 (10) and the mean and standard deviation 
computed at both scales: (4+10)×4. We selected the 40 
top most relevant features using several feature 
ranking methods. 

Table 1. Cloud features extracted from Proba-V images 

The set of the selected 40 best features constitutes 
the inputs of the supervised classification algorithms. 
In this context we assume we are given a set of l 
labelled training samples {xi, yi}, where xi is the 
observed vector in the input space and yi is the 
observation label in the output space. In our problem, 
each pair {xi, yi} in that set is a pixel where xi is the 40 
dimensional feature description of the pixel and yi is 
the label of such pixel (0: 'cloud free' or 1: 'cloudy').  

The selected supervised classification algorithm 
for the current task is the standard multilayer 

perceptron neural network (MLP); which has been a 
traditional approach for cloud classification (Torres 
Arriaza, 2003; Hughes, 2014). 

Summarizing, for the machine learning classical 
approach we trained an MLP on top of a set of 40 
relevant spatio-spectral features. Those 40 features can 
be extracted directly from the four top of atmosphere 
(TOA) reflectance channels of the Proba-V images; 
thus the method does not require any kind of ancillary 
data to be deployed. Results of this approach 
compared against the operational Proba-V algorithm 
are shown in Section 4. 

2.2 Deep learning approach 

Convolutional neural networks (CNN) have proven to 
be state of the art methods for image classification, 
image segmentation, and object detection. Beyond 
their high classification accuracy shown in many 
problems, CNN present interesting properties for 
remote sensing data. For instance, hierarchical spatio-
spectral feature extraction step is automatically learned 
from the data. Therefore, previous custom feature 
extraction step is not needed provided enough training 
data. In addition, convolutional filters are specially 
designed to exploit the spatial information of images. 
This is specially relevant to our problem since the 
amount of spectral information is scarce (only four 
spectral bands and no cirrus or thermal infrared 
bands).  

Cloud masking problem is an image segmentation 
problem where every pixel of the image has to be 
predicted. A simple deep learning approach for image 
segmentation is patch classification: for classifying a 
pixel a patch of image surrounding it is taken. Thus 
the segmentation problem is transformed into image 
classification where there is a set of patches and each 
patch has a label corresponding to the tag of the center 
pixel. Alternatively a multi-output approach can be 
taken where, for each image patch, the prediction of 
the full patch is provided. This approach has been 
popularized with the fully convolutional networks 
(FCN), which are CNN architectures without any fully 
connected layer at the output. These architectures 
allow much faster predictions compared to the patch 
classification approach. 
For this work we tried both approaches: 

• Patch classification. We used small patches
of the 4 Proba-V channels, the goal is to
provide the label of the center pixel of the
patch. We test two input configurations: 4-
channel 17×17 and 4-channel 33×33.

• Fully convolutional. For practical purposes
the network was trained on 32×32 4-channel
Proba-V image patches.

We used a modified version of the ‘Xception’ 
architecture (Chollet, 2016) for the patch classification 
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approach. The ‘Xception’ architecture is a deep 
architecture designed for image classification. Our 
modified version has 7 layers formed by standard 
convolutions and separable convolutions. We 
employed residual connections (He, 2016) and batch 
normalization (Ioffe, 2015). The network was trained 
with Adam optimizer (Kingma, 2015) which is a mini-
batch stochastic gradient descent algorithm with 
adaptive estimates of higher order moments.  

For the fully convolutional scheme we used a 
simplified version of the ‘UNet’ architecture 
(Ronneberger, 2015). We used 2 sets of 2 separable 
convolutions followed by max-pooling for the 
downsampling path and deconvolutions (also called 
transpose convolutions) for the upsampling path. We 
employed residual connections from the 
downsampling to the upsampling path and batch 
normalization (Ioffe, 2015).  

All networks were trained to minimize binary 
cross entropy between predictions and the 
corresponding labels. In the multi-output approach we 
minimize the mean binary cross entropy along all 
outputs in the patch. 

One of the major problems when training big 
convolutional neural networks is their tendency for 
overfitting. In order to avoid overfitting, regularization 
has to be imposed. In this work, we employed dropout, 
weight decay, and data augmentation by rotations and 
flips of the patches. 

3 PROBA-V DATASET 

We consider as input data Proba-V Level 2A products 
with TOA reflectance. This comprises the four Proba-
V bands which are radiometrically and geometrically 
corrected and resampled at 333m. 

For the round robin experiment, ESA released 331 
products. Those images conformed a complete globe 
acquisition from four different dates covering the four 
seasons along the year 2014. 

In order to apply our proposed methodologies we 
need ground truth data to train our supervised 
classifiers. For this purpose we manually labelled 72 
from the original 331 images using a semi-automatic 
user driven methodology proposed in (Gómez-Chova, 
2007). The aforementioned methodology consists on 
clustering the pixels of the images using Gaussian 
Mixture Model clustering algorithm (GMM). Clusters 
are afterwards labelled by an expert on different 
categories: ice, soil, vegetation, clouds, sand, water or 
mixture. The last one is used when the cluster contains 
different covers, and mixed clusters are discarded and 
a posteriori probabilities are recomputed for each 
cluster class. The final manual cloud mask comprises 
the pixels whose highest probability is the cloud class 
and it exceeds a predefined threshold. If the highest 
probability is cloud but it is below the threshold the 

pixel is labelled as uncertain. Since the ground truth 
has to be as accurate as possible, uncertain pixels are 
not taken into account neither for training nor for 
testing. 

The spatial location of the labelled dataset is 
shown in Fig.1. We split the 72 labelled images into 48 
for training and 24 for testing. In order to fairly 
compare the DL and the ML methodologies, we 
randomly selected 100,000 pixels from the training 
images for training and 200,000 pixels from the 
remaining 24 test images for testing. 

Figure 1. Location of labelled Proba-V images used for 
training (blue squares) and testing (red squares). 

4 EXPERIMENTAL RESULTS 

4.1 Results of the PV-CDRR experiment 

Our proposed classical machine learning methodology 
for cloud detection was presented in the context of the 
PV-CDRR experiment. The participants had to provide 
a cloud mask for all the 331 images using their 
proposed methodology. Afterwards a validation study 
was carried out by Brockmann Consult (Stelzer , 
2017). For this validation study, 10,000 individual 
pixels were manually tagged by an expert and 
accuracy metrics were computed comparing the 
different approaches. In addition, visual examination 
of cloud masks was undertaken by an expert to 
provide qualitative information about the cloud masks. 

Figure 2 shows the performance of the different 
algorithms in the 10,000 unseen labelled pixels. Our 
approach ended up in second position in terms of 
accuracy and with clear advantages in terms of the 
algorithm implementation. It improves the current 
operational approach in 2.5 points which a total cloud 
detection accuracy of 91.57%. 

4.2 Results of the Deep Learning approach 

CNN models where implemented in python using 
‘keras’ library. We used the GPU (Tesla K80) for 
training. Training time highly depends on the chosen 
architecture and in the size of the patches. The 17×17 
patch classification model based on ‘Xception’ 
architecture can be trained in less than 12 hours. The 
33×33 patch classification took around 2 days for the 
patch classification ‘Xception’ model as well as for the 
fully connected approach based on ‘UNet’. The total 
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number of parameters of the 17×17 patch 
classification model is 11,845. It increases to 70,885 
for the 33×33 model while the fully connected 
approach has a total of 217,317 parameters. 

Figure 2. Cloud detection performance (overall average 
accuracy) of the algorithms analysed within the PV-CDRR 
(Algo5: our ANN; Algo7:operational Proba-V cloud mask) 

Figure 3 shows the accuracy of the different 
proposed methodologies on our manually labelled test 
set of 24 images described in the previous section. We 
see that the patch classification approach has the 
highest accuracy improving in 1 point the 
classification accuracy of the classical approach. The 
17×17 approach has similar performance than the 
33×33 one; thus we will prefer the former since it has 
lower computational complexity. The fully connected 
approach in this case yields similar performance than 
the standard pixel based classical approach so the 
patch classification approach is preferred in terms of 
accuracy. Finally it is worth noting that the operational 
Proba-V yields considerably worse than our 
algorithms this difference is even higher than the 
reported by Brockmann. This highlights the 
differences between the Brockmann validation set and 
ours. We conjecture this is due to, on the one hand, our 
semiautomatic labelling procedure which is noisy 
since we tag clusters of pixels, on the other hand, 
differences might come from different cloud class 
assignments for semitransparent clouds, cloud borders 
etc. This is an inherent problem of cloud detection in 
general.  

Finally, Fig. 4 shows our best performing cloud 
mask based on the 17×17 deep learning patch 
classification approach compared with our manually 
labelled ground truth. We see a high overall visual 
agreement in both figures being the most significant 
differences on the contours of the clouds. Figure 4b is 
a challenging snowy region in Kazakhstan. We see 
again that the proposed solution works fairly well and 
it is able to distinguish between snow and clouds with 
near human precision. 

Figure 3. Cloud detection performance of the proposed 
networks on the manually labelled Proba-V images. 

Figure 4. Cloud detection examples showing the RGB false 
color composite, and the comparison of the ‘manual ground 
truth’ with the proposed network: discrepancies are shown in 
blue when proposed method detects cloud and in orange 
when pixels are classified as cloud-free. 

5 CONCLUSIONS AND FUTURE WORK 

We presented an end-to-end implementation of cloud 
detection algorithms based on machine learning. We 
proved that machine learning approaches to cloud 
detection yield state-of-the-art performance for Proba-
V. We showed that the deep learning approach 
simplifies the design of the cloud detection algorithm 
since no feature extraction step is required, this 
approach also slightly improves the final performance 
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of the algorithm. Finally, we provide a labelled dataset 
of Proba-V cloud masks that could be exploited for 
further studies. 

The future lines of this work are wide open. We 
would like to explore the transfer capability of the 
deep learning approaches to different satellites. We 
would also like to compare our manually labelled 
dataset to the less noisy one from Brockmann since 
this could bring insight in the learning with noisy 
labels problem. It also remains open further validation 
of the current algorithms for their implementation in 
the ground segment. 
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ABSTRACT - The objective of this paper is to achieve real-time detection and matching of feature points in 
remote sensing image. To realize the real-time detection and matching, a FAST detector and a BRIEF descriptor 
are adopted, and a FPGA architecture is designed to speed up the processing because of the parallel and 
pipeline property of FPGA. The whole architecture is consist of a DDR3 write-read module, a FAST detector 
module, a BRIEF descriptor module, and a Hamming distance module. In DDR3 storage module, the series 
images were written and read through DDR3 which is working on the ping-pong operation mode. In corner 
detection module, a multichannel parallel comparison strategy was implemented. In descriptor generation 
module, 256 channels parallel comparison were designed to generate a 256 bits binary vector named as BRIEF 
descriptor. In matching module, a Hamming distance was computed by two descriptors, which one descriptor in 
the prior image, and the other one for the next image. Furthermore, the parallel strategy is also adopted in this 
module. The whole architecture is implemented on XC7325T FPGA, which is simulated by six sub-image pairs 
with the known Homography matrixes. The experiment results indicated that the accuracy was satisfactory, 
especially in the image pairs covering with artificial structures. The utilization of FPGA resources was also 
acceptable. 

1 INTRODUCTION 

Feature detection and matching is one of the basic 
image processing operations in remote sensing, and its 
performance directly influence the final results 
produced by the aforementioned applications (Rosten, 
2010). Especially in the environment with a high real 
time, such as on-board processing of satellite image, 
satellite attitude determination, object tracking & 
recognition, and unmanned vehicle etc. (Zhou, 2004; 
Zhang, 2011). Hence, how to implement the detection 
and matching in real time is becoming extremely 
important. To meet the requirement of high real time, 
this paper presented a hardware architecture to 
implement the corner detection and matching in a high 
frame rate. This proposed hardware architecture can 
also be used in on-board tracking & recognition, space 
junk trapping and so on. 

A Field Programmable Gate Array (FPGA) 
architecture is adopted, because of its excellent 
characteristics in pipeline structure and fine-grained 
parallelism. Furthermore, the size and speed of FPGA 
are competitive when compare with Application 
Specific Integrated Circuit (ASIC), especially in 
design flexibility and development cycle (Torres-
Huitzil, 2000). More importantly, this paper 

implemented the whole algorithm on a single FPGA. 
The proposed algorithm includes corner detection, 
descriptor generation, and matching. The main 
contributions of this paper are: (1) A complete solution 
for FPGA implementation of the detection and 
matching; (2) A FAST detector and a BRIEF 
descriptor are combined to achieve corner detection 
and matching; (3) Various images with different 
terrestrial landscapes are used to evaluate the FPGA 
implementation of the proposed algorithm. 

The remainder of this paper is organized as 
follows: Section II presents relative work. Section III 
overviews the proposed algorithm. Section IV gives a 
detailed procedure about the FPGA implementation. 
Section V shows the experimental results and 
evaluates the performance of FPGA implementation. 
Section VI summarizes the conclusion. 

2 RELATIVE WORK 

To our best knowledge, many researchers used FPGAs 
to accelerate detection and matching algorithms for 
real-time applications. 

Several work only focus on feature point detection, 
for example: Yao et al. (2009) proposed a Xilinx 
Virtex-5 FPGA implementation of optimized SIFT 

  396

Recent Advances in Quantitative Remote Sensing - RAQRS 2017

mailto:gzhou@glut.edu.cn


feature detection (Yao, 2009). Mehra et al. (2012) 
conducted a FPGA-based implementation of Sobel 
edge detector for image processing applications 
(Mehra, 2012). Bi et al. (2012) firstly proposed a 
FPGA-based system for real-time corner and polygon 
detection (Bi, 2012). In detection phase, the detection 
of multi-scale feature point, line feature, and polygon 
feature will consume huge FPGA resources and lead to 
a poor real-time performance, because of high 
complexity of algorithm and the float-pointing 
operation. 

Most work focus on the detection and matching, 
for instance: Svab et al. (2009) implemented multi-
scale SURF on FPGA (Svab, 2009); Schaeferling et al. 
(2011) implemented a complete SURF-based system 
on Xilinx Virtex 5 FX70T FPGA for object 
recognition (Schaeferling, 2011); Sledevic et al. (2012) 
proposed an FPGA-based implementation of a 
modified SURF algorithm (Sledevic, 2012); Battezzati 
et al. (2012) proposed a FPGA architecture for 
implementation SURF algorithm (Battezzati, 2012); 
Weberruss et al. (2015) proposed a hardware 
architecture of ORB on FPGA (Weberruss, 2015); 
Huang and Zhou (2017) achieved SURF+BRIEF on 
FPGA for satellite imagery on-board processing 
(Huang, 2017). In matching phase, the descriptor 
generation and matching are the most time-consuming 
stages when they are implemented on PC (Fan, 2013). 
While the running time can dramatically reduce by 
avoiding large computation, serial execution, and 
floating-point operation in FPGA implementation. 
SIFT descriptor is one of the most excellent 
descriptors, while it is also hardest to implemented on 
FPGA, because of the complex algorithm and the 
float-point operation (Fularz, 2015). SURF descriptor 
can achieve a similar performance compared with 
SIFT descriptor (Fan, 2013). The SURF descriptor can 
be implemented on FPGA with a relative large 
resources consumption. The BRIEF descriptor, which 
consists of a set of binary vectors, is easier to be 
achieved on FPGA when compared with SIFT 
descriptor and SURF descriptor. 

This paper proposed a FAST+BRIEF algorithm to 
be implemented on FPGA for the corner detection and 
matching. 

3 OVERVIEW OF THE PROPOSED ALGORITHM 

3.1 Corner detector and its descriptor 

The FAST detector first proposed by Rosten (Rosten, 
2006) are widely used in corner detection for computer 
vision. The segment test criterion operates by 
considering a circle of sixteen pixels around the corner 
candidate p, as illustrated in Fig. 1, the original 
detector classifies p as a corner if there exists a set of n 
contiguous pixels in the circle which are brighter than 

the intensity of the corner candidate Ip plus a threshold 
t, or all darker than Ip minus the t. The n was chosen 
to be 12 because a very large number of non-corners 
can be removed by this test. 

Fig. 1. FAST detector 

The formula of FAST detector is presented as 
follows. 
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where Ip is the intensity of corner candidate p, Ip→x is 
the intensity of the sixteen pixels around the corner, t 
is a threshold. If Sp→x equals to d, it means that the 
pixel belongs to “d”, if Sp→x equals to s, it means that 
the pixel belongs to “s”, if Sp→x equals to b, it means 
that the pixel belongs to “b”. If there exists continuous 
12 pixels which belong to “d” or “b”, the corner 
candidate p is regarded as a corner. 

When all pixels are tested by the above operations, 
the corners are located. While the corners will get 
together in some cases. To find the stronger robustness 
corners, a non-maximal suppression method based on 
a score function is adopted in this paper. The score 
value is computed by: 
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where Ip is the intensity of corner candidate p, Ip→x is 
the intensity of the sixteen pixels around the corner, t 
is a threshold. 

The BRIEF descriptor first proposed by M. 
Calonder (Calonder, 2010) is adopted for description 
of the detected corner. The form of BRIEF descriptor 
is consisted of “1” and “0” and the length of BRIEF 
descriptor is generally defined as 128 bits, 256 bits, 
and 512 bits, which are efficiently implementation by 
FPGA with a low consumption. The following formula 
clearly shows the definition of BRIEF descriptor: 
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where I(r1, c1) and I(r2, c2) are the intensity of pixels at 
(r1, c1) and (r2, c2). If I(r1, c1) is less than I(r2, c2), then 
λ=0, otherwise, λ=1. The length of λ is selected as 256 

  397

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



bits in this paper. The locations (ri, ci) of the 256 point 
pairs are determined by the Gaussian distribution. 
Details for how to determine the locations of 256 point 
pairs can refer (Calonder, 2010). 

3.2 Matching 

To find out the pairs in two images, a hamming 
distance between two BRIEF descriptors is computed 
by “XOR” operation. The basic steps of matching 
based on hamming distance are listed as follows: 
 Select a BRIEF descriptor in first image as a 

candidate; 
 Select all BRIEF descriptors in second image as 

comparison objects; 
 Compute all hamming distances between the 

candidate and the comparison objects; 
 Find out the minimum value of all hamming 

distances. 
Once the minimum value is determined, it means 

that the corresponding two BRIEF descriptors are the 
most similar which indicate that the corresponding 
corners are matching. 

4 FPGA-BASED IMPLEMENTATION 

4.1 FPGA architecture 

This paper design a complete FPGA architecture for 
the detection and matching in real time. The whole 
FPGA architecture is presented in Fig. 2. As seen from 
Fig. 2, the architecture consists of four modules. The 
functions of the four modules are summarized as 
follows: 
 DDR3 storage module: Image data are stored into 

DDR3 for detection, matching; 
 Corner detection module: The image data read out 

from DDR3 are used to detect the corner; 
 Descriptor generation module: According to the 

location corner, the sub-image read out from 
DDR3 are used to generate the BRIEF descriptor; 

 Matching module: BRIEF descriptors in two 
image are matching by Hamming distance with 
pixel precision. 

Fig. 2. FPGA architecture of the proposed algorithm 

4.2 FPGA implementation of writing and reading of 
DDR3 

The image sequence should be written into DDR3 for 
corner detection, BRIEF generation. The FPGA 
implementation of writing and reading is presented in 
Fig. 3. As seen from Fig. 3, in the process of writing, 
the 8 image cells with 8 bits are combined into a 
writing data with 64 bits, meanwhile a writing address 
is generated. According to the writing data and 
address, the 8 image cells can be stored into a blank of 
DDR3. The other image cells are stored into DDR3 in 
the same way; In the process of reading, the data are 
read out from DDR3 according to the reading address, 
then the reading data with 64 bits are read out from a 
blank of DDR3 and separated into 8 image cells with 8 
bits. The other image cells are read out from DDR3 in 
the same way. 

Fig. 3. FPGA implementation of writing and reading 

4.3 FPGA implementation of FAST detector 

According to the Fig. 1 and Eq. 1, corner candidate (c) 
and its Bresenham circle of sixteen pixels (xi) are 
selected from the reading data. The “corner detec.” 
module is implemented based on Eq. 1. In this module 
(Fig. 4), if there exists contiguous 12 “bi” or “di”, then 
the corner candidate is outputted as a brighter or a 
darker. The “corner score” module is implemented 
based on Eq. 2. The score of corner candidate is 
determined by searching the maximum one. The score 
are sent into a “nonmax. supper.” module to select the 
most robust corner. 

Fig. 4. FPGA implementation of FAST detector 
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4.4 FPGA implementation of BRIEF descriptor 

To generate a BRIEF descriptor, a sub-image centred 
on the detected corner is read out from DDR3. To read 
this sub-image, a corresponding reading address is 
generated by the row and column of the detected 
corner. In FPGA implementation (see Fig. 5), a sub-
image with a size of 35 × 35 is read. Meanwhile, 
because of the image noise, a sliding window (the 
black box) with a size of 5×5 is used in the sub-image 
to generate a new sub-image with a size of 31×31. 
The binary vector with a length of 256 bits are 
generated by comparing with the 256 pairs (pi, qi, i=1, 
2… 256). Finally, a binary vector with a length of 256 
bits is outputted as a BRIEF descriptor. 

Fig. 5. FPGA implementation of BRIEF descriptor 

4.5 FPGA implementation of matching 

In FPGA implementation (see Fig. 6), two BRIEF 
descriptors are computed by “XOR” operation and its 
Hamming distance is computed by summating each 
bits of the operation result. In matching phase, when 
one BRIEF descriptor in first image are compared with 
all BRIEF descriptors (n) in second image, there will 
generate n Hamming distances and the minimal 
Hamming distance is the matching. 

Fig. 6. FPGA implementation of matching 

5 EXPERIMENT RESULTS AND PERFORMANCE 
ANALYSIS 

5.1 Hardware platform 

The selected FPGA has a 326080 Logic Cells, 4000 kb 
Block RAMS and 840 DSP Slices (Xilinx, 2016). The 
resources of board are enough to implement the whole 
design. In addition, the design tool is Vivado2014.2, 
the simulation tool is Modelsim-SE 10.4, and the 
hardware design language is Verilog HDL. 

5.2 Image dataset 

An image pair produced by GJ-1-01/02 on May 6, 
2017 are used to evaluate the FPGA implementation of 
FAST+BRIEF algorithm. In Fig. 7, the image pair 
with a spatial resolution of 0.5 m are located at 
Mentougou District, Beijng, China. In this work, six 
sub-image pairs covering with different ground objects 
are used as test fields, and Homography matrixes of 
the six sub-image pairs are prior computed by 
OpenCV (2.4.9 version) (OpenCV, 2017) on PC. The 
computed results are listed as follows. 

Fig. 7. Test field in Mentougou district, Beijing, 
China 

(1) expressway; (2) rural road; (3) bungalow; (4) 
tree; (5) bare soil; (6) high building. 

 
 =  
  

1.006367 -0.002508 -5.360394
0.002415 1.000690 1.070197

2.354719e-05 -1.406829e-05 1
1H    (4) 

 
 =  
  

1.001888 -0.002281 -2.841617
0.001323 0.997152 9.514452

9.935040e-06 -9.588419e-06 1
2H    (5) 

 
 =  
  

1.000939 -0.000179 3.060421
0.000623 0.999503 0.038150

2.765602e-06 -2.605087e-06 1
3H    (6) 

 
 =  
  

1.000715 0.000696 3.125068
-0.001212 0.999692 2.427667

-1.145561e-06 2.446546e-06 1
4H    (7) 

 
 =  
  

0.987162 -0.003653 1.444455
-0.007780 0.989969 5.676099

-4.523469e-05 -5.933579e-06 1
5H    (8) 

 
 =  
  

1.001664 0.000919 -0.956221
0.000693 1.000989 -1.912867

4.016018e-06 2.346683e-06 1
6H    (9) 
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5.3 Experiment results 

Six sub-image pairs are sent to FPGA architecture, 
respectively. The image data flow are fist stored in 
DDR3, then sent to detection module to produce 
corners. According to the locations of corners, sub-
sub-images centred on corners are read out from 
DDR3. The reading image data flow and the locations 
of corners are both sent to matching module. The 
matching corners of image pairs are outputted as the 
final results. To keep the same situation before 
comparison, 100 corners are detected and matching in 
each sub-image pairs. 

The experimental results are displayed in Fig. 8 by 
Matlab software (R2014a version). As seen from Fig. 
8, most of the point pairs are correct matching, 
especially a seldom are false matching. The 
experimental results also indicate that the correct 
matching rate is impacted by the coverages, especially 
when the image covers with artificial structures (such 
as high building and bungalow), a high matching rate 
is achieved in this paper. A further analysis of the 
matching performance is depicted in next sections. 

Fig. 8. Detection and matching by FPGA architecture 

5.4 Accuracy analysis 

A standard evaluation method has been proposed to 
assess the matching performance, which is presented 
as a curve of recall vs. 1-precision (Mikolajczyk, 2005). 
The curve is generated below a threshold t which 
determined if two descriptors are matched. Given two 
images representing the same scene, the formulas of 
recall and 1-precision are depicted in Eq. 10: 

( )3

1 2

1 3

recall N N
1- precision N N N

=
 = +

   (10) 

where N1 is the number of correctly matched points; 
N2 is the number of corresponding matched points, 
which are determined by overlapping of the points in 
different images; N3 is the number of the falsely 
matched points. The higher recall and lower 1-
precision means the better performance of matching. 

For instance, with the changes of threshold, if recall is 
increasing and 1-precision is still equal to 0, it means 
that the point pairs are all correctly matching; if recall 
keeps stable and 1-precision is increasing, it means 
that most of point pairs are falsely matching. 

The accuracy of detection and matching of six sub-
image pairs are presented in Fig. 9. We find that the 
image pairs with expressway, high building and 
bungalow with higher accuracy. With the image pairs 
with natural coverages (such as bare soil, tree and rural 
road), the accuracy is relative low. These findings 
indicate that the artificial structures have a better 
performance in detection and matching. 

Fig. 9. 1-precision vs recall 

5.5 Resource usage 

The FPGA resource usage of the proposed method is 
analysed in this section. The results of comparison are 
listed in Table 1. As seen from Table 1, the usage of 
FFs and LUTs in this work are 28% and 39%. The 
usage of BRAMs in this work is about 0%. The usage 
of FPGA resources in this work can be reduced when 
the whole system are further optimized. 

Table 1 Comparison of FPGA resource usage 
Resource FFs LUTs BRAMs 

FAST+BRIEF 112,166 
(28%) 

80,472 

(39%) 
1 (~0%) 

6 CONCLUSION 

This paper proposes a FPGA implementation of FAST 
and BRIEF algorithm for detection and matching of 
feature points. The proposed algorithm, which realize 
the corner detection by pixel level processing and 
achieve the matching by fix-point operation, is 
different from the traditional detection and matching 
methods. These traditional methods have an excellent 
performance on PC, while they are time-consuming 
and large consumption of resource on FPGA. 

  400

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



This paper proposed a whole hardware architecture 
for FAST and BRIEF algorithm. In this architecture, 
the data flow are firstly sent into DDR3 for storing, 
then storing data are sent to detection module for 
corner detection. Based on the location of detected 
corner, a sub-image centred on corner are sent into 
matching module from DDR3. In matching, a 
hamming distance of two candidate descriptors is 
computed, and a point pair is determined by finding a 
minimal hamming distance from the candidate 
hamming distances. 

A high-resolution satellite image pair of 
Mentougou district, Beijing is used as the 
experimental area. Six sub-image pairs covering with 
different coverages are used to evaluate the 
performance of the FPGA implementation of the 
proposed algorithm. The experimental results find that 
(1) If image pairs cover with artificial structure (such 
as expressway, building, and bungalow), the accuracy 
of matching is higher than those cover with natural 
terrain; (2) When the image with a size of 256×256, 
the speed of FPGA-based implementation can reach 
500 fps, which is 19 times speedup when compare 
with PC-based implementation (about 38 ms per 
frame); (3) The consumption of FPGA resources is 
acceptable for the selected FPGA platform. When the 
whole FPGA architecture is further optimized, the 
usage of resource will be reduced. 
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ABSTRACT (OF  200-250 WORDS)-An accurate super-resolution image(SI) reconstruction of remote sensing 
images (RSI) for preserving the quality during the process of super-resolution conversion is crucial for many 
scientific and operational applications. Recent studies in supervised and unsupervised machine learning 
methodologies of SI reconstruction have demonstrated their great potential for higher reconstruction 
performance in obtaining the accuracy and quality. In this paper, a novel neural network with barycentric weight 
function(BWFNN) was proposed as a non-linear mapping function selected from the features of reference images. 
The whole process includes online reconstruction phase and offline training phase, the innovation falling in 
three respects:(1) a new neural network based on barycentric weight function (BFWNN)for mapping was 
proposed; (2) an edge oriented based pre-learned kernel was introduced to subscribe the reference prior 
information; (3) a simple interpolation-like structure was taken in the proposed method which does not require 
any conventional iterative computation and leads to fast reconstruction. Compared with most of the conventional 
reconstruction approaches, the proposed algorithm performs better in terms of peak signal to noise ratio (PSNR) 
and structural similarity (SSIM) which shows its significant ability of reconstructing the image details. In 
addition, our algorithm is naturally robust to noise, and therefore, the proposed algorithm can handle low 
resolution with noisy inputs in a more unified framework. 

1  INTRODUCTION 

    In recent years, more and more remote sensing 
applications and projects rely on the moderate or high-
resolution satellite images[1,2]. However, with the 
constraints of satellite orbital characteristics and 
atmosphere conditions, degraded scenes are usually 
obtained resulting in difficulties in identifying the 
objects[3-5].  

    The super-resolution (SR) reconstruction task is 
identified as a inverse problem of recovering the high-
resolution image by a set of low-resolution images 
guided by reasonable assumptions or prior knowledge 
of  specific model which maps the high-resolution 
images to low-resolution ones. This could be presented 
as the formula below, 

L SBH= (1) 

where S is a down-sampling operator, and B is a 
blurring operator. The SR image reconstruction always 
known as a severely ill-posed problem[6]for the sake of 
the insufficient number of  low-resolution images, ill-
conditioned registration and unknown blurring 
operators, leading to an infinite number of  resolutions. 
Traditional SR image reconstruction algorithms 
generally accomplish the SR image reconstruction 
based on various prior knowledge for the precise 
estimation. 

   Many studies focus on high resolution(HR) 
image up-scaling which can be concluded as two 
categories: low complexity and high quality. For 
lowing the computation complexity, interpolation 
algorithms are always taken to fill the missing pixels 
during the enlargement [7,8]. Although this kind of 
approach is very fast and practical, it produces low-
quality HR images. A better solution is selective SR 
method[9] which is an improvement of conventional SR 
method. Compared to the traditional methods, it has 
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lower computation. In these approaches, specific image 
patches are selected based on human visual perception 
metrics for SR. Conventional SR methods always aims 
at generating high quality results other than the 
complexity. Machine learning techniques are utilized in 
these methods. Most famous SR method including:  

(1) SR methods based on convolutional neural 
networks.  The most popular algorithm in this category 
is SRCNN[10] which introduces deep convolutional 
neural networks to learn the mappings. These methods 
outperform others in quality, but accompanying with 
high-complexity. (2) SR methods based on sparse 
representation. ANR is both based on the sparse learned 
dictionary and cluster centroids[11]. (3) SR methods 
based on the examples. LR-HR correspondences are 
generated from certain examples in the dictionaries by 
certain searching strategy. Two kinds of dictionaries are 
utilized: external and internal. External dictionary is 
built from various external HR images[6] while internal 
dictionary is built from internal LR image itself 
[14].However this approach also have much higher 
complexity than interpolation methods. The SI method 
was proposed first in[12]. Unlike the conventional SR 
methods, this approach doesn't require any intermediate 
bicubic interpolation and overlapping processing , 
directly maps an LR image patch to its HR one via 
edge-orientation based linear mapping which is a 
unified transformation of edge-orientation based 
interpolation and linear mapping based SR, thus makes 
the SR processing less complex. Although this method 
is satisfying , it still can be improved in a few ways. 

In this paper, we intend to gain a high-resolution 
image for the sake of visual recognition with lower 
complexity and an effective SI method based on the 
barycentric neural network was presented. The 
proposed SI method generates HR images of better or 
comparable quality compared to the SI method and 
other state-of-the-art SR methods. The whole paper is 
organized as follows: Section II gives the whole 
framework of the proposed approach and the core 
structure of the SI method; Section III presents the 
training phase of the framework including the 
construction of the training set which based on the 
edge-oriented clustering of the patches and the non-
linear mapping which based on the BFWNN.; We 
describe our proposed SI method in Section IV by 
presenting how we elegantly reconstruct the HR image; 
Section V shows a plenty of experimental results for 
our SI method in comparison with SI method and other 
state-of-the-art SR methods; Section VI draws the 
conclusion. 

2  PROPOSED ALGORITHM 

2.1 The Framework of  Proposed Algorithm 

The whole amework includes two phases: training 
phase and reconstruction phase. In training phase, 
external images are used for constructing the training 
set. Like SR method based on examples, images are 
decomposed to LR-HR pairs based on an interpolation 
structure, then clustered and indexed according to the 
edge-oriented analysis, finally, for each indexed 
cluster an non-linear mapping results are learned based 
on the BFWNN. In reconstruction phase, The LR 
image (the image needs up-scaling) is separated into 
LR patches and each patch is indexed by the edge-
oriented analysis and looked up by the index for a 
reasonable mapping result, finally, by applying such 
mapping result the HR image is obtained. The entire 
procession is shown in Fig 1, 

Fig 1 Flowchart of proposed framework 

2.2 The Core Structure 

In conventional SR reconstruction, an intermediate 
interpolated image is generated first, then converts the 
interpolated image into high resolution image by patch-
wise strategy. Therefore, the overlapping is inevitable 
when placing the generated HR patch back to the image 
which leads to the additional operations. SI can 
effectively resolve these problems. The Core structure 
of SI is an interpolation one, peripheral information of 
the surrounding pixels from LR image is utilized to 
better estimate 4 HR pixels by an interpolation-like 
structure. An 3x3-2x2 structure of SI used for 
generating HR image is shown in fig 2 which generates 
x2 upscale result, 
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Fig 2 3x3-2x2 structure of SI 

where 3x3-2x2 structure means four HR pixels are 
generated by the 3x3 LR patch with an interpolation 
structure. Although the padded LR patches are used, 
the generated HR patches are non-overlapped. more -
over, the templates of LR patches are also flexible. In 
the following section, we will discuss the training 
phase and reconstruction phase of our proposed 
approach based on this structure. 

3 TRAINING PHASE 

3.1 Construction of the Training Set 

External images with high resolution are utilized 
for constructing the training set in this phase. In SI 
approach, all of the external images are down-scaled 
and blurred first by eq(1) to generate the LR  images 
set. Thus, for each HR external image has one 
corresponding LR image. Then, LR-HR patch pairs 
are extracted from the external images according to the 
3x3-2x2 SI structure. Finally, LR-HR patch pairs set 
are generated from the external images set which used 
as the training set.  

Before applying the learning procession, the 
training set requires some refinement. LR-HR patch 
pairs in the training set are indexed by edge-oriented 
strategy which used for the preserving of the texture 
features. For each LR patch, two 2x2 gradient 
operators (vertical and horizontal) are applied to the 
LR patch in four diagonal directions. For each 
direction, the gradient magnitude (2 norm of the 
gradient values) and direction (tangent value) are 
computed. Then, the gradient magnitude is compared 
to a threshold (15 in SI) to judge whether there is an 
edge or not. If there is no edge, the index of this 
direction is set to 0. If edge exits, then assigned the 
four indices according to the gradient direction values. 
Otherwise, these values are required quantization and 
the quantization rule utilized in SI is shown in table 1 

Four indices can represent the texture feature of this 
LR patch. For convenience, four indices are coded into 
one single quainary code which used as the EO index.  

Since each pair has an index, patch pairs from 
training set with similar texture structure could be 
clustered by the indices. With the indices, a look-up 
table can be formed. For each index, a new training 
sub-set is generated and this set is used for the learning 
of the HR patch mapping.  

Table 1   Quantized Patch Indices 
Gradient 
Direction 

Value 

Quantized 
Value 

Code Value 

Low gradient 
magnitude 

-- 0 

-22.5-22.5 0 1 
22.5-67.5 45 2 
67.5-112.5 90 3 

112.5-157.5 135 4 

157.5-202.5 180 1 
202.5-247.5 225 2 
247.5-292.5 270 3 
292.5-337.5 315 4 

3.2 BFWNN Construction 

For each cluster a non-linear Mapping from LR 
patch to HR patch can be learned from the training set 
by some kind of interpolation. A novel neural network 
is proposed in this paper which is based on the 
barycentric interpolation.  

There is supposed to be one mapping function 
corresponds to one specific cluster. LR-HR patch pairs 
from one cluster could be used to learn the mapping. 
Since the size of LR patch is 3x3, the size of HR patch 
is 2x2, if we convert the patches into one dimensional 
gray value vector in column-major order, the mapping 
is supposed to project the vector with nine elements to 
the vector with four elements in an interpolation-like 
form.  

Suppose 
1 9L L  are values of non-linear mapping 

functions at input LR image patch pixels 1 9
In Inl l  . 

These non-linear mapping functions have barycentric 
rational interpolation structure, they are learned from 
the training set. 

1 4H H  are pixels' values of 
generated high resolution patch which are given by 
equation (2), 

9

1
, 1 4, 1 9m n n

n
H L m nη

=

= = =∑       (2)

Where, nη is the weight of interpolation for 
generating HR patch.  nη is also taken as a projection 
factor, it represents the importance of a specific 
surrounding pixel. Therefore, the selection of 

nη depends on the contribution of the pixels from the 
LR patch. 

The non-linear mapping functions for generating 
the nL  are constructed from the training set (actually 
from a certain EO cluster of the training set, thus each 
cluster corresponds to one non-linear mapping 
(BFWNN)).  
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Suppose the number of  LR-HR pairs in thi cluster 
is denoted as inum , the LR patches in thi cluster is 

denoted as i
jLR and the HR patches in thi cluster is 

denoted as i
jHR . 

,

,

{ }, 1 9, 1

{ }, 1 4, 1

i
j n j i

i
j m j i

LR l n j num

HR h m j num

= = =

= = =

 

 

(3) 

where ,l h  respectively represent the gray value of 
pixels in LR patch and HR patch. 

To construct the training samples, the dimension 
should be unified. Reverse mapping of the proposed 
network is utilized, suppose '( ) , 1 4, 1 9m

n m nη = =   
is the reverse mapping factor which is preselected. 

Suppose '
iHR denotes the unified HR patch of thi

cluster, then, 
' '( ) '( )

,{ },

1 4, 1 9, 1

i m i m
j n j n j

i

HR HR h
m n j num

η= ⋅ =

= = =  

where the multiply represents row vectors of 
'

,m nη multiply the corresponding column elements of 
i
jHR . For each pixel of HR patch, four sample sets are 

represented by '(1)
, ,{ , }n j n jl h , '(2)

, ,{ , }n j n jl h , '(3)
, ,{ , }n j n jl h , 

'(4)
, ,{ , }n j n jl h , each set is used to construct the barycentric 

rational interpolations. The barycentric rational 
interpolation form is given by, 

'( )
, ,

0

,
0

( )
( )

( )

i

i

num d
In m

n j n n j
jIn

n n n num d
In

n j n
j

l h
L BF l

l

µ

µ

−

=
−

=

= =
∑

∑
Where,   1

, , ,
0 1

( ) ( ) ( )
inumj

In In In
n j n n n r n k n

r k j d

l l l l lµ
−

= = + +

= − −∏ ∏  

d is an integer with 0 id num≤ ≤ . In this paper d is 
chosen as 1. 
   The whole procession is shown in fig 3, 

Fig 3 The construction of BFWNN 

4 RECONSTRACTION PHASE 

Compared to the training phase, the reconstruction 
phase is a reverse procession. In reconstruction phase, 
the LR input image is divided to the 3x3 patches, then 
each patch’s edge feature is computed to find EO 
cluster it belongs to, the non-linear mapping(BFWNN) 
of the corresponding EO cluster is applied to the LR 
patch and generates the HR patch. Finally, by using the 
SI structure, filling such HR patches back to the LR 
image to construct the HR version. 

5 EXPERIMENTS 

To validate the proposed method, five popular 
super-resolution reconstruction algorithms were taken. 
The performance comparisons were carried out on six 
HR images from Berkeley Segbench database and 
remote sensing image with an ordinary 
resolution(322x482-512x512). These images were 
down-sized by bicubic interpolation method and up-
scaled by different reconstruction methods where 
SI,SI- BFWNN used 3x3-2x2 structure. The training 
set for the methods mentioned above contained 69 
images used in [6]. Comparisons among these 
methods in terms of PSNR，SSIM and TIME are 
listed in table1. The reconstructed up-scaling images 
are showed in fig1. 

Table 2  The perform comparisons of different SR 
methods 

Images Bicubic NEDI ICBI 
PSNR SSIM PSNR SSIM PSNR SSIM 

Lena 34.28 0.929 34.01 0.921 34.96 0.931 

Woman 28.13 0.838 27.56 0.813 28.26 0.836 

Monarch 31.94 0.957 31.72 0.953 32.91 0.961 

Caps 33.67 0.924 33.88 0.922 34.04 0.926 

Bikes 27.11 0.842 27.01 0.832 27.60 0.856 

Parrots 35.01 0.954 35.11 0.951 35.69 0.955 

Images SRCNN-15 SI SI- BFWNN 
PSNR SSIM PSNR SSIM PSNR SSIM 

Lena 36.02 0.945 35.54 0.939 35.72 0.940 

Woman 29.55 0.871 28.72 0.865 28.98 0.871 

Monarch 36.98 0.973 34.87 0.969 35.40 0.970 

Caps 36.01 0.941 35.43 0.936 35.77 0.937 

Bikes 29.98 0.903 28.11 0.857 28.53 0.859 

Parrots 38.12 0.962 36.75 0.957 37.02 0.960 

As shown in Table1, SRCNN gives best 
performance since a deep neural network is used, the 
proposed method is less performance than SRCNN 
and better than SI method using linear mapping and 
other methods. Results indicate that the proposed 
method can keep both colour and structure information. 
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(a) (b) (c) 

(d) (e) (f) 
Fig 4  Remote sensing image enlarged by six methods.(a)bicubic (b)NEDI (c)ICBI (d)SRCNN (e)SI (f)SI-BFWNN 

We also compared the time consuming among these 
methods. Bicubic is the fastest, ICBI is the lowest. 
SRCNN is a little faster than NEDI. Compared to 
SRCNN, SI method performances much better, 
between them is the proposed method. 

6    CONCLUSION 

   As shown in Table 3 and Fig 4, the proposed method 
is good at preserving the colour and texture structure 
of the image for its non-linear mapping network and 
the time cost is also acceptable. The future work will 
focus on more accurate mapping strategy and reducing 
the time consuming. 
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ABSTRACT: The tropospheric delay of GNSS signals from the zenith to the horizon (ZTD) is about 2-20 m. In 
this work, we initially used gridded ZTD data from Global Geodetic Observing System Atmosphere products 
(GGOS ZTD) to calculate ZTD at studied sites. We also implemented the Global Navigation Satellite System 
observed ZTD (GNSS ZTD) to compare the precision and simplicity of GGOS ZTD interpolated by different 
methods to establish a model for interpolating GGOS ZTD at any site. At the same time, the stability of interpolated 
GGOS ZTD in space and time was validated. The results are as follows: (1) Relative to GNSS ZTD, the yearly 
bias and RMS for the GGOS ZTD were determined to be -0.40 cm and 2.30 cm, respectively. (2) The GGOS ZTD 
showed good correction performance and reliability. (3) GGOS ZTD is sufficient for ZTD correction and to 
establish a ZTD prediction model for GNSS navigation and positioning in China.  

Keywords: GNSS·ZTD·GGOS ZTD·Refinement·CMONOC 

Introduction 

Currently, it is necessary to improve the accuracy of 
ZTD corrections for in high precision GNSS 
applications, since tropospheric delay is a primary error 
source for satellite navigation and can be mapped onto 
the zenith direction using the mapping function (Li et 
al., 2010; Jin et al., 2010). Over the past few decades, a 
number of mitigation approaches have been developed 
for ZTD correction. Such approaches are split into 
meteorological parameter models (Hopfield, 1969; 
Saastamoinen, 1973; Black, 1978; et al.) and non-
meteorological parameter models (Dodson et al., 1999; 
Penna et al., 2001; Krueger, 2005; Leandro et al., 2008; 
Lagler et al., 2013; Schüler, 2014; Li et al.,2015; Möller 
et al., 2015; Yao et al., 2016; Huang et al., 2017). 
Another approach includes deriving ZTD from 
numerical forecast data (Pany T et al., 2001; 
Ghoddousi-Fard et al., 2009; Chen et al., 2012) from the 
European Center for Medium-Range Weather Forecasts 
(ECMWF), the United States National Centers for 
Environmental Prediction (NCEP), et al. However, the 
ZTD derived from this method is integrated based on 
the pressure-level meteorological data, which is time 
consuming and complicated. The GGOS ZTD is of high 

temporal and spatial resolution, and ZTDs can be 
obtained by simply adding up the ZHDs and ZWDs at 
the same point and time. For instance, Yao et al. (2017) 
conducted a global performance evaluation of GGOS 
ZTD for satellite navigation and positioning. However, 
the China region has not been a focus in such studies. 
With the development of navigation and positioning 
and the large land mass covering various climate zones, 
it is necessary to check the feasibility of GGOS ZTD 
for ZTD correction over China. The GNSS ZTD, which 
was derived from the observed data in the year 2015 at 
205 GNSS sites distributed in China, was used to build 
the appropriate method for deriving GGOS ZTD in any 
site and to assess the feasibility and accuracy of GGOS 
ZTD for ZTD correction. The work presented in this 
paper provides a valuable reference for fellow 
researchers needing to compute ZTD and establish the 
ZTD prediction model based on GGOS ZTD, which is 
specifically significant for the massive GNSS users and 
manufacturers in China. 

Data sets 

The GGOS provides ZHDs and ZWDs (Boehm et al., 
2006) on a global grid with 2.5°×2° (lon×lat) sampling 
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at 00:00, 06:00, 12:00, and 18:00 UTC per day, which 
was derived from the reanalysis data provided by the 
ECMWF. The range for GGOS ZTD data in this study 
is from 18°N to 54°N and from 72.5°E to 135°E. The 
reference GNSS ZTDs were observed from the 
measured data in the year 2015 at 205 GNSS sites, 
including 8 IGS (International GNSS Service) sites and 
197 CMONOC (The Crustal Movement Observation 
Network of China) sites distributed in China, with a 
temporal resolution of 2 hours. The locations of the 
GNSS sites are shown in Figure 1; the asterisk and 
square denote the IGS site and CMONOC site, 
respectively.  

Figure 1 Distribution of the GNSS sites in China 

ZTD of a GNSS station elevation from GGOS ZTD 
data  

The ZTD variation is complex due to the strong 
correlation between ZTD and elevation and the 
comprised area of complex terrain with great 
undulations over China. Therefore, it is necessary to 
establish an altitude difference correction model for 
correcting the altitude difference between GGOS ZTD 
grids and GNSS sites in China. The characteristics of 
GNSS ZTD variation in height over China were 
studied, and the results are shown in Figure 2. 

Figure 2 Characteristics of GNSS ZTD variation in 
height over China 

It is obvious that the annual GNSS ZTD decreased with 
increasing altitude. The decreasing rate and 
acceleration were estimated based on the nonlinear least 
squares method using one year annual GNSS ZTD in 
the year 2015, and the parameters were used in the 
altitude difference correction (ADC). The GGOS ZTD 
at a specific elevation can be obtained by adding the 
initial GGOS ZTD with ADC.  

ZTD at the GNSS station from the ZTDs of the same 
elevation grid points  

Most of the GNSS sites were not collocated with the 
GGOS ZTD grid points, thus four methods were used 
to derive GGOS ZTD at GNSS stations. One method 
selects the GGOS ZTD from the grid point nearest to 
the GNSS station (named NER), then adds ADC. A 
second method selects ZTDs of four grid points near the 
GPS station, adds ADC, and then interpolates the ZTD 
to the GNSS site by an arithmetic mean method (named 
AVE). The third method differs from the second 
method only by a bilinear interpolation (named BIL). 
The fourth method is equivalent to the former, but 
implements a distance-weighted algorithm (named 
IDW). Comparison of the results of the four methods is 
shown in Table 1, where it is clear that the latter three 
methods are similar in accuracy compared to the first 
method. 

Table 1 Agreement between the GNSS ZTD and the GGOS ZTD derived by different methods (cm) 

Methods 
A B C D E F G H 

NEA NEA+ADC AVE AVE+ADC BIL BIL + ADC IDW IDW + 
ADC 

Yearly-bias -4.91 -0.85 -
14.37 -0.80 -15.47 -0.77 -6.45 -0.77 

min-bias -
55.84 -9.65 -

75.44 -6.32 -61.41 -7.84 -66.24 -7.89 

max-bias 35.86 3.00 26.12 2.59 19.44 2.32 20.85 2.12 
Yearly-
RMS 7.79 2.78 15.77 2.63 16.14 2.53 8.20 2.52 

min-RMS 1.25 0.79 1.32 0.91 1.28 0.87 1.07 0.84 
max- RMS 55.96 9.82 75.56 7.21 61.52 8.00 66.36 8.05 
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The agreement between GNSS ZTDs and GGOS ZTDs 
derived by the first method is worse than those derived 
by the other three methods. We also found that the 
maximum absolute values of the bias and RMS from the 
BIL+ADC and IDW+ ADC were larger than that of 
AVE+ADC, where the AVE+ ADC is more stable than 
BIL+ADC and IDW+ ADC in accuracy. Thus, we 
preferred to use the AVE+ADC to derive GGOS ZTD 
in the GNSS stations. To refine the GGOS ZTD, we 
obtained the bias and RMS of AVE+ADC distributed 
in China. Figure 3 shows that the AVE+ADC with 
correction accuracy was worse than 4 cm in some areas 
of the Qinghai-Tibetan Plateau (range from 10°N~63°N 
and 30°E~160°E), and the ZTD estimation error from 
existing precision models was about 4 cm (Yao et al., 
2017). Therefore, it is essential to refine the GGOS 
ZTD derived by AVE+ADC. Considering the absence 
of ADC, a significant improvement can be achieved in 
the precision of all four methods using altitude 
difference correction, which again demonstrates that it 
is necessary to add the ADC for deriving GGOS ZTD.  

Figure 3 Distributions of bias and RMS for the GGOS 
ZTD interpolated by AVE + ADC in China 

Determination of the refinement model 

Figure 3 reveals that the bias of AVE+ADC at all sites 
in the Qinghai-Tibetan Plateau is equal to about -5 cm, 
suggesting that there may be some systematic 
difference between the GNSS ZTD and GGOS ZTD. 
Linear regression analysis was performed for GNSS 
ZTD and GGOS ZTD from all sites in Qinghai-Tibetan 
Plateau, which were used to analyze the systematic 
difference.  
The results in Table 2 indicate that there is a significant 
linear relationship between GNSS ZTD and GGOS 
ZTD, whose correlation coefficient almost equals 1. 
The relationship is expressed in Equation (1), where y
denotes GNSS ZTD; x  is the derived ZTD; a  and b
are extracted from Table 2. GGOS ZTD derived by 
AVE+ADC can be refined by multiplying it by a then
addingb .

y ax b= +       (1) 

Table 2 Results of the linear regression analysis 
between GNSS ZTD and the ZTD derived based on 
AVE+ADC 

a b 2R
0.9718 8.8470 0.9912 

Validation and analysis of the GGOS ZTD 

After the GGOS ZTDs were processed by the 
AVE+ADC and refinement discussed above, the bias 
and RMSD were computed between GNSS ZTD and 
GGOS ZTD. 

Table 3 Errors of GGOS ZTD validated by GNSS ZTD 
(cm) 

bias RMS 
max min mean max min mean 
2.59 -3.64 -0.40 3.98 0.92 2.30 

The Temporal Variation of the Bias and RMS 

Table 3 displays the yearly bias and RMS at GNSS 
stations for 2015. As seen from Table 3, compared to 
GGOS ZTD without refinement, the bias and RMS of 
the refined GGOS ZTD were reduced by 50% and 
12.5%, respectively. The absolute bias and absolute 
RMS had maximums of 3.64 cm and 3.98 cm, 
respectively, and the refined GGOS ZTD is comparable 
to the most accurate and complicated models. The 
monthly bias and RMS were calculated to analyze their 
seasonal changes. Figure 4 presents variations in the 
monthly bias and RMS and shows that there is a 
significant season-varying feature in these factors. The 
bias had negative maximum in summer, positive 
maximum in spring with a minimum in autumn, but 
even distribution around zero without systematic 
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differences. There was a larger RMS in summer months 
and smaller RMS in winter months. The maximum bias 
and RMS occurred in summer due to the effect of the 
changeable atmospheric water. The daily bias and RMS 
of the sites (JSLS, XJBC, GDZH, NMDW), which are 
respectively located in eastern, western, southern, and 
northern China, were analyzed to probe their subtle 
variation. Statistical analyses are shown in Figure 5, 
which indicate that the daily bias and RMS had seasonal 
variations at the JSLS, XJBC, and GDZH sites where 
there were larger values and dramatic changes in 
summer. The daily bias and RMS of the NMDW site 
mildly changed without obvious seasonal features due 
to its far distance from the ocean and less change in 
atmospheric water vapor.  

Figure 4 Variation in the monthly bias and RMS in 2015 
over China 

Figure 5 Variation in the daily bias and RMS in 2015 
at JSLS, XJBC, GDZH and NMDW sites 

The Spatial Characteristics of Bias and RMS 

Variations in the bias and RMS with latitude and 
altitude were analyzed to research the spatial 
characteristics of both variables. The altitude range was 
organized into five categories, namely below 20°, 20-
30°, 30-40°, 40-50°, and above 50°. The corresponding 
bias and RMS are listed in Figure 6, which shows that 
there is no obvious trend for the bias with increasing 
altitude. RMS showed an apparent decreasing trend 
with increasing latitude. The elevations were sorted 
using 500-mintervals (less than 500 m, 500-1000 m, 
1000-1500 m, 1500-2000 m, 2500-3000 m, 3000-3500 
m, 3500-4000 m, 4000-4500 m, and above 4500 m) to 
display the characteristics of bias and RMS with 
altitude. Figure 7 shows the bias and RMS with altitude 
sorted by ascending order. Figure 7 displays the 
increase in bias with increasing elevation in the range 
0-3500 m and shows a significant reduction in the trend 
for elevations greater than 3500 m. RMS undulates with 
elevation changes without obvious trend. The RMS 
differences between each height interval are less than 1 
cm. It can be seen that the height correction model 
established in this paper has a better correction for ZTD 
of each elevation interval. 

Figure 6 Distribution of bias and RMS with respect to 
altitude 

Figure 7 Distribution of bias and RMS with respect to 
height 
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Summary 

The ZTD data from 205 GNSS sites distributed in 
China were used to investigate the performance of the 
GGOS ZTD. We conducted AVE+ ADC interpolation 
to derive GGOS ZTD at all sites due to its better 
accuracy and stability compared to other methods. Its 
systematic difference in the Qinghai-Tibetan Plateau 
can be corrected by Equation (1), where y  demotes

GNSS ZTD, x  is GGOS ZTD, a  and b  are equal to
0.9534 and 12.4377, respectively. After refinement, the 
yearly bias had a maximum of 2.59 cm and average of 
-0.40 cm, while the yearly RMS had a maximum of 3.98 
cm and average of 2.30 cm. Bias and RMS showed 
good stability with respect to time and position. It is 
suggested that the derived GGOS ZTD can be used for 
most ZTD corrections and to establish a ZTD prediction 
model for GNSS navigation and positioning. 
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ABSTRACT-This work aims to analyse the trends observed in the start of growing season (SOS) for the 
vegetation canopy over the Mediterranean area of the Iberian Peninsula, as well as its relation with the 
temperature increase shown in the coastal Valencia region. The global and longest image time series Global 
Inventory Modelling and Mapping Studies (GIMMS) NDVI have been used. This archive corresponds to more 
than 30 years record (1982–2011) with a spatial resolution of approximately 8 km and a bi-weekly temporal 
resolution. The SOS has been computed from a smooth NDVI time series derived from a Multi-Resolution 
Analysis (MRA) based on the wavelet transform (WT). The MRA provides a temporal decomposition of the 
original series, where different components of the signal are derived removing the contribution of specific 
temporal resolutions. The detail component of level 4 has been selected since it provides the intra-annual 
variability of the original signal with a temporal resolution between 90 and 180 days. Moreover, two types of 
profiles were considered potentially unstable in our method and were therefore discarded from our analysis: 
firstly, pixels for which there is no distinct seasonality (e.g., more than ten years with NDVI mean value lower 
than 0.1) and secondly, pixels with double (or more) growing seasons. The results show an advance in the SOS 
parameter that could be related to the trend towards an earlier onset of the summer observed both from sea 
surface temperature (SST) data and from air temperature records in the Balearic Sea and its surroundings. The 
records indicate a significant temperature increase during the months of April, May and June, with a 
temperature variation of 0.5°C -1°C between the periods 1993-2009 and 1985-92 which show a recent tendency 
towards an earlier and longer summer.  

1  INTRODUCTION 

Changes in start of vegetation growing season (SOS) 
can modify vegetation activity and ecosystem 
functions during the entire year that follows 
(Richardson et al., 2009), affecting even land–
atmosphere energy and carbon budgets (Piao et al., 
2008). Studies have reported pronounced changes in 
the SOS in northern middle and high latitudes in 
response to accelerated warming since the early 1980s 
(Richardson et al., 2009). 

Longer variations in the growing seasons of 
temperate vegetation and changes over the Northern 
Hemisphere are mainly explained by changes in 
temperatures and precipitation during the last decades. 
However, uncertainties regarding this conclusion exist 
since the time scale considered in many of the studies 
has been limited (i.e., mostly between 1981 and 1999). 
Many authors have analysed satellite time series from 
the normalized difference vegetation index (NDVI) 
derived from the advance very high-resolution 
radiometers (AVHRRs) on NOAA’s polar- orbiting 
satellites. Indeed, with some satellite observations now 
spanning more than 40 years, the value of this 
information for climate monitoring purposes is becom-

ing increasingly evident. This is the case of the NASA 
Global Inventory Monitoring and Modeling Systems 
(GIMMS) group, which offers NDVI long time series 
with a spatial resolution of 8 km × 8 km and 15-day 
temporal resolution for a minimum period of 30 years 
(1981-2015). 

In the Iberian Peninsula seems to be an 
agreement on an increase of temperature from the 
1970s onward. Different rates are given depending on 
spatial scale (global, regional or local), the 
geographical area and the period of time considered in 
every study. However, the impression that the higher 
warming rates observed in recent decades are due to 
the increment of temperature during spring and 
summer seasons seems to be extending (López García, 
2015).

The main objective of this study is to evaluate 
long-terms variation in the vegetative growing season 
over the Iberian Peninsula for a minimum period of 30 
years (1982-2011) by using bi-weekly temporal 
resolution NDVI data at 8 km from the GIMMS 
archive. We will try to identify the possible impacts of 
spring temperature increase on spring vegetation 
greening.  
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2  MATERIALS 

The used NDVI data set was produced at a spatial 
resolution of 8 km by the 15-day maximum-value 
composition technique using observations made by the 
AVHRR instrument on board the NOAA satellite 
series. This NDVI data set has been corrected for 
instrument calibration, viewing geometry, volcanic 
aerosols, and other effects not related to vegetation 
changes (Tucker et al., 2005).

3 METHODS 

Although compositing techniques were used for 
synthesizing bi-weekly GIMMS products, the time 
series is still being affected by artifacts related to the 
presence of clouds and residual atmospheric effects. 
Previous to using phenological detection techniques, 
filtering the noise is essential. A smooth time series 
using the multi-resolution analysis (MRA) based on 
the wavelet transform (WT) was derived. This 
technique has demonstrated its ability in a wide range 
of remote sensing applications (Fonseca et al., 1998; 
Sakamoto et al., 2005; Martínez & Gilabert, 2009). 
Particularly, the MRA has demonstrated its high 
performance to derive relevant information from non-
stationary time series about vegetation dynamics at 
regional scale, such as the mean and minimum NDVI 
value, the amplitude of the phenological cycle, the 
timing of the maximum NDVI (tmax) and the 
magnitude of the land-cover change (Martínez & 
Gilabert, 2009).  

The MRA decomposes the signal into different 
temporal scales by successively translating and 
convolving the elements of a high-pass filter and low-
pass scaling filter associated with the mother wavelet. 
These filters retain the small- and largescale 
components of the signals also known as detail (D) 
and approximation (A) series. The D component of 
level 4 has been selected since it provides the intra-
annual variability of the original signal with a 
temporal resolution between 90 and 180 days. 

The signal f(t) can be reconstructed from the 
approximation and detail components as:  

,   (1) 
where m is the highest decomposition level 
considered. In the first level of the decomposition, 
f(t)=A1+D1, the signal has a low-pass filtered 
component, A1, and a high-pass filtered component, 
D1. In a second step, the approximation A1 is split as 
A1=A2+D2, and so on. The relationship Dj=Aj−1−Aj 
gives us information about the portion of the signal 
that can be attributed to variations between the scales 

[j−1, j]. In summary, the detail component Dj is a N-
dimensional vector that depends on the wavelets 
coefficients and hence is associated with changes on 
averages in a scale j. The final term in the MRA is Am, 
an N dimensional vector that depends only on the 
scaling coefficients. The approximation vector Am is 
associated with averages over scales 2m and longer 
and, therefore captures the slowly varying portion of 
the original signal (Percival & Walden, 2000).  

3.1 Experimental procedure. 

In this study, the SOS has been derived as the time 
when the left edge has increased to 20% of the 
amplitude. The threshold (20%) has been used 
extensively and was determined by Yu et al. (2010) 
from in situ observations. Although the typical 
evolution of modern SOS extraction methods has 
become more complicated, it has been found that more 
complex algorithms may not be able to produce better 
estimates of either SOS as expected, at least at a 
coarse spatial scale encompassing several sites. This 
threshold method has been chosen because of its low 
computation cost. 

Figure 1 shows an example of the MRA derived 
for a pixel located in Almeria. The A1 (red box) 
component belongs to the original NDVI series where 
the first-level has been discarded since it accounts for 
high frequency variations (<1 month), which are 
mostly due to temporal noise. The A5 component 
belongs to the NDVI time series were the temporal 
changes due to low frequency variations (<1 year) 
have been discarded (i.e., the season variations) and 
only the inter-annual variations are remaining. 
According to the interpretation of Eq. (1), the detail 
component at levels j=2, ..., 5 are attributable to 
changes at scales: D2(24-48 days), D3(49–96 days), 
D4(97–192 days), and D5(193–384 days). 

Instead of using the original NDVI time series, 
the D4 (Figure 1) component from the MRA has been 
used since it demonstrated to represent a major 
contribution to the intra-annual variability and its 
suitability for detecting timing phenological 
parameters (Martínez & Gilabert, 2009). 
The SOS for each year will be determined as the time 
when the 20% of the D4 amplitude occurs for the 
period 1982-2011. The advance or delay of the SOS 
will be analysed by means of the slope of the SOS 
over the period. The timing which appears most often 
(i.e., the mode) is also computed for the SOS and the 
tmax. First, pixels with NDVI average values from June 
to September should be higher than 0.10. Second, only 
pixels with an annual maximum NDVI were 
considered. 
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Figure 1. Example of the MRA for a pixel located in Almeria. The A1 (red box) component belongs to the NDVI 
times series without high frequency variations (<1 month) whereas the A5 component (blue box) component 
shows the NDVI signal with only the inter-annual variations. The D4 component (green box) gives us 
information concerning to variations related to changes between three and six months. 
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Figure 2. Example of the SOS (blue), time of maximum growing (black) and time of minimum growing (green) 
for the selected Almeria pixel of Figure 1. y-axis belongs to the D4 NDVI component.  

4 RESULTS 

Major positives inter-annual changes over all the 
Mediterranean region and northern Spain (NDVI A5 
component) for the period 1982-2011 are observed 
(top Figure 3). Negative SOS changes over the major 

part of Spain explain a general advance in the SOS 
(centre) figure 3 for the considered period. The pixels 
with the highest positive inter-annual NDVI trend (top 
Figure 3) and most advance in the SOS are located in 
the Mediterranean coastline. 
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Figure 3. Inter-annual NDVI trend (top), SOS trend 
(centre) and mode values for the SOS (bottom) along 
the period 1982-2011. Grey color refers to non-
significant pixels.  

These results agree with those observed over the same 
area with other satellite products (Giner et al., 2012). 
A positive and different trend in the 3-month 
Standardized Precipitation Index (SPI) was observed 
for the 2000-2009 decade regarding the negative 
trends during the decade before (Giner et al., 2012; 
Martínez & Gilabert, 2009). Those pixels mainly 
correspond to citrus crops (east of Valencia region), 
herbaceous and shrub cover areas, mainly located at 

the south of Murcia and Almeria regions. All of them 
reach the tmax between February and April, with the 
most often SOS around autumn season. The citrus 
crops along with the olive groves (concentrated in 
Extremadura region) show important changes during 
the year since in winter it is covered by herb (Oxalis 
sp.) that is eliminated by tilling in summer. This 
agricultural practice determines a higher NDVI value 
in February and SOS between September and October. 
The non-irrigated crops such those located in Castilla-
Leon region shows a moderated advance in the SOS 
(dark green colors). These crops show a tmax in May 
with the most often SOS occurring between January 
and February. Forested areas in north Spain shows a 
low advance in the SOS (light green and yellow) with 
the most often SOS in March.  

4.1 Relationship between vegetation dynamics and 
temperature. 

Studies of sea surface temperature (SST) in western 
Mediterranean from AVHRR data in recent decades 
(López-García & Camarasa, 2011) as well as the 
analysis of longer land-temperature series for coastal 
Mediterranean stations in Spain have obtained an 
average warming trend of 0.039ºC/year for land for 
the period 1960-2010 and 0.026ºC/year for sea surface 
temperature during 1985-2009. The seasonal analyses 
showed a recent tendency towards earlier and longer 
summers both on land and at sea. In the last 25 years, 
the higher trends were registered during the transition 
spring to summer, with the highest warming rates in 
June (0.12ºC/year on land and 0.08ºC/year in sea 
temperatures) (López-García, 2015) (Figure 4).  
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Figure 4. Linear trends (ºC/year) for every month for 
land and SST calculated for the period 1985-2009. 
SST trends have been obtained from AVHRR monthly 
data from the Physical Oceanography Distributed 
Active Archive Center (PO. DAAC) for the western 
Mediterranean sea. Land trends have been derived 
from three coastal stations (Valencia, Barcelona and 
Tortosa) in the Spanish Mediterranean coast. 
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Figure  5. Ratio between the monthly trend and mean NDVI over the considered period for every pixel. Positive 
values (green colors) refer to an increase in the NDVI values for a particular month during the studied period. 

In order to find whether there is a relationship 
between vegetation dynamics and temperature over the 
Mediterranean region, the monthly NDVI trend over 
the considered period is analysed. A linear trend using 
the monthly NDVI A2 component is computed. Figure 
5 shows the ratio between the monthly trend and mean 
NDVI over the considered period for every pixel. 
Positive values (green colors) refer to an increase in 
the NDVI values for a particular month during the 
studied period. Moderate positive trends are observed 
for all the Mediterranean coastline (yellow colors) 
except the Murcia region where negative trend values 
are obtained for most of the months.  The highest trend 
is observed during February, March, and April in 
south Valencia and Almeria regions (dark green 
colors) as well as during October, November and 
December. These positive trends are in agreement with 
those observed in Figure 4. 

Figure 6 shows the example of three pixels 
located over the Mediterranean region. Pixel 1 refers 
to a particular rice field located in the Ebro River 
Delta. The paddy fields are flooded towards the end of 
April and the sowing is carried out in the first half of 
May. The fields develop a green canopy through the 
water in June/July, and flower from mid-August. An 
increased in the NDVI is beginning during the 
flowering. The harvest takes place approximately the 
last week of September after draining the paddy fields, 
so the trends obtained for November and December 
have to be taken with caution. Pixel 2 belongs to a 

non-irrigated crop in Valencia region, which shows an 
increase of NDVI in the preceding months to spring, 
where the maximum was expected. Lastly, pixel 3 
belongs to a shrub cover in Almería region very close 
to the coast. This pixel highly agrees with the SST 
behavior observed in Figure 4, where a maximum 
increase in NDVI is observed in May and October.  

5 CONCLUSIONS 

The main goal of this paper has been to analyse the 
trends observed in the start of growing season (SOS) 
for the vegetation canopy over the Mediterranean area 
of the Iberian Peninsula along a 30 year period.  

Negative SOS changes for the period 1982-
2011 are observed over the major part of Spain 
explaining a general advance in the SOS. The analysis 
of monthly NDVI tendency also shows moderate 
positive trends in the Mediterranean coast with the 
highest trends in spring and autumn in the south of 
Valencia and Almeria regions. The tendency found 
towards earlier and longer summers both on land and 
sea surface temperature is in agreement with that 
found for the pixel 3 (a shrub cover) in Almería region 
very close to the coast.  

6 ACKNOWLEDGMENTS 

This research was supported by SCENARIOS 
(CGL2016-75239-R) and LSA SAF (EUMETSAT) 
projects.  

  416

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Figure 6. Example of three pixels located over the Mediterranean region. Pixel 1 refers to a particular rice field 
located in the Ebro River Delta. Pixel 2 belongs to a non-irrigated crop in Valencia region whereas pixel 3 is a to 
shrub cover in Almería region very close to the coast. 
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ABSTRACT - Nano, pico, and so named CubeSat satellites are taking place due to the emergent improvements 
in both high performance nano and pico electronics and computational technologies. More than 1600 Nanosats 
and CubeSats are existing nowadays (i.e., 685 nanosats launched, 613 cubesats launched, 405 nanosatellites in 
orbit, 321 operational nanosatellites, 71 nanosats destroyed on launch, etc), with an incredible panoply of 
different constellations, governmental and non-governmental, high and easy to reach technologies, instruments 
in miniatures and missions from military to universities and schools. This paper describes an approach to the 
implementation of the Land Surface Temperature Split-Window (LST-SW) (Sobrino J. & Raissouni N., IJRS 
2000) algorithm structure based on the Field Programmable Gate Array (FPGA) technology. Due to ever-
increasing integrated circuit fabrication capabilities, the future of FPGA technology promises both higher 
densities and higher speeds for Cubesats onboard computations purposes. The application research shows the 
advantages of the used Xilinx Virtex-5 LX50 series FPGA approach to the LST-SW implementation with higher 
sampling rates than are available from existing Digital Signal Processing (DSP) chips, lower costs than an 
Application Specific Integrated Circuits (ASIC) for moderate volume applications and more flexibility than the 
alternate approaches. Since many current FPGA architectures are in-system programmable, the configuration of 
the device may be changed to implement different functionality if required depending on the LST-SW parameters 
for each corresponding authors. Finally, preliminary results show that the proposed LST-SW Xilinx Virtex-5 
LX50 FPGA implementation approach is exceedingly flexible. Moreover, this implementation provides 
considerable and promising performance suitable for future Cubesats onboard LST-SW computations purposes. 

1   INTRODUCTION 

The processing work on a satellite can range from 
simple storing and relay to a ground station for later 
processing or processing the data onboard and 
streaming only the important bits of data later to a 
ground station. Most current remote sensing satellites 
operate on a store-and-forward paradigm, where 
imagery is captured, stored on board, and then 
transmitted to a ground station when it comes into 
view. Due to the high volumes of data collected by 
satellite imaging systems, tremendous demand is 
placed on the onboard storage resources. Furthermore, 
these large images require significant downlink time to 
transmit them to ground stations. Due to bandwidth 
constraints and limited satellite visibility time, it may 
take more than one pass to complete the downloading 
of the acquired imagery (Dawood, A. S., et al, 2002). 
With onboard processing, the data can be altered, 
processed and compressed resulting in smaller 
amounts of data to be transferred. 

A trend in the design of hardware modules for 
remote sensing missions has been using hardware 

devices with small size and cost, but with flexibility 
and high computational power. Onboard processing, as 
a solution, allows for a good reutilization of expensive 
hardware resources. Furthermore, it allows making 
autonomous decisions onboard that can potentially 
reduce the delay between the image capture, analysis, 
and the related action. Implementations of onboard 
processing algorithms to perform data reduction can 
dramatically reduce data transmission rates. Moreover, 
satellite-based remote sensing instruments can only 
include chips that have been certified for space 
operation. This is because space-based systems must 
operate in an environment in which radiation effects 
have an adverse impact on integrated circuit operation. 
Field Programmable Gate Array (FPGA) was certified 
by international remote sensing agencies, which was 
frequently used in remote sensing missions and space-
borne Earth observation missions (González, C., et al, 
2012). FPGA also offers exact results with compact 
size, which makes the reconfigurable system 
interesting for onboard data processing. 
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The objective of this work is to implement the 
Land Surface Temperature Split-Window (LST-SW) 
algorithm structure (Sobrino J. & Raissouni N., 2000) 
on FPGA for Cubesats onboard computations 
purposes.  

Onboard computation has become a bottleneck for 
advanced science instrument and engineering 
capabilities. Currently available spacecraft processors 
have high power consumption, are expensive, require 
additional interface boards, and are limited in their 
computational capabilities. Recently developed hybrid 
FPGAs, such as the Xilinx Virtex-5, offer the 
versatility of running diverse software applications on 
embedded processors while at the same time taking 
advantage of reconfigurable hardware resources, all on 
the same chip package. In fact, radiation hardened 
FPGAs are in great demand for military and space 
applications (Compton, K. et al, 2002; Lysaght, P., et 
al, 2006). For instance, industrial partners such as 
Xilinx have been producing radiation-tolerant antifuse 
FPGAs for several years, intended for high-reliability 
space-flight systems. Xilinx FPGAs have been used in 
more than 50 missions. In this paper, a Xilinx Virtex-5 
LX50 FPGA have been used, with the aim of 
implementing the Land Surface Temperature Split-
Window (LST-SW) algorithm, by using LabVIEW 
FPGA Module. 

2  THE ROLE OF RECONFIGURABLE 
HARDWARE IN REMOTE SENSING MISSIONS 

Reconfigurable Hardware (RH) provides a flexible 
medium to implement hardware circuits. The RH 
resources are reconfigurable post-fabrication, allowing 
a single-base hardware design to implement a variety 
of circuits. The RH that combines the flexibility of 
traditional microprocessors with the performance of 
Application Specific Integrated Circuits (ASIC) 
devices, is very promising for remote sensing 
missions, and can be used to increase the fault-
tolerance of designs. RH can be reconfigured to avoid 
hardware faults (Laplante, P. A., 2005), whether they 
result from fabrication or the environment. The trend 
in remote sensing missions has always been towards 
using hardware devices with smaller size, lower cost, 
more flexibility, and higher computational power 
(Heinz, D. et al, 2001; Plaza, A., 2004). On-board 
processing, as a solution, allows for a good 
reutilization of expensive hardware resources. Instead 
of storing and forwarding all captured images, remote 
sensing data interpretation can be performed on orbit 
prior to downlink, resulting in a significant reduction 
of communication bandwidth as well as simpler and 
faster subsequent computations to be performed at 
ground stations. In this regard, FPGAs combine the 
flexibility of traditional microprocessors with the 
power and performance of ASICs. Therefore, FPGAs 

are a promising candidate for on-board remote sensing 
data processing. 

The transmission of high-dimensional information 
collected by a satellite-based instrument to a control 
station on Earth for subsequent processing may turn 
into a very slow task, mainly due to the reduced 
bandwidth available and to the fact that the connection 
may be restricted to a short period of time. The ability 
to interpret remote sensing data onboard can 
significantly reduce the amount of bandwidth and 
storage space needed in the generation of science 
products. Subsequently, on-board processing has the 
potential to reduce the cost and the complexity of 
ground control systems. Furthermore, it allows 
autonomous decisions (to be taken on board) that can 
potentially reduce the delay between image capture, 
analysis, and action. 

Recently, FPGAs have become a viable target 
technology for implementation of remotely sensed 
hyperspectral imaging algorithms (Plaza, A. et al, 
2007). These computing systems combine the 
flexibility of general-purpose processors with the 
speed of application-specific processors. 

Reconfigurable hardware offers the necessary 
flexibility and performance with reduced energy 
consumption compared to other high performance 
processors. By mapping functionality to FPGAs, the 
computer designer can optimize the hardware for a 
specific application resulting in acceleration rates of 
several orders of magnitude over general-purpose 
computers. In addition, these devices are characterized 
by lower form/wrap factors compared to parallel 
platforms and by higher flexibility than ASIC 
solutions. Reconfigurable computing technology 
further allows new hardware circuits to be uploaded 
via a radio link for physical upgrade or repair (Chang, 
C.I, 2007). 

Moreover, satellite-based remote sensing 
instruments can only include chips that had been 
certified for space conditions. This is because space-
based systems must operate in an environment in 
which radiation effects have an adverse impact on 
integrated circuit operation (Neil, B. et al, 1999). 
Ionizing radiation can cause soft-errors in the static 
cells used to hold the configuration data. This will 
affect the circuit functionality and can cause system 
failure. Therefore, it requires special FPGAs that 
provide on-chip reconfiguration error-detection and/or 
correction circuitry. High-speed, radiation-hardened 
FPGA chips with million gate densities have recently 
emerged can support the high throughput requirements 
for the remote sensing applications. Radiation-
hardened FPGAs are in great demand for military and 
space applications. For instance, industrial partners 
such as Actel Corporation (www.actel.com) or Xilinx 
(www.xilinx.com) have been producing radiation-
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tolerant antifuse FPGAs for several years for high-
reliability space-flight systems. Actel FPGAs have 
been on board more than 100 launches and Xilinx 
FPGAs have been used in more than 50 missions. In 
this work, we use a Xilinx Virtex-II PRO xc2vp30 
FPGA as a baseline architecture since it is similar to 
the existing FPGAs (Fischman, M. A., et al, 2003) that 
have been certified by several international agencies 
for remote sensing applications. They are based on the 
same architecture so we could immediately implement 
our design on them. 

3  LST SPLIT-WINDOW ALGORITHM 

Land Surface Temperature (LST) is one of most key 
parameters in the biophysics of land surface processes 
(Morrow, N., et al., 1998). LST plays an important 
role in the cycle of the natural ecosystem evolution 
and global change. LST determination from satellite 
data is mainly influenced by the atmosphere and 
surface emissivity. In our case, the LST Split-Window 
(LST-SW) algorithm proposed by Sobrino J. & 
Raissouni N. (IJRS, 2000) has been used for 
implementation purpose on FPGA (see eq. 1): 

where T4 and T5 in (K) are the brightness 
temperatures measured in the Advanced Very High 
Resolution Radiometer (AVHRR) Channels 4 and 5 on 
board the National Oceanic and Atmospheric 
Administration (NOAA) satellite series, W is the total 
amount of atmospheric water vapour in (g cm-2). ε  
and Δε are, respectively, the average effective 
emissivity in both channels and the spectral variation 
of emissivity. 

4  FPGA IMPLEMENTATION OF THE 
      LST-SW ALGORITHM  
4.1 Materiel: CompactRIO system 

CompactRIO system of the National Instruments (NI) 
used   consists of four main components: an Intelligent 
Real-Time Embedded Controller NI cRIO-9022, a 
reconfigurable field-programmable gate array 

(FPGA)-based chassis cRIO-9014, C Series I/O 
modules, and software. This cRIO-9014 
reconfigurable embedded chassis (Carroll, D., et al, 
2006; Maciej, R., et al, 2010) contains the Xilinx 
Virtex-5 LX50 FPGA that offers ultimate processing 
power to implement LST-SW algorithm using NI-
LabVIEW FPGA software (Figure 1). 

The Xilinx Virtex-5 FPGA offers a number of 
performance enhancements over previous generations 
of FPGA. Another important benefit that the new 
Virtex-5 architecture provides is the ability to compile 
code at faster rates, increasing the processing 
capabilities of NI-LabVIEW FPGA hardware. 
Additionally, all chips are processed using a 65 nm 
lithographic process. The cRIO-9022 is used for image 
controlling/storing and for configuring the FPGA 
chassis. This is an embedded real-time controller 
module featuring an industrial 533 MHz Freescale 
MPC8347 real-time processor for deterministic, 
reliable real-time applications and contains 256 MB of 
DDR2 RAM and 2 GB of non-volatile storage for 
holding: programs and logging data. These two 
modules provide a complete platform to implement 
LST-SW algorithm based on FPGA Xilinx Virtex-5. 
The chassis containing the FPGA has 8 slots to 
connect external hardware modules, used for signal 
acquisition. The modules are interfaced to the FPGA 
in order to enable transferring data directly to the chip. 
The real-time controller contains a 10/100 Base T/TX 
Ethernet port to communicate with Personal Computer 
(PC) or other systems.  

FPGAs are really just blank silicon canvases that 
you can program to be any type of custom digital 
hardware. Traditionally, programming these FPGA 
chips has been difficult and, therefore, only possible 
by experienced digital designers and hardware 
engineers. NI has simplified programming these 
devices through graphical system design with NI-
LabVIEW FPGA so that nearly anyone can take 
advantage of these powerful reconfigurable chips. 
Because NI-LabVIEW FPGA Virtual Instruments 
(VIs) are synthesized down to physical hardware, the 
FPGA compile process is different from the compile 
process for a traditional LabVIEW for Windows or 
LabVIEW Real-Time application. 

Figure 1. Material implementation: NI cRIO-9022 embedded real- time controller 

LST = T4 + 1.40 (T4-T5) + 0.32 (T4-T5)2 + 0.83 + 
(57-5W) (1-ε) - (161-30W) ∆ε  (1) 
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Figure 2. Illustration of communication between host computer VI and FPGA VI. 

4.2 VIs Synchronisation: Computer and FPGA 

One of the advantages of the CompactRIO system are 
the three Direct Memory Access (DMA) channels, 
which provide data streaming from the FPGA target to 
the host application by means of First In First Out 
(FIFO) tables. DMA-FIFOs are an efficient 
mechanism for streaming data from the FPGA to the 
host processor without involving processor resources. 
LabVIEW provides an interface that makes it 
uncomplicated to setup DMA channels for data 
streaming between the FPGA hardware and the 
software running on the host computer. DMA channels 
can be created to operate in both directions, FPGA to 
host computer or host computer to FPGA see Figure 2. 
This property only can be set before compile-time. 
The direction of the DMA channel cannot be changed 
during run-time (after synthesis). The advantage of 
using DMA channels is the high data throughput rate 
that they can obtain. That makes them suitable for 
streaming of measurement data. However, there are 
only a limited number of DMA channels that can be 
setup for data communication, which makes them 
unsuitable for status data from the FPGA and 
command data to the FPGA.  
4.3 Methodology: Implementation of the LST-SW 
algorithm using NI-LabVIEW FPGA  

The proposed implementation is divided into two 
parts: i) writing the code in FPGA mode and, 
ii) controlling it through host computer. Here cRIO-
9022 has been taken as an intelligent real-time 
embedded controller for CompactRIO. Figure 3 shows 
the FPGA VI in charge of computing the LST-SW 
image. Image pixel values are stored in memory, and 
then the DMA-FIFO is used to transfer the data into 
the host computer. Images T4, T5, W and ε (see eq. 1) 
are stored on hard disk and then transferred to FPGA 
VI which calculates the LST-SW (in our case we 
consider ∆ε=0.005). In the whole process, images data 
is stored in memory separately and delivered 

coherently to the host computer in 1024 element 
frames by checking the DMA-FIFOs status before 
writing to them, so that the FPGA DMA buffer never 
overflows. The advantage of DMA is that the host 
computer processor can perform calculations while the 
FPGA target transfers data to the host computer 
memory through bus mastering. A DMA-FIFO 
allocates memory on both the host computer and the 
FPGA target, but acts as a single FIFO. The FPGA VI 
writes to the DMA-FIFO one element at a particular 
instant of time with the Write method of the FIFO 
Method Node or reads from the FIFO one element at a 
particular instant of time with the Read method. While 
invoking, the host computer VI reads from or writes to 
the FIFO one or more elements at a time. A DMA 
Engine is used by LabVIEW to transfer DMA-FIFO 
data between the FPGA and the host computer. 

Finally, a host computer VI has been written using 
the FPGA code see Figure 4. The values of the pixels 
stored in memory are transferred to the host computer 
through FIFO type Target to Host-DMA. The open 
FPGA reference opens a reference to the FPGA VI 
without running it, in order to avoid generating data 
before DMA is configured. Reset the VI to guarantee 
that FIFOs are in a known state on the target. The size 
of the image can be given manually or it can be 
determined by the loop by using different scaling VIs 
present in LabVIEW. There are two DMA-FIFOs 
named as Host to Target DMA1 and Host to Target 
DMA2 being used to transport the images stored in the 
hard disk to the FPGA respectively. Prior to the main 
loop in the host computer VI, DMA1-FIFO and 
DMA2-FIFO has been configured so that the main 
loop will run after the DMA-FIFO get 1024 values 
from FPGA VI,  will be used at a time. This ensures 
that there will be a continuous execution of the main 
loop in host computer VI without any data 
insufficiency. The values are converted to 16-bit non-
signed integer numeric (U16) from FXP (fixed point). 
Finally, the Close FPGA VI reference closes the 
reference to the FPGA. 
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Figure 3.  FPGA VI for the proposed implementation in NI-LabVIEW FPGA 

Figure 4. Host computer VI for the proposed implementation in NI-LabVIEW FPGA

5  EXPERIMENTAL RESULTS 

5.1 Satellite data and LST-SW results 

The study area is the Mediterranean Basin. This 
particular geographical position gives the area a great 

bioclimatic diversity and important temperature 
gradient between north and south.  

The Pathfinder AVHRR Land (PAL) satellite 
dataset has been used for the study of the 
Mediterranean Basin. NOAA and National 
Aeronautics and Space Administration (NASA) are the 
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sponsors of the PAL project responsible of producing a 
set of global data calibrated and processed regularly 
for the investigation on climatic change. The AVHRR 
data used are the Global Area Coverage GAC with a 
resolution at nadir view of 4 Km. In this application 
we have used the images (Format: 695 columns, 316 
rows, Integer Host (Intel), Homolosine projection) 
corresponding to the composite period from 21 to 30 
of August, September, October, November and 
December of 1982. 

Figure 5. SW-LST images computed using LST-SW 
NI-LabVIEW FPGA implementation 

Figure 5 shows the LST-SW images computed 
using the LST-SW NI-LabVIEW FPGA proposed 
implementation. An important LST variability is 
shown for the area and period in total coherence with 
the biodiversity of the same. 

5.2 LST-SW FPGA Performance Evaluation 

In this subsection, we conduct an experimental 
evaluation of the computational performance of the 
proposed FPGA implementation. Table 1 shows the 
resources used for our hardware implementation of the 
proposed LST-SW algorithm design, conducted on the 
Virtex-5 LX50 FPGA of the NI cRIO-9014 
reconfigurable embedded chassis. This FPGA has a 
total of 7200 slices, 28800 slice flip-flops, and 28800 
four input look-up tables available. In addition, the 
FPGA includes some heterogeneous resources, such as 
48 DSP48s, and 48 Block RAMs. In our 
implementation, we took advantage of these resources 
to optimize the design. The Block RAMs are used to 
implement the FIFO, so the vast majority of the slices 
are used for the implementation of the LST-SW 
algorithm with the DSP48s multipliers. 

TABLE. 1. Summary of resource utilization for the 
NI-LabVIEW FPGA-based implementation of the 

LST-SW algorithm. 
Target  FPGA  

i  
Virtex-5 LX50 

Device Utilization Used Total % 
Total  Slices 1169 7200 16.2 

Slice Registers 2425 28800 8.4 
Slice LUTs 2590 28800 9.0 

DSP48s 16 48 33.3 
Block  RAMs 3 48 6.2 

Maximum Frequency 83.33 MHz 

We have applied a perfecting approach to hide the 
communication latency using DMA. Basically, while 
the LST-SW module is processing a set of image, the 
DMA is fetching the following set and storing it in the 
FIFO. Having in mind the proposed optimization 
concerning the use of available resources. It is 
important to find a balance between the number of 
DMA operations and the capacity of the destination 
FIFO. In other words, we need to fit enough 
information in the FIFO so that the LST-SW module 
never needs to stop. In addition, the greater the FIFO 
capacity, the fewer DMA operations will be required. 
We have evaluated several FIFO sizes and identified 
that, for 1024 positions or more, there are no penalties 
due to reading of the input data.  

6  CONCLUSION 

The number of remote sensing applications requiring 
fast response of algorithm analysis has been growing 
exponentially in recent years. Current sensor design 
practices can greatly benefit from the inclusion of 
radiation-hardened FPGAs, which can be easily 
mounted or embedded in the sensor due to its compact 
size and low-weight, which does not compromise 
mission payload. In this paper, we have discussed the 
role of FPGAs in remote sensing missions and 
presented the experimental results of first FPGA 
implementation of the Land Surface Temperature 
Split-Window (LST-SW) algorithm, one of the most 
well-known approaches for determination of Land 
Surface Temperature from satellite data in the remote 
sensing community. Finally, experimental results show 
that the proposed LST-SW Xilinx Virtex-5 LX50 
FPGA implementation approach is exceedingly 
flexible and able to provide accurate results in real 
time. Moreover, this implementation provides 
considerable and promising performance suitable for 
future Cubesats onboard LST-SW computations 
purposes (e.g., PICASSO 3U CubeSat Science 
Mission, www.clyde.space/our-missions/12-picasso). 
The mission also serves as an ESA in-orbit-
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demonstrator of CubeSat technology and a pioneer for 
small satellite missions. PICASSO will demonstrate 
the capability of low-cost nanosatellites to perform 
remote and in-situ scientific measurements of 
physiochemical properties of the Earth’s atmosphere 
as well as enhancing the technology readiness level of 
the instruments on-board. 
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ABSTRACT - Remote sensing techniques that apply imagery data obtained with sensors mounted on UAV 
platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- 
cost sensors. To enrich the spectral information of imagery data acquired with low- cost sensors, the authors 
proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is 
based on the pansharpening process, that aims to integrate the spatial details of the high-resolution 
panchromatic image with the wide spectral information of lower resolution multispectral imagery. The key of 
pansharpening is to accurately estimate the missing spatial details of multispectral or hyperspectral images 
while preserving their spectral properties. Depending on the temporal gap between the acquisition of low- and 
high- resolution image, and panchromatic image simulated from RGB image, the spectral quality and accuracy 
of the pan-sharpened image can vary significantly. In the research, the authors presented the fusion of RGB 
images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and 
multispectral satellite imagery. As a result of the fusion, the authors obtained several multispectral images with 
very high spatial resolution and then analysed the spatial and spectral accuracies of processed images. The 
authors analysed the influence of time shift between UAV and satellite imagery acquisition on the spectral 
accuracy of selected land cover forms. The proposed fusion of low- cost UAV imagery with open source satellite 
imagery allows obtaining imagery of high spectral and spatial resolution, which could be used for the quality 
and quantitative analysis of land cover.    

1  INTRODUCTION 

Data obtained from low altitudes with low- cost 
sensors can be characterised by high spatial and 
radiometric resolution but quite low spectral 
resolution. High spectral resolution and many spectral 
bands allow not only distinguish land cover types and 
objects types but also give the possibility of sensing a 
variety of spectral reflectance characteristics of many 
different object types at once, e.g. nitrogen, leaf area 
index, biomass, vegetation stress, soil’s moisture level, 
organic matter, nutrients, anthropogenic objects  etc., 
due to the fact that specific wavelengths are most 
sensitive to each type of objects. Unfortunately, 
imagery data obtained with low- cost technology is 
quite limited due to lack of high spectral resolution 
(Goel et al., 2003; Zarco-Tejada et al., 2005). 
Therefore it is essential to enrich the spectral 
information of imagery data acquired from UAV. 

Many methods allow adding spectral information. 
One of the most popular is based on pansharpening, 
which is data is one of the most popular data 
integration method for remote sensing applications 
(Jenerowicz & Woroszkiewicz, 2016; Siok et al., 
2017). 

The pansharpening process aims to integrate the 
spatial details of the high-resolution panchromatic 
image with the wide spectral information of lower 
resolution multispectral or hyperspectral imagery to 
obtain multispectral or hyperspectral images with high 
spatial resolution. The key of pan-sharpening is to 
correctly estimate the missing spatial details of 
multispectral or hyperspectral images while preserving 
their spectral properties (Alparone et al., 2007; 
Hervieu et al., 2016; Siok et al., 2017). 

Depending on the pansharpening method, spatial 
resolution and quality of RGB image, temporal gap 
between the acquisition of low- and high- resolution 
image, and panchromatic image simulated from RGB 
image, the spectral quality and accuracy of the pan-
sharpened image can vary significantly. 

The research presents preliminary results of the 
fusion of imagery obtained from the low- cost RGB 
sensor platform mounted on UAV and open- source 
data from multispectral satellite- Landsat 8 OLI.  

This research aimed to analyse the influence of 
time gap between satellite and UAV data on the 
accuracy of the pansharpening process, for different 
land cover types. 
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2  DATA AND METHODOLOGY 

2.1 Data  

In this study, two datasets (A and B) containing high- 
spatial resolution RGB image acquired with low- cost 
sensor mounted on the UAV platform and set of 
satellite images acquired by Landsat 8 OLI sensor, 
were used. In order to analyse the time gap influence 
between the images, six satellite images acquired (± 
two; ±four, and ± six weeks after and before) were 
used for each data set. 

The RGB imagery was obtained with digital 
camera Canon 700D with fixed focal length (35 mm) 
mounted on the UAV system X-8. The X-8 UAV is a 
light system made from the elapor foam with the 
single electric engine. 

Satellite data were acquired by Landsat 8 OLI 
sensor. Landsat 8 OLI imagery have a spatial 
resolution of 30 m (multispectral). Data from Landsat 
platform are open source. Therefore authors had 
decided to use them for the study and to show the 
potential of fusion of satellite and UAV imagery. 

Dataset A- Fig. 1, consist of one RGB image with 
0.04 m spatial resolution acquired on 30th may 2015, 
and seven multispectral satellite imagery with 30m 
spatial resolution, acquired on: 
 T-3=30.05.2015 – 6 weeks 
 T-2=30.05.2015 – 4 weeks 
 T-1=30.05.2015 – 2 weeks 
 T0= 30.05.2015 
 T+1=30.05.2015 + 2 weeks 
 T+2=30.05.2015 + 4 weeks 
 T+3=30.05.2015 + 6 weeks. 
 

 
Fig. 1. Satellite and UAV imagery of test site A   
 

Dataset B- Fig. 2, consist of one RGB image with 
0.05 m spatial resolution acquired on 27th July 2016, 
and seven multispectral satellite imagery with 30m 
spatial resolution, acquired on: 
 T-3=08.08.2016– 6 weeks 
 T-2=08.08.2016– 4 weeks 

 T-1=08.08.2016– 2 weeks 
 T0= 08.08.2016 
 T+1=08.08.2016+ 2 weeks 
 T+2=08.08.2016+ 4 weeks 
 T+3=08.08.2016+ 6 weeks 
Unfortunately for this data set, imagery data from 27th  
July were not available, then imagery from 8th August 
were used. 

 
Fig. 2. Satellite and UAV imagery of test site B   

2.2 Data processing 

The full methodology of data processing is presented 
in the graph below- Fig. 3.  

The first stage of data processing has been 
preceded by process of orthorectification of UAV and 
satellite imagery. UAV and satellite imagery were 
orthorectified in order to eliminate errors associated 
with the occurrence of differences in the data 
geometry. For the orthorectification of aerial imagery, 
some control and checkpoints were used, and for 
Landsat 8 OLI data, DEM obtained from the SRTM 
mission was used.  

Next, the panchromatic band was simulated. The 
simulation on new panchromatic images was made by 
the weighting sum of RGB channels of UAV image 
(Kanan & Cottrell, 2012) - equation (1). 

BGRPAN NTSC *114.0*587.0*299.0 ++=  (1) 

Simultaneously to panchromatic band simulation 
from RGB high- spatial resolution data, the 
atmospheric correction of multispectral data was 
conducted by application of QUAC algorithm 
(Bernstein et al., 2006).  

Then, the pansharpening process was applied to all 
datasets. The Gram- Schmidt method was used to fuse 
UAV and satellite imagery. The Gram- Schmidt pan- 
sharpening generates a synthetic lower resolution 
panchromatic image through a weighted sum of blue, 
green, red and near-infrared multispectral bands. The 
weights are calculated based on the relative spectral 
response of the four multispectral bands and the 
panchromatic band. The Gram- Schmidt is a 
generalisation of PCA method, in which PC1 may be 
arbitrarily chosen, and the remaining components are 
calculated to be orthogonal to one another and PC1. 
Like PCA method, this method also requires forward 
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and backward transformation of multispectral image 
(Arfken, 1985; Laben & Brower, 2000). As a result, 
seven enhanced images were obtained in two data sets.  

Fig. 3. Block diagram showing the process of data 
preparing and processing 

3  RESULTS 

With the application of the Gram- Schmidt 
pansharpening method there were fused images from 
two data sets, i.e. Landsat 8 OLI  images with 
panchromatic image simulated from high- spatial 
resolution UAV image- Fig. 4 and Fig. 5. As a result, 
seven enhanced images were obtained in two data sets. 
First, the visual assessment of pansharpening results 
was conducted. Second, to verify the spectral 
properties of the photographed objects for data 
acquired on different dates, the spectral characteristics 
of two objects located in the input images: natural, i.e. 
vegetation for data set A, and artificial for data set B, 
were analysed.  

Based on visual assessment of results it can be 
concluded that obtained results for the fusion of UAV 
and Landsat data are good, however visual analysis of 
results for datasets A, and B, shows that better results 
are obtained for data set A. 

In the images that are results of satellite and UAV 
data fusion- dataset A; it is possible to distinguish 

different types of vegetation (meadows, cereals, 
cabbage, bushes, trees, etc.)- in comparison to original 
multispectral data. Also, it is possible to separate 
vegetation from the ground easily. As it can be 
observed, this fusion was very successful regarding the 
spatial quality improvement of multispectral image. 

Fig. 4. Results of data fusion with the Gram- Schmidt 
method- data set A 

Fig. 5. Results of data fusion with the Gram- Schmidt 
method- dataset B 

In the images obtained after the fusion of data 
from set B, it is possible to distinguish different types 
of land cover, i.e. buildings, vegetation, athletic track, 
in comparison to original multispectral data. However, 
edges of buildings are blurred, and the colour 
reproduction of anthropogenic objects is not ideal.   
In order to verify the spectral properties of the 
photographed objects, the spectral characteristics of 
two types objects located in the input images natural, 
i.e. vegetation for data set A, and artificial for data set 
B, were analysed. Spectral reflectance characteristics 
were obtained from enhanced images and in-situ 
measurements. The results are presented in the figures 
6 and 7. 

For the anthropogenic object, the results are 
similar for all dates. However, in the case of a natural 
object, the best results of pansharpening process were 
obtained when time gap is no bigger than two weeks.  

  427

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Fig. 6. Spectral reflectance characteristic of vegetation- data set A 

Fig. 7. Spectral reflectance characteristic of urban area- data set B 

4 SUMMARY AND CONCLUSIONS 

In the presented study, the analysis of the influence of 
time gap between satellite and UAV data on the 
accuracy of the pansharpening process, for different 
land cover types was presented. The fusion of UAV 
and satellite allows to obtain not only high spatial 
resolution images but also maintain correct spectral 
response of objects in the new pan-sharpened image.  

The best results of data fusion are the best when 
the time gap is less than two weeks for vegetation. The 
results for the urban area are very similar even if the 
time gap is quite high. The similar shape of the 

spectral characteristics of objects obtained from the 
enhanced image, and obtained with an  ASD  
spectroradiometer, and high SI values are confirmation 
of good results of data fusion.  

 The method can be useful in the remote sensing 
analyses especially for more precise land cover 
identification and classification for precision 
agriculture purposes. 
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ABSTRACT - In many applications of remote sensing, it is required to preserve both high spatial resolution and 
high spectral resolution of images. Therefore, many methods of pan-sharpening that use the original high spatial 
resolution panchromatic image and low spatial resolution multispectral images had been developed. Due to the 
limited range of sensitivity of panchromatic data, the authors indicate that the simulation of new panchromatic 
high-spatial-resolution images for the pan- sharpening purpose is highly recommended. That is related to the 
possibility to obtain more reliable results of the sharpening of the data in both the visible and infrared range 
spectrum. This paper presents the method of simulation of new panchromatic images with high spatial 
resolution. The method allows obtaining enhanced images of a higher spectral quality in reference to the 
original panchromatic data. The algorithm was invented by WorldView-2 and Landsat-5 data. The new visible 
images had been simulated based on analysis of the results of weighting sum of channels. Next, the authors 
applied commonly used Gram-Schmidt algorithm of pan-sharpening. Several accuracy assessment indices to 
determine the accuracy of the data integration processes were used: Universal Image Quality Index, Peak Signal 
To Noise Ratio Index, Correlation Coefficients and ERGAS. The proposed method of simulation of the new 
panchromatic channel allows to obtain not only high spatial resolution images but also maintain the correct 
spectral response of objects in the new pan- sharpened image. Concerning this, it will enable efficient detection 
of various forms of land cover contained in images. 

1  INTRODUCTION 

Both, high-spatial resolution and high-spectral 
resolution data are significant for environmental 
studies, such as precision agriculture, high-resolution 
land cover mapping, plant species, and change 
detection (Goel et al. 2003; Gevaert et al., 2015; Heim 
et al. 2015; Lehmann et al., 2015). For global 
analyses, it is required to have satellite imagery, which 
is characterised by a large size of the scene, regularity 
of acquisition and free access (e.g. Landsat, Sentinel). 
Such requirements are not met for aerial photos or 
UAV data. Unfortunately due to the trade-off between 
spatial resolution, spectral resolution and Signal to 
Noise Ratio (SNR), satellite sensors register low-
spatial resolution images (e.g. Proba-1 CHRIS or EO-
1 Hyperion). In addition, currently, there are few 
satellites on which were mounted both hyperspectral 
(HS) and multispectral (MS) sensors. Therefore, it is 
necessary to integrate images from different sensors 
selected depending on the application. With the 
increasing number of high-resolution satellites, it is 
possible to register images of the same area from 
several sensors in a similar vegetation period. Satellite 
data fusion from different sensors can be 

accomplished through pansharpening process (Yokoya 
et al., 2017). 

The pansharpening is a process, that is widely 
used for the enhancement of the spatial quality of 
multispectral or hyperspectral images with relatively 
low Ground Sampling Distance (GSD). Different 
methods of pansharpening allow for integration of 
multispectral data with panchromatic data from the 
same area as well as for the fusion of hyperspectral 
images with multispectral images. In the second case, 
it is assumed that multispectral data have higher 
spatial resolution compared to hyperspectral data. 
Therefore it is possible to obtain enhanced images 
with better spatial quality that preserve spectral 
information, that could be next used for target 
detection and identification  (Alparone et al., 2007; 
Winter et al., 2007; Hervieu et al., 2016; Siok et al., 
2017). 

In order to carry out of reliable analysis of 
natural land cover, it is essential to retain high spatial 
and spectral quality of the images in the pansharpening 
process. That is strictly related not only to the time 
shifts between registration time of input images but 
also to the spectral, radiometric and spatial resolution 
of the input data, as well as to the used pansharpening 
method. Some methods of pansharpening allow 
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maintaining higher spatial resolution while other 
higher spectral resolution (Hill et al., 1999; Alparone 
et al., 2007; Sarp 2014; Grochala & Kedzierski, 2017; 
Siok et al., 2017). The authors of the article do not 
focus on the determination of the best fusion method 
but the analysis of the spectral quality of 
pansharpening results using different simulations of 
the panchromatic band. Consequently, the Gram-
Schmidt method was chosen because of the speed and 
ease of implementation, and sufficiently preserving 
spectral information (Chen et al., 2014; Jenerowicz & 
Woroszkiewicz, 2016). 

Authors aim to preserve the original spectral 
features of photographed objects, as many as possible, 
by applying different modifications to the high spatial 
image during the pansharpening process. In the 
research, the case of multisource multispectral data 
without a panchromatic band is considered. Such 
situation can be found in the case of Sentinel- 2 
sensors. Authors aim to simulate panchromatic 
channel for a satellite that physically does not acquire 
such channel. The developed methodology will also be 
useful in the process of sharpening of hyper- and 
multispectral data. 

In this article, the authors show the need for 
simulation of new panchromatic bands that could be 
used to increase the interpretation, identification and 
classification capabilities of land cover and objects. 

2  SIMULATION OF NEW SPECTRAL BANDS 

When integrating high-spatial multispectral data with 
high-spectral hyperspectral data, and there is lack of 
physically acquired panchromatic band it is necessary 
to simulate the high-resolution panchromatic image 
(Yokoya et al., 2017). Regardless of the method of 
panchromatic image simulation, pansharpening 
process allow to obtain an enhanced image, that can be 
used in various applications. However, the efficiency 
of the obtained image depends on the method of data 
simulation. 

The most common data simulation method is 
based on the arithmetic mean of four multispectral 
bands, i.e. Blue, Green, Red, and NIR (Hill et al., 
1999). Moreover, the mean is also used for band 
simulation from hyperspectral bands (Chen et al., 
2014). 

The pansharpening process can be applied 
separately for different ranges of the electromagnetic 
spectrum. Price (Price, 1987) fused the panchromatic 
band with the visible (VIS) channels and separately 
with NIR channel. The applied spectral partition is 
related to the nonlinear relationship between visible 
and near-infrared bands.  

The new spectral band is also simulated based on 
the assumption that spectral reflectance coefficients of 
the same terrain objects are practically identical in two 

spectral ranges (Zhang & He, 2007). In other studies, 
authors propose weighting sum of the channels for the 
simulation purpose (Mayumi & Iwasaki, 2011). The 
weight factors are connected to the mutual spectral 
response. Moreover, the authors suggest simulation of 
the new spectral band based on the estimated linear 
regression value between hyperspectral and 
multispectral bands. 

3  DATA AND METHODOLOGY 

3.1 Data and pre-processing 

In this study, two multispectral images from different 
sensors were used: WorldView-2 (WV-2) and Landsat-
5 TM- Fig. 1. The data selection for the research 
purpose was based on images availability, cloud cover, 
the small time difference in data acquisition, and 
diversification of land cover. The WorldView-2 image 
was registered on 10th August 2010 and image from 
Landsat-5 TM on 15th August 2010. 

Fig. 1. Imagery data used in the study, i.e.  
WorldView-2, and Landsat 5 TM images 

The selected imagery data are characterised by 
lack of clouds, relatively small temporal shift and 
registration of many natural and anthropogenic 
objects, i.e. forest, meadows, farmland, soil without 
vegetation, building, roads, courts etc. 

Both images were georeferenced (UTM, Zone 
34), and radiometrically corrected. First, the imagery 
was radiometrically calibrated with coefficients 
provided by the data provider. Next, QUAC (Bernstein 
et al., 2006) atmospheric correction was applied. 
3.2 Methodology 

The study was conducted to evaluate the spectral 
quality of results of pansharpening when various 
panchromatic channel simulations were used. It was 
assumed that the chosen satellites could not register 
the panchromatic band. The original WV-2 
panchromatic image was used only to evaluate the 
pansharpening results. The influence of the image with 
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higher spatial resolution on preserving the spectral 
characteristics of the photographed objects was also 
investigated. 

In this work, the WV-2 data were considered as 
imagery with high-spatial and low-spectral resolution, 
and Landsat-5 TM image was used as high-spectral 
and low-spatial resolution one. Panchromatic channel 
simulations were limited to VIS bands modifications 
of WV-2 data. First, the integration of Landsat 
multispectral data and the original Red, Green and 
Blue bands of WV-2 was made. Next fusion of 
Landsat MS and modifications of original VIS 
channels of WV-2 was carried out. The simulation on 
new panchromatic images was made by calculating the 
arithmetic mean of Red, Green, and Blue bands of 
WV-2 (Zhang et al., 2007; Chen et al., 2014) - 
equation (1), and the weighting sum of these channels 
(Kanan & Cottrell, 2012) - equation (2). 

3
BGRPAN MEAN

++
=

(1) 

BGRPAN NTSC *114.0*587.0*299.0 ++= (2) 

The weight factors used in the equation (2) 
correspond to the values used by NTSC in the YUV 
colour model, and their values are related to human 
perception (Pratt 2001; Kanan & Cottrell, 2012).  

The pansharpening was performed using the 
Gram-Schmidt algorithm. The results of that process 
were evaluated based on visual analysis of enhanced 
images and statistical analysis using four coefficients: 
Universal Image Quality Index (UIQI), Peak Signal To 
Noise Ratio Index (PSNR), and Correlation 
Coefficient (CC) (Hill  et al., 1999; Otazu et al., 2005; 
Karathanassi  et al., 2007; Yokoya et al., 2017).  

The degree of preservation of the spectral 
features of selected objects was also checked by 
comparing their spectral characteristics obtained from 
enhanced images and the in-situ measurements 

conducted with ASD FieldSpec 4 WideRes 
spectroradiometer. 

4  RESULTS 

The multispectral data of WV-2 and Landsat-5 TM 
were fused to obtain six enhanced images with 2 m 
spatial resolution, i.e.: 

a) one image resulting from the integration of
Landsat-5 TM data and original WV PAN
degraded to 2m – it is reference data for
quality evaluation of results;

b) three images resulting from the integration
of Landsat TM data with original WV-2 Red,
Green and Blue bands separately;

c) two images resulting from the integration of
Landsat TM data with bands simulated,
based on equations (1), and (2).

First, the visual assessment of pansharpening 
results was conducted. Contrast, artefact occurrence, 
and degree of preservation of colour and details were 
investigated using different colour compositions. 

When applying the pansharpening using the 
original panchromatic band, it was possible to preserve 
the highest level of detail. On the other hand, using the 
original Red or Green bands, allowed to obtain images 
with more intense colours, as opposed to using the 
Blue channel. 

Due to the high spatial resolution ratio between 
the WV-2 and Landsat-5 data colour propagation 
between neighbouring elements is significant- Fig. 2. 
However, not always a sharpened image, that is 
optimal for human eyesight or automatic 
classification, will be suitable for the accurate 
detection of objects (Winter et al., 2007). 

The statistical evaluation was performed by 
comparison of enhanced images with original Landsat 
TM data by calculating the coefficients: UIQI, PSNR, 
ERGAS, and CC. 

Fig. 2. Results of pansharpening process 
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Table. 1. Results of the statistical evaluation, i.e. UIQI, PSNR, ERGAS, and CC coefficients 

The highest UIQI, PSNR and CC coefficients, as 
well as the lowest values of the ERGAS coefficient, 
were obtained when PANRED, PANNTSC and PANGREEN 
bands were used during the pansharpening process. 
Application of those bands shows the best spectral 
quality preservation - Table 1.  

In order to verify the spectral properties of the 
photographed objects, the spectral characteristics of 
two objects located in the input images: artificial - 
treadmill and natural - pine were analysed. 
Characteristics were obtained from enhanced images 
and in-situ measurements. The results are presented in 
the figures 3 and 4. 

Fig. 3. Spectral reflectance characteristic and coefficients of athletic track 

Fig. 4. Spectral reflectance characteristic and coefficients of pine 
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For the artificial object- the athletic track, the 
use of the Red channel instead of the original PAN 
resulted in better preservation of spectral information 
in the Red, NIR, NIR II and MIR ranges. The use of 
the Green channel resulted in better maintenance of 
the spectral properties of the objects in the Blue range, 
while for the Green range, the best results were 
received by simulating the PAN channel by the 
arithmetic mean of the R, G, and B bands. 

In the case of a natural object- pine, the best 
results of pansharpening process were obtained when 
PANBLUE channel was used. 

For both objects types, i.e. pine, and athletic 
track, the spectral reflectance coefficients received 
from enhanced images are similar to those obtained 
with a spectroradiometer during in-situ measurements. 
Observed differences, may be caused by atmospheric 
conditions, inaccurate radiometric correction or 
relatively small image sample size. 

5  SUMMARY AND CONCLUSIONS 

In the presented study, the usefulness of the 
panchromatic band simulation was investigated, to 
preserve high spectral properties of the photographed 
objects during the pansharpening process. The 
preliminary research was carried out using the 
multispectral data of WV-2 and Landsat TM. The WV-
2 imagery was used as lower-spectral resolution (only 
three channel Red, Green and Blue were taking into 
account) and high-spatial-resolution data, while 
Landsat-5 TM images were used as high-spectral and 
low-spatial resolution data. In the future work, the 
authors intend to implement a developed methodology 
to simulate panchromatic band for sensors that 
physically do not register panchromatic data, e.g. 
Sentinel-2. 

As a result of pansharpening process with the 
application of different panchromatic simulated bands, 
enhanced images with 2 m spatial resolution were 
obtained. 

The use of appropriate spectral quality 
coefficients, or a comparison of reliably acquired 
spectral reflectance coefficients of individual objects, 
allow assessing the usefulness of the simulation 
methods in a global context (whole image with a 
diversity of photographed objects) or local ( an only 
specific group of objects). 

Confirmation of the research results requires the 
analysis of more samples and the use of different sets 
of image data. Nevertheless, the authors point the need 
of simulation of the panchromatic band depending on 
the type of land cover that will be analysed finally. The 
selection of suitable bands that would be registered in 
narrower spectral ranges than the original PAN, or the 
use of an appropriate modification of multispectral 

channels to simulate PAN band could improve spectral 
properties of enhanced objects. The improved spectral 
quality of enhanced images is of particular importance 
in the interpretation and classification process of the 
land cover. 
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ABSTRACT-Crop acreage information is an important basis for formulating national food policies and 
economic planning. Spatial sampling schemes have been widely used for crop acreage estimation in the large 
regional scale. However, the efficiencies of different spatial sampling schemes have not been quantitatively 
evaluated so that the optimum sampling scheme has not still been proposed. This study’s aim is to make a 
comparison among the different spatial sampling schemes using remotely sensed data for improving the 
efficiency of crop acreage estimation. In this study, Shandong Province, China is selected as the study area. 
Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2010 are used to extract the winter 
wheat. 13 spatial sampling schemes are formulated to draw samples, then extrapolate population values and 
estimate the sampling error, combining remotely sensed data, Geographic Information Systems, Geostatistics 
and traditional sampling methods. The Relative Error (RE), Coefficient of Variation (CV) and Sampling Fraction 
(SF) are selected as the index for evaluating sampling efficiency. The results demonstrate that the stratification 
criterion has a significant effect on the sampling efficiency, but the sample layout within the strata is not yet. For 
13 spatial sampling schemes, the efficiency of spatial stratified sampling is the maximum (RE, CV and SF is 
0.76%, 2.42% and 24.24%, respectively), comprehensively considering the population extrapolation accuracy, 
stability and sampling cost. In this way, this research can provide a theoretical basis for improving the efficiency 
of spatial sampling survey for crop sown acreage estimation in a large regional scale. 

1  INTRODUCTION 

Information on crop area is an important basis for 
the formulation of national food policies and economic 
planning (Chen et al 2005; Qian et al 2007). Timely 
and accurate estimating crop sown acreage is one of 
key technologies of crop yield monitoring by remote 
sensing, it has become an important subject in national 
agricultural condition monitoring field (Yang et al 
2002; Quarmby et al 1993; Reynold et al 2000). With 
the development of “3S” technology (Remote Sensing, 
Geographic Information System, Global Positioning 
System), spatial sampling methods constructed by 
combining traditional sampling methods and “3S” 
technology have been gradually used for estimating 
the crop area at large scales(Wu and Li 2004; 
Tsiligrides 1998; Delince 2001; Pradhan 2001; 
Gallego 1999; Carfagna and Gallego 2005; Wu et al 
2014). For example, crop area was monitored by 
combining the stratified sampling method and “3S” 
technology in the LACIE (Large Area Crop Inventory 
and Experiment) and AGRISARS (Agriculture and 
Resources Inventory Surveys through Aerospace 
Remote Sensing) programs sponsored by the United 
States (US) (Benedetti et al 2010). So far, the method 
has been still employed by NASS (National 

Agricultural Statistics Service) for estimating the main 
crops acreage in the US (Boryan, Yang and Muller 
2011). In addition, the stratified sampling method has 
also been combined with “3S” technology to estimate 
17 crop sown acreages across the European Union 
(EU) in the MARS (Monitoring Agriculture with 
Remote Sensing) program (Gallego 1999; Carfagna 
and Gallego 2005). In recent years, the spatial 
sampling method has also been used to estimate crop 
acreage for large-scale areas in China; the selected 
sampling method is mainly stratified sampling, and the 
involved crops include wheat, rice and cotton. Jiao 
(2006) et al used the stratified sampling scheme to 
estimate the interannual change in paddy field area in 
China. In the study, a standard topographic map with a 
scale of 1:50000 was selected as the sampling units, 
and remote sensing and field surveys were employed 
to obtain the rice planting area in the sampled units. To 
improve the accuracy of winter wheat area estimation, 
Zhang (2010) et al incorporated stratified sampling 
and remotely sensed data into a spatial sampling 
scheme. Compared with the result retrieved only using 
images, the spatial sampling method obtains an 
improved estimation accuracy of 5% for winter wheat 
areas. Although spatial sampling methods have been 
widely used to estimate crop  acreage in previous 
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studies, the focus has been on testing the efficiency of 
single spatial sampling scheme, which constructed by 
only one traditional sampling method (e.g., stratified 
sampling) combining “3S” technology. However, the 
efficiencies of different spatial sampling methods have 
not been quantitatively compared, furthermore 
sampling schemes for crop area have not been 
optimized yet, consequently hindering the 
improvement of spatial sampling efficiency. 

To solve this problem, we conducted a study on 
the comparison of spatial sampling schemes in a large-
scale region to improve the efficiency of the current 
sampling survey for crop area estimation. Shandong 
Province, China was selected as the study area, and 
winter wheat acreage was selected as the study object. 
“3S” technology and the traditional sampling methods 
are used in the study.  

2 MATERRIALS AND METHODS 

2.1 Technical route 

The technical route consist of 4 steps: the first 
step is preparation of basic data used to formulate the 
spatial sampling scheme, the data include basic 
geographic information data, land use, crop spatial 
distribution and planting regionalization data of the 
study area; the second step is the design of spatial 
sampling schemes. It includes the formulation of 
sampling unit size and geometric shape, the design of 
sampling methods using the basic data; the third step 
is samples selection and population extrapolation. 
Samples are drawn using the spatial sampling scheme 
formulated in the second step, and then population 
value  are extrapolated and sampling error are 
estimated; The last step is comparison of different 
sampling scheme efficiencies. The relative error, 
coefficient of variation (CV) and sampling cost are 
selected as the index of efficiency evaluation. 

2.2 Study area 

Shandong Province is situated between 
34°22′54″N and 38°27′00″N and between 
114°47′30″E and 122°42′18″E, on the verge of the 
Bohai Sea and the Yellow Sea and apart from Korean 
peninsula and Japanese archipelago by sea. The total 
land area of the whole province is 157,000 Km2; the 
offshore sea area is over 170, 000 Km2. The whole 
province is divided into 17 prefecture-level 
administrative regions with 139 county-level 
administrative regions. Shandong province is located 
in warm temperate zone and semi-humid monsoon 
region, with moderate climate, concentrated rainfall 
and four distinctive seasons. The annual mean 
temperature is from 11℃ to 14℃ , the amount of 
precipitation is from 550 to 590 mm and the frost-free 
period is more than 200 days. Shandong province is 

located in Huang-Huai plain and is the main producing 
area of winter wheat in our country. 

2.3 Data 

The experimental data consist of 4 parts: 1) Basic 
geographic information data. It refers to administrative 
boundary data of Shandong Province (the scale is 
1:250000, vector format); 2) The land use data of the 
study area (the scale is 1:250000, vector format, 3 
levels land use types); 3) The crop spatial distribution 
data. It refers to winter wheat spatial distribution data 
of the study area in 2011(derived from MODIS image, 
spatial resolution is 250m); 4) winter wheat planting 
regionalization data. Fig.1, Fig. 2 and Fig. 3 presents 
the spatial distribution of cultivated land, winter wheat 
and its planting regionalization in the study area, 
respectively.  

Fig. 1. Spatial distribution of cultivated land in 
Shandong Province 

Fig. 2.  Spatial distribution of winter wheat in 
Shandong Province in 2011 

Fig. 3. Winter wheat planting regionalization in 
Shandong Province 
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2.4 Spatial sampling scheme 

The square grid is served as the geometric shape 
of sampling basic units to facilitate the analysis of 
spatial correlation and variability of sampling. 
Considering that the study area is very large, therefore, 
the size of the sampling basic unit, that is the square 
gird, is 40 Km×40 Km, in order to improve the 
availability of satellite images. Then, the study area is 
separated by the square grid (the size is 40 Km×40 
Km) to construct sampling frame. The winter wheat 
sown area in each square grid is calculated as the 
population unit value using the ArcGIS software, 
based on the results of overlapping the sampling frame 
with the spatial distribution data of winter wheat sown 
area. Fig. 4 presents the distribution map of all 
sampling units coded by the ID number in the study 
area. 

Fig. 4. The distribution map of sampling units coded by the 
ID number in the study area 

2.4.1 Basic sampling units 

2.4.2 Spatial sampling methods 

6 different categories sampling methods are 
formulated to compare their efficiencies: they are 
simple random sampling (SRS), spatial random 
sampling (SPR), traditional systematic sampling 
(TSY), spatial systematic sampling (SSY), traditional 
stratified sampling (TST) and spatial stratified 
sampling (SST). 

a) Simple random sampling: Sample size is
calculated according to Eq. (1) ~ Eq. (4). 
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where n0 is the initial sample size; n is modified 
sample size, when n0/ N> 0.05, n0 is modified 
according to Eq. (2); t is the sampling probability 
degrees, when the confidence level is 95%, t is equal 
to 1.96; r is the relative error, 5% is designed as r in 
the study; Y is the population mean; S2 is the 
population variance; N is the population size; Yi is the 
i-th population unit observations. 

The procedure of samples selection using simple 
random sampling is that all population units are first 
encoded in 1−N order using ArcGIS9.3 software. 
Pseudo random numbers are then generated by 
SPSS16.0 software and used to code each successive 
sampling unit during its spatial location assignment. 

b) Spatial random sampling: Sample size is
calculated according to Eq. (5) ~ Eq. (8). 
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where spatialn  is sample size using spatial random 
sampling; simplen  is that of simple random sampling; r is
spatial correlation coefficient; ),( hii ZZC + is covariance 
between the population units in the sampling frame; N 
(h) is the numbers of population units with a distance 
of h; Z (Xi, Yi) is winter wheat sown area in i-th 
population unit; p

2σ  is dispersion variance of all 
population units. 

For the spatial random sampling, the procedure of 
sample selection is the same with that of the simple 
random sampling. 

c) Traditional systematic sampling: In order to
compare the efficiencies of the two sampling 
methods, sample size of traditional systematic 
sampling is nearly the same with that of spatial 
random sampling, therefore, 3 is formulated into 
the sampling interval k, which equal to the 
integer value of the population size N divided by 
the sample size n.  
Two patterns are used to draw the samples:  one 

is that the ID numbers of all sampling units are sorted 
in ascending order. If the population is divided into n 
sections, then each section includes k population units. 
One population unit is drawn randomly from the k 
population units in the first section as the starting 
point, and one sampled unit is drawn every k units 
until all of the sampled units have been drawn. The 
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other is that the winter wheat area in every sampling 
unit is sorted in ascending order, the rest procedures is 
same with those of the former. 

d) Spatial systematic sampling: the space
intervals between adjacent sampled units are the 
same in the horizon and vertical direction, 
furthermore, the samples are evenly distribute 
into the whole study area, accordingly, the sample 
size  can be determined. Comprehensively 
considering the scope of the study area and 
population size, 80Km and 120 Km are selected 
as the spatial sampling interval. 

e) Traditional Stratified sampling: 3 auxiliary
variables are selected as the stratification 
criterions: the first is the winter wheat proportion 
within one sampling units (WPS), and 5 strata are 
formulated to decrease the variance of population 
units in each stratum and reduce the sampling 
cost; the second is winter wheat planting 
regionalization, and 5 strata is still used; the last 
is cultivated land types. 4 strata are used, 
considering the quantity and distribution of 
cultivated land types in the study area. Two 
patterns are selected to draw samples within the 
strata: one is systematic isometric sampling; the 
other is simple random sampling. Sample size is 
calculated referring to (Cochran 1977 ). 

f) Spatial Stratified sampling: Stratification
criterions are the same with those of traditional 
stratified sampling. The sample size is calculated 
according to Eq. (9) and Eq. (10). 

where sshn ,  is the sample size in the h-th stratum for 
spatial stratified sampling; tshn ,  is sample size of the h-
th stratum for traditional stratified sampling; rh is 
spatial correlation coefficient of the h-th stratum. 
The spatial correlation  threshold of sampling units, 
that is range A referred to  in Geostatistics, is served as 
sampling interval to distribute the sampled units in 
each stratum. 

2.4.3 Samples observation 

The winter wheat planting acreage in the sampled 
units is measured by overlapping the maize spatial 
distribution data of the study area in 2011 and square 
grids, and then the acreage is served as samples 
observation to extrapolate population value and 
estimate sampling error. 

2.4.4 Population extrapolation and error estimation 

Simple estimator is used to extrapolate population 
and estimate error in the 6 sampling methods. With 
regard to simple random sampling, traditional 
systematic sampling, spatial systematic sampling and 
traditional stratified sampling, population inference and 
error estimation can be conducted referring to (Cochran 
1977) and literature (Du 2005). For the spatial random 
sampling and stratified sampling, population total and 
sampling error estimation can be estimated according 
to Eq. (11) and Eq. (12). 
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where 
srsZv )ˆ( is the variance of population total estimate 

for spatial random sampling; 
sssZv )ˆ( is the variance of 

population total estimate for spatial stratified sampling; 
f is  sampling fraction; f h is sampling fraction in the h-
th stratum; s2his discrete variance in the h-th stratum; 

)),(( yxzCOV h is the covariance of sampled units in the 
h-th stratum. 

Relative error (r) and coefficient of variation (CV) 
are selected as index to quantitatively evaluate the 
efficiency of spatial sampling scheme for winter wheat 
acreage estimation. 

3 RESULTS AND ANALYSIS 

3.1 Impacts of sample selection methods on sampling 
efficiency 

Fig. 5 shows the histogram of sampling fraction 
(f), relative error (r) and CV of population 
extrapolation of winter wheat acreage using simple 
random sampling, spatial random sampling, traditional 
systematic sampling and spatial systematic sampling 
methods, in order to analyze the influence of sample 
selection methods on the sampling efficiency. It may 
be observed that r and CV increase with decreasing the 
f for 6 sampling methods. Although the r and CV of 
simple random sampling is the minimum, accordingly, 
the f is the maximum (nearly 90%) among the 6 
methods. For the spatial systematic sampling, although 
the f is less than 15%, r and CV are more than 10% 
yet. As for the rest of 4 sampling methods, although 
the r and CV are almost less than 10%, however, the f 
is still high, it is more than 30%. It indicates that 
sample selection methods have no significant effect on 
the improvement of the sampling efficiency, 
comprehensively considering f, r and CV of population 
extrapolation of winter wheat acreage by 6 sampling 
methods. 

)1(＝ tsh,ssh, hrnn −  (9) 
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Note: f is sampling fraction; r is relative error between the 
true and estiamted value of population total; CV is the 
coefficient of variation; Traditional systematic sampling(1) 
means that the winter wheat area in every sampling unit is 
sorted in ascending order, then the samples are drwan 
according to the order ; Traditional systematic sampling(2) 
means that ID numbers of all sampling units are sorted in 
ascending order; Spatial systematic sampling(1) and (2) mean 
that the sampling interval is 80Km and 120Km, respectively.  
Fig. 5. Histograms of sampling fraction, relative error and 
CV of population extrapolation of winter wheat acreage for 
the different random and systimatic  sampling methods 

3.2 Impacts of stratification criterion and sample 
layout on the stratified sampling efficiency 

In order to analyze the influence of stratification
criterion and sample layout on the sampling efficiency, 
Fig. 6 shows the histogram of f, r and CV of 
population extrapolation of winter wheat acreage using 
7 stratified sampling methods. It may be observed that 
the f of the stratified sampling using WPS as the 
stratification criterion is the minimum, and that of the 
stratified sampling using winter wheat planting 
regionalization as the stratification criterion is the 
maximum for 5 sampling methods (TST(1), TST(2), 
TST(3), TST(4) and SST(1) ), when r and CV of the 
five methods are almost the same(less than 5%).  

Furthermore, for the TST(1), TST(2) and SST(1), 
when the f is nearly equal, although the stratification 
criterion of the three methods are the same, however, r 
and CV of population extrapolation are still close to 
equal. In addition, for SST(1) SST(2)and SST(3), 
when sample layout and the f are almost the same, the 
difference of r and CV are obvious among the three 
methods.  It indicates that the stratification criterion 
has a significant effect on the sampling efficiency, but 
the sample layout within the strata is not yet.
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Note: Traditional stratified sampling(1) and (2) mean that 
WPS is selected as the stratification criterion, but systematic 
isometric and simple random sampling are used to draw 
samples within the strata for (1) and (2),  respectively. 
Traditional stratified sampling(3) and (4) mean that simple 
random sampling is used to draw samples within the strata, 
but winter wheat plant regionalization and cultivited land 
types are seleted as the stratification criterion for (3) and (4), 
respectively. For the Spatial stratified sampling(1), (2) and 
(3), the spatial correlation threshold (A) of sampling units is 
selected as the sampling interval.WPS, winter wheat plant 
regionalization and cultivited land types are seleted as the 
stratification criterion for (1), (2)and (3), respectively. 
Fig. 6. Histograms of sampling fraction, relative error and 
CV of population extrapolation of winter wheat acreage for 
the different stratified sampling methods 

Table 1. Results of population extrapolation and error analysis of winter wheat acreage estimation using 13 spatial sampling 
methods in the study area in 2011. 

No.  Sampling method Population size Sample 
 size  

Sampling 
fraction Relative error Coefficient of 

variation 
(%) (%) (%) 

1 Simple random sampling 132 116 87.88 1.08 2.64 
2 Spatial random sampling 132 50 37.88 6.17 5.42 
3 Traditional systematic sampling(1) 132 44 33.33 1.58 1.88 
4 Traditional systematic sampling(2) 132 44 33.33 3.83 4.24 
5 Spatial systematic sampling(1) 132 36 27.27 10.98 12.06 
6 Spatial systematic sampling(2) 132 16 12.12 12.59 19.04 
7 Traditional stratified sampling(1) 132 35 26.52 1.39 2.48 
8 Traditional stratified sampling(2) 132 35 26.52 1.03 2.28 
9 Traditional stratified sampling(3) 132 115 87.12 1.13 2.44 

10 Traditional stratified sampling(4) 132 113 85.61 1.29 2.56 
11 Spatial stratified sampling(1) 132 32 24.24 0.76 2.42 
12 Spatial stratified sampling(2) 132 30 22.73 13.41 12.78 
13 Spatial stratified sampling(3) 132 50 37.88 8.15 7.92 
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a. Simple random sampling

b. Spatial random sampling

c. Traditional systematic sampling

d. Spatial systematic sampling

e. Traditional stratified sampling

f. Spatial stratified sampling

Fig. 7.  The spatial distribution of sampled units drawn by 6 spatial sampling methods for winter wheat acreage 
estimation in the study area 

3.3 Comparison of the efficiencies for the different 
spatial sampling schemes 

In order to compare the efficiencies of the different 
spatial sampling schemes for winter wheat acreage 
estimation, Table 1 presents the results of sample size, 
sampling fraction, population extrapolation and error 
analysis of winter wheat area using 13 sampling 
methods. It may be observed that  the efficiency of the 
spatial stratified sampling, which the stratification 
criterion  is WPS and the spatial correlation threshold 
of sampling units is selected as the sampling interval, 
is the maximum(f , r and CV is 24.24%, 0.76% and 
2.42%, respectively) for 13 sampling methods, 
comprehensively considering the population 
extrapolation accuracy, stability and sampling cost. 
Sorted in descending order of the sampling efficiency, 
the rest of sampling methods are traditional stratified 
sampling, spatial systematic sampling, traditional 

systematic sampling, spatial random sampling and 
simple random sampling. Fig. 7 shows the spatial 
distribution of sampled units drawn by 6 spatial 
sampling methods for winter wheat acreage estimation 
in the study area. 

4 CONCLUSIONS 

The experiments on comparison the efficiencies 
of different spatial sampling schemes are conducted to 
improve the efficiency of sampling survey for crop 
planting acreage estimation. Shandong Province was 
selected as the study area and winter wheat planting 
acreage as the study object. Spatial analysis, “3S” 
technology, Geostatistics and traditional sampling 
method are used. 6 sampling methods and 13 spatial 
sampling schemes are formulated, and square grid is 
served as the geometric shape of sampling units in this 
study. The experimental results demonstrate as 
follows: 
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1) Comprehensively considering f, r and CV,
sample selection methods have no significant
effect on the improvement of the sampling
efficiency, when random or systematic sampling
is used to estimate winter wheat acreage.

2) No matter traditional stratified or spatial
stratified sampling, the stratification criterion has
a significant effect on the sampling efficiency,
but the sample layout within the strata is not yet.

3) For 13 spatial sampling schemes, the efficiency
of spatial stratified sampling (stratification
criterion is WPS,   and sampling interval is the
spatial correlation threshold of sampling units) is
the maximum, in view of the population
extrapolation accuracy, stability and sampling
cost of winter wheat acreage.
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Abstract: The ionosphere is present in the Earth's high-level atmospheric airspace with a height of about 60 km 
to 100 km, containing more free electrons that can significantly affect the propagation of radio waves. Due to the 
influence of the free electrons in the ionosphere, when the satellite signal passes through the ionosphere, the 
ionospheric signal will produce the ionospheric delay error. Therefore, in order to improve the prediction accuracy 
of Total Electron Content (TEC), a new prediction model based on genetic algorithm to optimize Back Propagation 
(BP) neural network is proposed. Genetic Algorithm(GA) is a global optimization search algorithm based on 
natural selection and genetic theory. Through the selection, crossover and mutation operation of GA, the initial 
weights and thresholds of BP neural network are optimized deeply, which can be used to generalize BP neural 
network Mapping ability, so that BP neural network has fast convergence and strong learning ability. In this paper, 
TECs, from Internation Global Naviagation Satellite System(GNSS) Service center, in high, medium and low 
latitudes from 2013 to 2015 are selected as experimental data. BP neural network and BP neural network optimized 
by genetic algorithm are trained and simulated respectively. The results show: (1) Regardless of active period or 
quiet period ,the GA-BP model has smaller prediction residuals, and the standard deviation of active period is 
lower than the standard deviation of quiet period .(2) The recognition accuracy in the mid latitude region is higher, 
and the prediction accuracy  in the high latitude region is low. In particular, the prediction accuracy of the GA-BP 
model in the mid latitude region is 93.53%, while the accuracy of the GA-BP model in the low latitude region is 
only about 74.28%. (3) The GA-BP model can improve the prediction accuracy of the ionospheric TEC value by 
1-3 percentage points, which has a high fitting degree to the GNSS Service Center Observation data. 

Key word: GNSS ; TEC ; prediction ; BP neural network 

INTRODUCTION 

The ionosphere is in the high-level atmospheric 
airspace at a height of about 60 km to 100 km. It 
contains a lot of free electrons. When the 
electromagnetic wave passes through the ionosphere, 
its propagation path will be significantly affected [1]. 
The total electron content (TEC) of the ionosphere is 
an important parameter to characterize the ionosphere 
in navigation and positioning, and its research has 
become an important subject. There are two ways to 
predict TEC values nowadays. One is the empirical 
model, including Bent model, IRI model, Klobuchar 
model and other classical models, only to obtain the 
actual TEC values of 50%~60%. The second is to 
directly establish the TEC model with TEC observation 
data as the data source. A number of time series 
prediction models, local linear model, RBF neural 

network model and some combination prediction 
models are established by direct simulation of TEC 
data. But these models are susceptible to the length of 
sample data and prediction time. 

For the ionospheric TEC with non-linear, non-
stationary characteristics in time and space, the neural 
network has achieved remarkable results in its 
prediction. BP neural network has a complex nonlinear 
mapping ability through the combination of neurons 
with simple processing ability. But in the process of 
use, there are defects such as slow convergence rate and 
easy to fall into the local minimum. Therefore, many 
experts and scholars have adopted various methods to 
improve the neural network [2-4]. Genetic algorithm is a 
global optimization algorithm with good convergence 
and fast random search ability. It can make up the 
stochastic defects of BP neural network in weights and 
threshold selections, making BP neural network have 
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fast convergence and strong learning ability [5]. At the 
same time, combining genetic algorithm with BP 
neural network to predict non-stationary time series has 
achieved good results in some fields [6-7], but few 
achievements have been made in TEC prediction. 
Therefore, this paper will explore the BP neural 
network optimized by genetic algorithm. In this paper, 
the global TEC values provided by IGS are used to 
evaluate the prediction results. 

1 BASIC THEORY 

1.1 BP Neural Network 

BP neural network is also called back propagation 
neural network. It is a non-federated network with three 
or more layers [8]. BP neural network not only has input 
layer and output layer, but also has multiple hidden 
layers. It implements the full connection between the 
nerves of each layer, but there is no connection between 
the neurons in the same layer. 

output signal

input signal

input layer hidden layer output layer

· ··

· ··

· ··

· ··

forward propagation

 back propagation

  Figure 1 the learning process of BP neural network 
with three layers 

The learning process of BP neural network is 
shown in figure 1. It consists mainly of two parts, that 
is, the forward propagation of the input signal and the 
back propagation of the error signal. In forward 
propagation, the input signal is input from the input 
layer, which is then processed by the hidden layer, and 
finally it is passed to the output layer to get the actual 
output. If the actual output does not match the expected 
output, then the error is propagated backwards. The 
process of back propagation is to correct the connection 
weights from the output layer to the input layer, so that 
the error is reduced [9]. The two propagation processes 
are carried out cyclically. The connection weights of 
the BP network are continually trained to meet the set 
target accuracy or to the maximum number of 
iterations. 

1.2 Genetic Algorithm (GA) 

GA is a computational model for simulating the 
natural elimination of organisms in natural evolution. It 
is a kind of algorithm with strong global search ability 
and global optimization performance, mainly including 
selection, crossover and mutation operation. For 
details, please refer to reference [10]. 

1.3 BP Neural Network Optimized By Genetic 
Algorithm 

Due to the randomness of the generated weights and 
thresholds in network training, it may lead to unstable 
results. In order to improve the prediction accuracy and 
stability, this paper uses the genetic algorithm to 
optimize the initial weights and thresholds of the 
network. The basic steps are as follows: 
 Individual coding. Since the weights and

thresholds of BP networks are decimals between
(-1, 1) and their number is large, it is not suitable
for binary encoding. Therefore, the real coded
rule is adopted in this paper.

 Evolutionary parameters of BP neural network
are determined by the individual evaluation
function. The weights and thresholds of the BP
neural network are assigned by the coding
obtained in the above, so that the accuracy of the
training sample is set in the neural network,
obtaining the output values of network training.
Here, the reciprocal of mean square error is taken
as the fitness of the individual.

 The selection of the operator is carried out, that
is, the optimal chromosome quality in each
generation is selected according to the selection
strategy of fitness proportion. The selection
probability is as follows:

p
p

i i i
i 1

f / f ,i 1,2,..., p.
=

= =∑  (1) 

Where if  is the fitness value; p  is the population 
size. 

 Because the individual uses real number coding,
crossover operation is performed by real number
crossing method. For example, the crossover
between the -k th  Gene kw  and the -l th  gene 

lw  in the j  bit is as follows:

kj kj lj

lj lj kj

w w (1 b ) w b,
w w (1 b ) w b .

= − +

= − +
 (2)

Where b  is the random number between 0 and 1. 
 Mutation operation. Select the -j th  gene of the

-i th individual to perform the mutation operation 
as follows:
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ij ij max
ij

ij min ij

w ( w w ) f ( g ),r 0.5;
w

w ( w w ) f ( g ),r 0.5.
+ − ≥=  + − <

(3) 

2 maxf ( g ) r (1 g / G ).= −  (4) 
Where maxw  and minw  are the upper and lower 
bounds of the ijw  value of the gene; r  and 2r  are 
the random numbers between 0 and 1; g  is the 
current iteration number; and maxG  is the 
maximum evolution number. 

 The optimal individual obtained by GA is
decomposed into initial weights and thresholds of 
BP neural network. 

2 EXPERIMENTAL ANALYSIS 

2.1 Data Sampling 

In this paper, the TEC data provided by IGS from 
2013 to 2015 are used as sample sequences. The TEC 
data are modeled on the first 10 days using the BP 
model and the GA-BP model, and the TEC data are 
predicted 5 days later (that is, the first 120 data are used 
to predict the 60 data). Specifically, the annual TEC 
data of low latitude (10゜N, 115゜E), mid latitude (40
゜N, 115゜E) and high latitude (70゜N, 115゜E) in 
three years are selected as experimental data. 

Epoch / 2h                                                      Epoch / 2h 
Figure 2 TEC prediction results of the active period (left) and the quiet period (right) at different times 
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IGS releases the TEC values every two hours, so 
there are 12 values per day, with a total of 4380 TEC 
values per year. Since using TEC data for the first 10 
days to predict TEC data after 5 days, such a total of 
3159 sample data are established. In this experiment, 
the TEC data of 50-64 days in 2014 are used as the test 
samples of active period. The TEC data of 236-250 
days in 2015 are used as the test samples of quiet 
period. The data in the 2013, 2014 and the remainder 
of 2015 are used as training samples.  

At the same time, this paper uses the data provided 
by the IGS center as the truth value, and uses relative 
precision P  and standard deviation SDE  to evaluate 
the prediction result. The formulas are as follows: 

day

12n
2

pre[ i ] igs[ i ]
i 12n 11

( K K )
SDE

12
= −

−
=

∑
(5) 

12n
pre[ i ] igs[ i ]

i 12n 11 igs[ i ]
pre day

K K
(1 )

K
P

12
= −

−

−
−

=
∑

(6) 

Where pre[ i ]K is the prediction result; igs[ i ]K  is the 
TEC observation value provided by the IGS center; n
is the -n th  day of the predicted days. 

2.2 Results Analysis 

BP neural network with three layers is selected in 
this paper. After a constant attempt, the final 
parameters are selected as follows: the number of input 
layer nodes is 120; the number of output layer nodes is 
60; the number of hidden layer nodes is 20; the 
maximum number of iterations is 3000; the target 
precision is 0.01; and the learning rate is 0.1. The GA-
BP network parameters are set such that the initial 
population size is 50; the generation is 100; the 
crossover rate is 0.8; the mutation rate is 0.05, and the 
other parameters are the same as the BP network. 

Two models are constructed and trained. The 
experimental results are shown in figure 2. In figure 2, 
the abscissa represents the prediction epoch while 
every 2h is 1 epoch; the ordinate indicates the TEC 
values while the unit is TECu. From Figure 2, we can 
see that both in the quiet period or active period, TEC 
values predicted by the BP model and GA-BP model in 
different latitudes (low, medium and high) are better 
able to follow the actual values. In particular, the 
prediction results using the GA-BP model are closer to 
the observed values than the BP model. 

The overall residual distribution of the two models 
is shown in Table 1 and Table 2. According to Table 1 
and Table 2, it can be seen that when the mean values 
of 5-day prediction residuals are lower than 1 TECu, 
the percentage content mean of GA-BP model is higher 
than that of BP model in both the active period and 

quiet period. When the mean values of 5-day prediction 
residuals are higher than 3 TECu, the percentage 
content mean of GA-BP model is lower than that of BP 
model in both the active period and quiet period. 
Therefore, the prediction residuals of the GA-BP model 
are smaller and the prediction results are better. 

Table 1 Residuals distribution of two models in active 
period (low, middle, high latitudes) 

Forecast 
day 

BP/GA-BP /% 

Δ<1TECu 1TECu≤Δ<3TEC
u Δ≥3TECu 

1 16.67/13.8
9 

38.89/41.67 44.44/44.4
4 

2 16.67/30.5
6 

27.78/36.11 55.56/33.3
3 

3 22.22/27.7
8 

16.67/22.22 61.11/50.00 

4 25.00/16.6
7 

30.56/33.33 44.44/50.0
0 

5 16.67/22.2
2 

22.22/30.56 61.11/47.22 

Mean 19.45/22.2
2 

27.22/32.78 53.33/45.0
0 

Table 2 Residuals distribution of two models in quiet 
period (low, middle, high latitudes)

Forecast 
day 

BP/GA-BP /% 

Δ<1TECu 1TECu≤Δ<3TEC
u Δ≥3TECu 

1 38.89/52.7
8 

50.00/41.67 11.11/5.56 

2 30.56/30.5
6 

33.33/38.89 36.11/30.56 

3 27.78/33.3
3 

38.89/41.67 33.33/25.0
0 

4 11.11/16.67 33.33/33.33 55.56/50.0
0 

5 2.78/8.33 33.33/30.56 63.89/61.11 

Mean 22.22/28.3
3 

37.78/37.22 40.00/34.4
5 

In order to further illustrate that the prediction 
results of GA-BP model are better than the prediction 
results of BP model, the standard deviations and 
relative precision are statistically shown in Table 3 and 
Table 4. Table 3 discusses the TEC in the active period. 
It can be seen that the prediction accuracy in the mid-
latitude region is the highest, followed by the low 
latitude region and the lowest in the high latitude 
region. The standard deviation of GA-BP model in 
different latitude regions is less than that of BP model. 
In addition, both the BP model and the GA-BP model 
have a large positive standard deviation for the first day 
in the high latitude region, which may be caused by 
excessive fluctuations in the TEC values of the 
ionosphere in high latitude region on March 1, 2014. 
Table 4 discusses the TEC in the quiet period. It can be 
seen that the prediction accuracy is the highest in the 
low latitude region, followed by the mid-latitude region 
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and the lowest in the high latitude region. The 
prediction accuracy of GA-BP model is higher than that 
of BP model. Combined with Table 3 and Table 4, we 
can see that 
 The prediction accuracy of the GA-BP model is

superior to the BP model in either active or quiet 
period. 

 The recognition accuracy in the mid latitude
region is higher, and the prediction accuracy in 
the high latitude region is low. In particular, the 
prediction accuracy of the GA-BP model in the 
mid latitude region is 93.53%, while the accuracy 
of the GA-BP model in the low latitude region is 
only about 74.28%. The possible reason for this 
is that the low latitudes are strongly influenced by 
the earth's magnetic field and solar activity. It 
leads to an anomalous ionosphere over the ±20o 
geomagnetic, greatly increasing its electronic 
content. At the same time, the variation law of the 
ionosphere in the mid-latitude region is relatively 
simple and no abnormal changes can occur. In the 
high latitudes, the electronic content is low, and 
the abnormal plasma changes make the edge of 
the electrons change drastically in the short term. 

In Table 1-4, we can find that the relative accuracy of 
the active period is slightly higher than that of the quiet 

period, but the prediction residuals are the opposite. 
The reason is that the magnitude of the base values will 
affect the calculation results of relative accuracy to a 
certain extent. If the initial value is different, the 
relative accuracy will be quite different for the same or 
similar prediction residuals. Taking into account the 
initial value, the active period is greater than the quiet 
period, so even if it contains a large difference, the 
relative accuracy can still be maintained at a higher 
level. 

3 CONCLUSION 

In view of the nonlinear and non-stationary 
characteristics of the ionospheric total electron content, 
this paper introduces genetic algorithm to optimize the 
weights and thresholds of BP neural networks. Then, 
the two models are used to predict the TEC values. The 
experimental results show that the relative accuracy of 
the active period is slightly higher than that of the quiet 
period, but the prediction residuals are larger than that 
of the quiet period. Compared with the BP model, the 
GA-BP model improves the prediction accuracy and 
has good stability, so as to better explain the change 
characteristics of ionosphere.

Table 3 Comparison of the prediction accuracy using BP and GA-BP models in the active period 
Grid point Model Evaluation index Day Mean 1 2 3 4 5 

Lo
w

 
la

tit
ud

e BP SDEday 0.3897 0.4479 1.0226 0.1655 0.8824 0.5816 
Ppre-day 0.8641 0.8886 0.8854 0.9162 0.8585 0.8826 

GA-BP SDEday 0.3816 0.7931 0.1816 0.6147 0.7209 0.5384 
Ppre-day 0.8728 0.9047 0.9015 0.8999 0.8804 0.8918 

M
id

-
la

tit
ud

e BP SDEday 0.2255 0.8798 0.9665 0.0131 0.1688 0.4507 
Ppre-day 0.9242 0.9224 0.8850 0.9202 0.9178 0.9139 

GA-BP SDEday 0.0525 0.5491 0.7693 0.3718 0.0270 0.3539 
Ppre-day 0.9229 0.9494 0.9196 0.9309 0.9539 0.9353 

H
ig

h 
la

tit
ud

e BP SDEday 2.2536 0.2510 0.0264 0.8647 1.0409 0.8873 
Ppre-day 0.8039 0.8235 0.7584 0.8017 0.8101 0.7995 

GA-BP SDEday 1.9922 0.7053 0.2272 0.4427 0.8886 0.8512 
Ppre-day 0.8513 0.8361 0.7680 0.8217 0.7940 0.8142 

Note: the unit of SDEday is TECu; the unit of Ppre-day is %. 
Table 4 Comparison of the prediction accuracy using BP and GA-BP models in the quiet period 

Grid point Model Evaluation index Day Mean 1 2 3 4 5 

Lo
w

 
la

tit
ud

e BP SDEday 0.4052 0.1958 0.0270 0.4575 1.1593 0.4490 
Ppre-day 0.9068 0.8953 0.9307 0.8295 0.8314 0.8787 

GA-BP SDEday 0.4596 0.1434 0.0872 0.5500 1.0545 0.4589 
Ppre-day 0.9113 0.9086 0.9501 0.8600 0.8387 0.8937 

M
id

-
la

tit
ud

e BP SDEday 0.0413 0.4080 1.0768 0.7407 1.2671 0.7068 
Ppre-day 0.9263 0.9170 0.8536 0.7286 0.7046 0.8260 

GA-BP SDEday 0.0148 0.5368 1.0463 0.8649 1.4811 0.7888 
Ppre-day 0.9223 0.9195 0.8804 0.7564 0.7148 0.8387 

H
ig

h 
la

tit
ud

e BP SDEday 0.7994 0.8009 0.6790 0.5883 0.6160 0.6967 
Ppre-day 0.8851 0.6408 0.6965 0.6457 0.6748 0.7086 

GA-BP SDEday 0.6044 0.6346 0.5783 0.2639 0.5036 0.5170 
Ppre-day 0.9115 0.7047 0.7380 0.6880 0.6717 0.7428 

Note: the unit of SDEday is TECu; the unit of Ppre-day is %.
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ABSTRACT - As catastrophic events, landslides can cause human injury, loss of life and economic devastation, 
and destroy construction works and cultural and natural heritage. To develop strategies for landslide risk 
assessment and management, an effective landslide susceptibility, hazard, and risk model is necessary to mitigate 
or even avoid the resulted disastrous consequences from landslides. For this purpose, an integrated model 
combining frequency ratio (FR) and analytical hierarchy process (AHP) method was attempted to map the 
landslide susceptibility in the Southwestern part of Qushan town near the Wenchuan earthquake-stricken area in 
2008, South West China. The relationships between landslide susceptibility and causative factors were analysed 
with the FR method and the weights of causative factors were assigned by the AHP method based on the 
availability of existing data resources. The causative factors incorporated into the model were: elevation, slope, 
aspect, lithology, distance to rivers, normalized difference vegetation index (NDVI) and peak ground 
acceleration (PGA). The weighted overlay analysis was conducted to produce the susceptibility map of 
landslides in the study area by using GIS software. The landslide susceptibility was categorized into five levels: 
very low, low, moderate, high and very high. The results obtained in this study showed that the integrated model 
can be used as an effective tool in assessment of landslide susceptibility, the results obtained provide the basis 
for hazard assessment and regional planning. 

1 INTRODUCTION 

A landslide, also known as a landslip, is a form of 
mass wasting that includes a wide range of ground 
movements, such as rock-falls, deep failure of slopes, 
and shallow debris flows. As a major geological 
hazard, Landslides cause significant life losses and 
property damage, destruction of infrastructure and 
damages to natural ecosystems (Dai and Lee, 2002; 
Saha et al., 2010). Landslides occur when the slope 
changes from a stable to an unstable condition. A 
change in the stability of a slope can be caused by a 
number of factors, acting together or alone, mainly 
influenced by geological, meteorological and human 
factors, especially the rainfall and earthquake. To 
mitigate the impact of landslides, many studies have 
been carried out to map the intensity and locations that 
are prone to landslides. 

In the recent years, various approaches have been 
proposed to produce the landslide susceptibility map 
based on statistical analysis and expert knowledge. 
Among which frequency ratio (FR) method (Pradhan 
B, 2010; Anbalagan R, 2015), logistic regression (Bai 
et al, 2010; Mathew et al, 2007), weights of evidence 
(Althuwaynee et al, 2012; Regmi et al, 2010), AHP 

(Pourghasemi et al, 2012; Yalcin, 2008), information 
valued method (Jun et al, 2010; Lin and Tung, 2004) 
have been utilized in disaster prevention practise. 
Landslide susceptibility mapping based on statistical 
analyses assumes that landslide susceptibility can be 
assessed through analysis between landslides 
occurrence and causative factors. However, the 
relationships obtained through analysis between 
landslides occurrence and causative factors can’t fully 
reflect the inner relations among causative factors. 
Furthermore, statistical methods require a large 
amount of field samples and such intensive field 
activity is almost impossible to carry out in most 
cases. 

With the rapid advances of remote sensing and 
GIS, quick acquirement of high resolution remote 
sensing images makes it possible to interpret various 
disasters effectively. Remote sensing techniques have 
been approved very success in landslides 
interpretations in many studies (Sato et al, 2007; Xu et 
al, 2015). In this paper, an integrated model by 
combining FR and AHP methods was proposed to map 
landslide susceptibility of the study area. In this 
model, the FR method was used to depict relationships 
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between landslide occurrence and causative factors, 
and the AHP method was adopted to reflect 
relationships among causative factors. Landslide 
causative factors mainly including elevation, slope, 
aspect, lithology, distance to rivers, NDVI and PGA, 
were used to map the landslide susceptibility of the 
study area damaged by the Ms 8.0 Wenchuan 
earthquake in 2008, Southwestern China. 

2 STUDY AREA  

The study area is located in the southwest of Qushan 
town in the Sichuan province of China (Figure 1). The 
total area of this study site is about 53.66 km2 with 
central longitude/latitude at 104.457°E and 31.835°N. 
The topography of the region is undulated with terrain 
featured by successive hills and mountains of 
elevations ranging from 570 m to 2100 m above mean 
sea level. Jian River, the largest river channel flows 
through the region. According to the local climate 
record provided by China Meteorological 
Administration, the long term average annual 
temperature in this area is about 15.6℃ and average 
annual precipitation is around 1472 mm, which 
characterizes this region a typical subtropical moist 
monsoon climate. 

The study area is closed to the epicentre of 2008 
Wenchuan earthquake, about 133 km from each other. 
The Yingxiu–Beichuan fault, one of three main faults 
of the Long Menshan tectonic belt (Zhen et al., 2008), 
just developed in this area. Landslides seriously 
threaten the living and productive activities of the 
people living there, especially after the Wenchuan 
earthquake. Landslide susceptibility mapping is 
therefore of great significance to be implemented in 
the region. 

 
Figure 1 Geographic map showing the location and 
topography of the study area.  
 
 

3 DATA  

Landslide hazard analysis and mapping can provide 
useful information for catastrophic loss reduction, and 
assist in the development of guidelines for sustainable 
land use planning. The analysis is used to identify the 
factors that are related to landslides, estimate the 
relative contribution of factors causing slope failures, 
establish a relation between the factors and landslides, 
and to predict the landslide hazard in the future based 
on such a relationship. The factors that have been used 
for landslide hazard analysis can usually be grouped 
into geomorphology, geology, land use/land cover, and 
hydrogeology. Slope, aspect, elevation, lithology, 
distance to rivers and NDVI. PGA is the dynamic 
factor of landslides triggered by earthquake, and it has 
a great impact on landslides. Seven causative factors 
were used for the landslide susceptibility mapping. 

To extract the landslide causative factor layers for 
the area, we used 1: 200,000-scale geologic map, 
30×30 m Digital Elevation Model (DEM), and SPOT 
remote sensing images of May 2008 (10 m spatial 
resolution). All the additional data on the terrain 
morphology (elevation, slope, and aspect) were 
derived from the DEM. The lithology map was 
extracted from the 1:200,000-scale geologic map. 
SPOT image of 10 m spatial resolution was used to 
generate the NDVI map. Aerial photographs of 4 m 
spatial resolution were further used to identify the 
location of landslides by means of visual image 
interpretation, and 64 landslides triggered by the 
Wenchuan earthquake were interpreted in the study 
area. PGA is important causative factor which can 
download from the United States Geological Survey 
(USGS, https://www.usgs.gov). Prior to produce the 
susceptibility map of landslide, all data set were 
converted into raster format and processed by 
ArcGIS10.2 and ENVI5.3 software, and all images 
and layers were projected on a UTM (Universal 
Transverse Mercator) zone 48 North projection with 
WGS84 datum. Finally a spatial data set of causative 
factor maps were prepared. Figure 2 refers to the data 
layers worked out in this study.  

4 LANDSLIDE SUSCEPTIBILITY MAPPING  

4.1 Methodology  

In the present study, an integrated model combining 
frequency ratio and AHP method was used to perform 
landslide susceptibility mapping. This model consists 
of three generic steps: (1) characterization of 
relationships between causative factors and landslide 
occurrences using FR method, (2) determination of 
weights among the causative factors with AHP 
approach, (3) producing landslide susceptibility map 
of the study area by means of GIS techniques. 
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Figure 2 Descriptive map of causative factor layers. a1: elevation; a2: slope; a3: aspect; a4: lithology; a5: distance 
to rivers; a6: NDVI; a7: PGA. 

The assumption behind landslide susceptibility 
mapping is that susceptibility can be evaluated if the 
causative factors and the relationships between the 
causative factors and landslide susceptibility are 
known (Zhu, 2014). Following the same assumption, 
the relationships can be quantified between landslides 
related causative factors with the landslide occurrences 
spatially using FR method. The FR method is the ratio 
of the area/probabilities where landslides occurred in 
the total study area for given attributes (Lee and Talib, 
2005). It follows the principle of conditional 
probability, in which if the ratio >0 then there is a 
positive correlation between landslides and factor 
classes whereas ratio <0 represents negative 
correlation.  

Next step of the integrated model is to assess the 
relationship between causative factors by using AHP 
method. The AHP method, developed by Saaty (Saaty, 

1977), has been applied for assessing landslide 
susceptibility (Komac, 2006; Pourghasemi et al, 2012) 
originally but now it was used to define the 
relationships between the different causative factors 
and to derive their weights. In this study, the values 
from local landslide experts were used to characterize 
relationships between different causative factors. 
These values were later imported into the AHP 
matrixes to compute weights of causative factors using 
MATLAB software. The weights with the Consistency 
Ratio less than 0.1 were accepted. Table 1 refers to the 
weights of each causative factors. 

For the landslide susceptibility mapping, causative 
factors with certain weights obtained from previous 
process were integrated for estimating landslide 
susceptibility values.  GIS data layers for these seven 
causative factors and the landslide distribution map 
were spatially analysed by using ArcGIS10.2. Each 
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GIS factor data layer was multiplied by weights to 
obtain the landslide susceptibility values of the study 
area by using weighted overlay analysis tool in GIS 
for producing landslide susceptibility map. The 
landslide susceptibility values were classified in five 
data ranges corresponding to five susceptibility zones 
namely, very low, low, moderate, high and very high 
using the Natural Breaks (Jenks) method in the 
ArcGIS10.2.  

Table. 1 The relative importance, factor weights, and 
consistency ratio estimated in this study 

CF a1 a2 a3 a4 a5 a6 a7 W 

a1 1 1/4 1/2 1/4 1/3 1/2 1/5 0.0436 
a2 4 1 4 2 2 3 1 0.2463 
a3 2 1/4 1 1/3 1/2 1/2 1/4 0.0606 
a4 4 1/2 3 1 2 3 1/2 0.1756 
a5 3 1/2 2 1/2 1 2 1/3 0.1162 
a6 2 1/3 2 1/3 1/2 1 1/4 0.0769 
a7 5 1 4 2 3 4 1 0.2808 

Consistency Ratio: 0.0188 

 Note: CF means the causative factors; W means the 
weights of causative factors. When a factor is more 
important than another, the score varies between 1 and 
9. Conversely, the score varies between 1/2 and 1/9.
a1: elevation; a2: slope; a3: aspect; a4: lithology; a5: 
distance to rivers; a6: NDVI; a7: PGA. 

Figure 3 The susceptibility map of landslides in the 
study area  

4.2 Results and Discussions 

Finally, a susceptibility map of landslides in the study 
area was generated through the above described steps 

(Figure 3). Statistical analysis on landslide 
susceptibility map suggested a clear correlation 
between landslides and susceptibility levels (Table 2). 
Most landslides were identified in the high and very 
high susceptibility regions, and very few landslides 
were identified in the very low susceptibility region, as 
shown in Fig. 3. 

In our study area, very high, high, moderate, low, 
very low susceptibility occupied about 21.07%, 
26.43%, 17.20%, 23.00%, 12.30% of the study area, 
approximately about 11.31km2, 14.18km2, 9.23km2, 
6.60 km2, correspondingly. Results indicated that high 
susceptibility zone predominately developed in the 
middle mountainous region. Settlement area, where 
the old Beichuan county located, are generally situated 
on the plain of the eastern part and were less prone to 
the landslides. On the contrary, the extensive middle 
mountainous region in the western part of the study 
area are made up of siltstone or shale and may be 
easily subjected to mass movements such as sheet 
erosion in case of intense rain. Very High 
susceptibility zones were also found along rivers in the 
central part of the study area and the over barren steep 
slopes with less vegetation. Low susceptibility zones 
were generally found in settlement area and medium 
mountains of the southern part of the study area.  

5 VERIFICATION of LANDSLIDE 
SUSCEPTIBILITY MAP  

To evaluate the validity of results, the landslide 
susceptibility map was further verified through a 
statistical analysis. The landslide density of each class 
was computed (Table 2). From the table, it can be 
found that the very high susceptibility level has a very 
high landslide density value, which is remarkably 
higher than the other levels. On the contrary, the very 
low susceptibility level has a very low landslide 
density value. In general, as the landslide density 
decreases, the landslide susceptibility level also 
decreases. Large difference in landslide density values 
between the susceptibility levels can be recognized 
evidently, which implied that the occurrence of 
landslides is highly correlated the level of the landslide 
susceptibility. This indirectly demonstrated the 
reliability of the landslide susceptibility map with 
existing slope instability conditions.  

6 CONCLUSIONS 

As an attempt to use an integrated model 
combining frequency ratio and AHP method to assess 
the landslide susceptibility of the Qushan town, which 
is highly prone to the occurrence of landslides, the 
integrated model incorporated most of the landslide 
causative factors of the area including elevation, slope, 
aspect, lithology, distance to rivers, NDVI and PGA.  
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Table. 2 Landslide susceptibility levels and the density of landslides in the study area 

Susceptibility level Area (km2) Area (%) Landslide
quantity 

Landslide 
quantity (%) Density (no./km2) 

Very Low 6.60 12.30 2 3.13 0.25 

Low 12.34 23.00 5 7.81 0.34 

Moderate 9.23 17.20 7 10.94 0.64 

High 14.18 26.43 17 26.56 1.01 

Very High 11.31 21.07 33 51.56 2.48 

All 53.66 100.00 64 100.00 -- 

Satellite images and geo-informatics tools were 
used in landslide susceptibility mapping for the study 
area, and the results obtained suggested that it is 
possible to produce satisfactory landslide 
susceptibility maps with the integrated model when 
applied at regional scale. With the integrated model 
much extensively tested, feasibility of the model for 
landslide susceptibility mapping can be much 
conformed. At present, it can be concluded that the 
model developed in this study is satisfactory for our 
study goals and the results from this study can provide 
the scientific suggestions for hazard assessment and 
regional planning. 

ACKNOWLEDGMENT 

This study was financially supported by the National 
Key Research and Development Program of China (Grant 
No.2016YFB0502502 and No.2016YFA0602302). 

REFERENCES 

Althuwaynee OF, Pradhan B, Lee S, 2012, Application of an 
evidential belief function model in landslide 
susceptibility mapping. Computers & Geosciences, 44, 
120-135. 

Anbalagan R, Kumar R, Lakshmanan K, et al., 2015, 
Landslide hazard zonation mapping using frequency 
ratio and fuzzy logic approach, a case study of Lachung 
Valley, Sikkim. Geoenvironmental Disasters, 2, 1-17. 

Bai S-B, Wang J, Lü G-N, Zhou P-G, Hou S-S, Xu S-N, 
2010, GIS-based logistic regression for landslide 
susceptibility mapping of the Zhongxian segment in the 
Three Gorges area, China. Geomorphology, 115, 23-31. 

Dai FC, Lee CF, 2002, Landslide characteristics and slope 
instability modeling using GIS, Lantau Island, Hong 
Kong. Geomorphology, 42, 213-228. 

Jun DU, Yang QH, Yan J, 2010, Hazard Evaluation of 
Secondary Geological Disaster Based on GIS and 
Information Value Method. Earth Science, 35, 324-330. 

Komac M, 2006, A landslide susceptibility model using the 
Analytical Hierarchy Process method and multivariate 
statistics in perialpine Slovenia. Geomorphology, 74, 
17-28. 

Lee S, Dan N T, 2005, Probabilistic landslide susceptibility 
mapping in the Lai Chau province of Vietnam: focus on 
the relationship between tectonic fractures and 
landslides. Environmental Geology, 48,778-787. 

Lin M-L, Tung C-C, 2004, A GIS-based potential analysis of 
the landslides induced by the Chi-Chi earthquake. 
Engineering Geology, 71, 63-77. 

Mathew J, Jha VK, Rawat GS, 2007, Application of binary 
logistic regression analysis and its validation for 
landslide susceptibility mapping in part of Garhwal 
Himalaya, India. International Journal of Remote 
Sensing, 28, 2257-2275. 

PeiZhen Z et al., 2008, Slip rates and recurrence intervals of 
the Longmen Shan active fault zone, and tectonic 
implications for the mechanism of the May 12 
Wenchuan earthquake, 2008, Sichuan, China. Chinese 
Journal of Geophysics, 51, 1066-1073. 

Pourghasemi HR, Pradhan B, Gokceoglu C, 2012, 
Application of fuzzy logic and analytical hierarchy 
process (AHP) to landslide susceptibility mapping at 
Haraz watershed, Iran. Nat Hazards, 63, 965-996. 

Pradhan B, Saro L, 2010, Delineation of landslide hazard 
areas on Penang Island, Malaysia, by using frequency 
ratio, logistic regression, and artificial neural network 
models. Environmental Earth Sciences, 60, 1037-1054. 

Regmi NR, Giardino JR, Vitek JD, 2010, Modeling 
susceptibility to landslides using the weight of evidence 
approach: Western Colorado, USA. Geomorphology, 
115, 172-187. 

Saaty TL, 1977, A scaling method for priorities in 
hierarchical structures. Journal of Mathematical 
Psychology, 15, 234-281. 

Saha AK, Gupta RP, Arora MK, 2010, GIS-based Landslide 
Hazard Zonation in the Bhagirathi (Ganga) Valley, 
Himalayas. International Journal of Remote Sensing, 
23, 357-369. 

Sato H P, Hasegawa H, Fujiwara S, et al., 2007, 
Interpretation of landslide distribution triggered by the 
2005 Northern Pakistan earthquake using SPOT 5 
imagery. Landslides, 4, 113-122. 

Xu C, Xu X, Shyu J B H, et al., 2015, Landslides triggered by 
the 20 April 2013 Lushan, China, Mw 6.6 earthquake 
from field investigations and preliminary analyses. 
Landslides, 12, 365-385. 

Yalcin A, 2008, GIS-based landslide susceptibility mapping 
using analytical hierarchy process and bivariate 
statistics in Ardesen (Turkey): Comparisons of results 
and confirmations. Catena, 72, 1-12. 

Zhu A X et al., 2014, An expert knowledge-based approach 
to landslide susceptibility mapping using GIS and fuzzy 
logic. Geomorphology, 214, 128-138. 

  453

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



Comparative Study on Remote Sensing Estimation Methods of 
Grassland Fractional Vegetation Coverage: A case study of grassland in 
Ili Prefecture, Xinjiang, China 

Wenbo Zhanga, Xiuchun Yanga, Asiya Manlike b, Yunxiang Jina, Fengling Zhenb, Jian Guoa, 
Ge Shena, Yujing Zhanga and Bin Xua* 
a. Key Laboratory of Agri-informatics of the Ministry of Agriculture Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 
b. Grassland research institute, Xinjiang Academy of Animal Sciences, Urumchi, China
Email: zhangwenbowww@163.com 
CONTACT Bin Xu, xubin@caas.cn Chinese Academy of Agricultural Sciences, Beijing, 
China 

ABSTRACT - Fractional vegetation cover (FVC) is an important biophysical parameter of terrestrial ecosystems. 
This study made use of GF-1 MFV satellite data (growing seasons of grass in 2014), based on the grassland type 
and soil type vector data, using empirical model method, sub-pixel method, linear spectral unmixing method and 
maximum three bands gradient difference method estimate the FVC of grassland in Ili prefecture of Xinjiang, and 
then the estimation accuracy of the four methods was compared in different types of grassland. After verification 
of the ground sampling points obtained from the grassland supervision departments, the four methods were 
89.86%, 87.31%, 88.01% and 75.21% on the estimation accuracy of Xinjiang grassland vegetation coverage. The 
empirical model method achieved the highest estimation accuracy, while the maximum three bands gradient 
difference method had the lowest accuracy. For the grassland types, the highest accuracy was the FVC estimation 
of temperate meadow steppe area using the empirical model method, the RMSE value was 5.88. And the average 
estimation accuracy of alpine meadow was lowest. The results of this study showed that the empirical model 
method has some advantages in evaluating the vegetation coverage in the small-scale area, the maximum three 
band gradient difference method needed further improvement and perfection. 

1  INTRODUCTION 

Terrestrial ecosystem, as an important component of the 
earth system, plays an important role in maintaining the 
structure, function and environment of the entire Earth 
system and regulating it to suit the direction of human 
existence (Steffen, 2004). Vegetation is the most basic 
part of terrestrial ecosystems, and all other organisms 
depend on vegetation. Fractional vegetation coverage 
(FVC), as an important quantitative index of vegetation, 
reflects the basic situation of vegetation to a great 
extent. Fractional vegetation coverage refers to the 
percentage of the vertical projection area of all 
vegetation canopies and branches in the growing area, 
which accounts for the statistical area of the study area. 
It is an important parameter to describe the vegetation 
cover of the earth, and also a basic indicator of 
ecological environment change (Qi, 2000; Zhang, 
2010). The grassland area of the world is about 1/2 of 
the total land area, and it is the most basic production 
material and base for the development of grassland 
animal husbandry. Grassland occupies a very important 
position in the global ecosystem. Therefore, regional 
and global estimation of grassland vegetation coverage 
is of great significance to the study of vegetation and 
related fields. 

The calculation method of the FVC can be divided 
into two types of field measurement and remote sensing 
monitoring, the vegetation coverage has a significant 
spatial and temporal variation characteristics of 
measured surface method is not only time-consuming. 
But for large scale research, this method is neither 
realistic nor possible, so remote sensing monitoring has 
become the main means of FVC estimation (Liang, 
2012). 

At present, the remote sensing measurement 
method of FVC can be categorized into the regression 
model, mixed pixel decomposition method and 
machine learning method and so on. Regression model 
established the empirical estimating models by 
regression analysis of one band, band combination, 
vegetation index of remote sensing data with FVC 
(Voorde, 2008; Xiao, 2005; Boyd, 2002). The mixed 
pixel decomposition method assumes that each 
component of the pixel contributes to the information 
observed by the sensor, establish a mixed pixel 
decomposition model to estimate the FVC. Sub-pixel 
model is the simplest linear pixel unmixing model. 
Machine learning methods mainly include neural 
networks, decision trees, support vector machines, etc. 
Hansen et al. (Hansen, 2007) established the MODIS 
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standard product Vegetation Continuous Fields 
algorithm by using decision tree model. Although the 
FVC algorithm is rich and diverse, there are few studies 
for grassland area, without considering the 
heterogeneity of study area to establish the partition 
model. In this study, the estimation of FVC in grassland 
of Xinjiang, Ili was studied, and the establishment of 
subarea estimation model was explored. 

2 STUDY AREA 

Ili Kazak Autonomous Prefecture is located in the 
northwest part of Xinjiang Uygur Autonomous Region, 
between 40°14' and 49°10'N and 80°09' and 90°01'E. 
The total area of the whole state is 350 thousand square 
kilometers, and the mountains, plains, basins and 
valleys are distributed in the territory. The "three 
mountains, two basins and two valleys" constitute the 
main geomorphic unit. The main features of grassland 
resources in Ili are good grassland quality and high 
yield of grassland, and the total grassland area is 35,933 
km2, representing 64% of the total area of the region. 
The Ili grassland is primarily dominated by mountain 
meadow, alpine meadow, temperate meadow steppe 
temperate steppe and temperate desert steppe (Fig.1). 

Fig.1. The location map of Ili, China 

3 DATA AND METHODS 

3.1 Study Data and Pre-treatment 

WFV 16 m multispectral data From July to August in 
2014 is the main data source of this study, including 6 
images covering Ili prefecture. GF-1 is the first satellite 
of China's high resolution earth observation system, 
carrying two 2m resolution panchromatic /8m 
resolution multispectral cameras, and four 16m 
resolution multispectral cameras. The remote sensing 
data used in the study also include the LANDSAT8 OLI 
panchromatic image of the same phase in the study area 
as the reference image of ortho rectification and 
geometric correction of the GF-1WFV image. Non 
remote sensing data for ground sampling data and 
vector data base, including 125 ground sampling points 
of vegetation coverage data (from the field 
investigation of the Ili prefecture in 2014, in part 

provided by the grassland supervision center, Ministry 
of agriculture), 1:100 million grassland type 
distribution data and vector data of administrative 
divisions. 

Choosing 6 scenes of GF-1 WFV data (low cloud-
cover) of study area in July and August which is the 
growing season of grassland vegetation (roughly 
matched the acquisition time of ground verification 
points). After ortho correction, geometric correction, 
radiometric calibration, atmospheric correction, image 
mosaic and cropping pretreatment, obtained the surface 
reflectance image of research area. In order to eliminate 
the influence of clouds, water, snow, forest and other 
features in the study area, before estimating the FVC of 
grassland we needed to mask the aforementioned 
objects. Respectively used HOT threshold method, 
normalized difference water index (NDWI) threshold 
method and decision tree method to carry on the mask 
processing. 

3.2 Empirical Model (EM) 

In this paper, the FVC value of partial ground 
verification points and NDVI value of corresponding 
pixel were used for regression analysis, and established 
regression equation, so as to establish empirical 
estimation model. Through regression analysis, the 
regression model of FVC and NDVI was established as 
logarithmic model. 

3.3 Partition Sub-pixel Model (PSP) 

The sub-pixel model assumed that the pixels were only 
composed of two parts: vegetation and non-vegetation 
cover, and the spectral information was only 
synthesized by the two groups. The proportion of their 
respective areas in the pixels was the weight of each 
factor, and the percentage of the vegetation covering the 
earth surface was FVC of the pixel. The expression of 
two pixel model was as follows: 

FVC = (NDVIi - NDVIsoil)/( NDVIveg- NDVIsoil) (1) 

Among them, NDVIi represented the pixel NDVI 
value of I time, NDVIveg was the pixel NDVI value of 
whole vegetation cover, and NDVIsoil was the NDVI 
value of naked soil pixel. 

For temperate steppe, temperate desert steppe and 
temperate desert, theoretically there was no uniform 
pixel full of vegetation cover, the maximum NDVI 
value of image would not be able to instead the 
NDVIveg, needing to calculate NDVIveg and NDVIsoil 
by the equation composed with two ground validation 
points at least within the region . For the two pixels a1 
and a2 in the region, their FVC was known as fvc1 and 
fvc2, and the formula (1) for these two pixels can be 
obtained: 

fvc1 = (NDVIa1 - NDVIsoil)/(NDVIveg - NDVIsoil) (2) 
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fvc2 = (NDVIa2 - NDVIsoil)/(NDVIveg - NDVIsoil) (3) 

Calculated the NDVIveg and NDVIsoil of above 
equation set, and obtained: 

NDVIsoil = (fvc2 * NDVIa1 – fvc1 * NDVIa2) / 
(fvc2- fvc1)                                                                   (4) 

NDVIveg = [(1 – fvc2) * NDVIa2 – (1 – fvc1) * 
NDVIa1)] / (fvc2- fvc1)                                                (5) 

After the analysis and calculation, we got the 
NDVIveg and NDVIsoil of each grassland type 
partition, which was shown in table 1. 

3.4 Linear Spectral Unmixing (LSU) 

The mixed spectrum refers to the integrated information 
of ground reflectance spectrum composed of vegetation 
spectrum and underlying surface spectrum (Li, 2013). 
By solving the proportion of each component in the 
mixed pixels, the proportion of the vegetation branch 
was the required FVC (Kenneth, 2000). 

Firstly, MNF (Minimum Noise Fraction) transform 
was applied to the image. The essence of MNF 
transform was two stacked principal component 
transform, which can effectively eliminate the noise. 
And then selected the bands without noise obtained 
from MNF transform to calculate the spectral purity 
index (PPI). The computation of PPI was achieved by 
projecting the N dimensional scatter to the random unit 
vector and recording the number of pixels falling into 
the unit vector, the more the number, the more likely the 
pixel was pure. Then selected the pixel whose PPI 
values were greater than a certain threshold as a training 
area. Observed the distribution of pixels in the training 
area in the space by the N dimensional visualization, 
and chose the corresponding endmembers, then 
obtained the average spectral curve of endmembers (Fig 
2). There were four endmembers obtained in this study: 
vegetation, bare sand, soil, forest. The spectral curve of 
endmembers were used as input parameters to 
decompose the mixed pixels of reflectance image, and 
the distribution of endmember and error were obtained. 
Fig 3 showed the vegetation endmember proportion 
distribution. Fig 4 was the error distribution map.  

Fig 2 Endmember reflectance curve diagram 

Fig 3 Proportion map of vegetation endmember 

Fig 4 RMS error distribution map of LSU 
Table 1 Parameters List of Sub-pixel Method 

Grassland type NDVIsoil NDVIveg Grassland type NDVIsoil NDVIveg 
Alpine meadow 0.11 0.823 Mountain meadow 0.3 0.843 
Improved grassland 0.166 0.86 Temperate meadow steppe 0.19 0.813 
Lowland meadow 0.173 0.85 Temperate desert 0.14 0.79 
Swamp 0.17 0.852 Temperate steppe 0.174 0.747 
Temperate desert steppe 0.167 0.71 
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3.5 Maximum Three Bands Gradient Difference 
(MTGD) 

As was known to all, the vegetation reflectance 
spectrum had a low reflection peak in the green band, 
and had a high reflection peak in the near infrared band. 
There was an absorption peak in red light band, while 
the soil spectrum changed approximately linearly in 
green to near infrared band. For the reflectance image, 
the slope of green to red reflectance and red to near 
infrared reflectance reached the maximum at the pixel 
full of vegetation coverage, while the slope of 
reflectance of soil pixels was the same in each band. In 
order to highlight the changes of soil reflectance curve 
caused by vegetation in a certain pixel, we introduce the 
concept of gradient difference d: 

d = (𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅
𝜆𝜆𝑖𝑖𝑖𝑖 − 𝜆𝜆𝑟𝑟

) – (𝑅𝑅𝑟𝑟 −𝑅𝑅𝑅𝑅
𝜆𝜆𝑟𝑟 − 𝜆𝜆𝑔𝑔

)   (6) 
Among them, Rir, Rr and Rg represent near infrared, red, 
green band reflectance, λir, λr and λg represent near 
infrared, red and green wavelengths. 

For any pixel of the image, its fractional vegetation 
coverage: 

    FVC = d / dmax (7) 
    dmax = max(d)    (8) 

For the GF-1 WFV data used in this study, the 
formula of FVC was: 
FVC = d / dmax 

 FVC =0  if  FVC < 0       (9) 
 FVC =1  if  FVC > 1     (10) 

  d = ( 𝑅𝑅𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑅𝑅
789 − 675

) – ( 𝑅𝑅𝑟𝑟 −𝑅𝑅𝑅𝑅
675 − 555

)     (11) 
Rir, Rr and Rg represent near infrared, red, green 

band reflectance of GF-1 WFV data. λir, λr and λg in 
formula (6)were replaced by the corresponding 
wavelengths of GF-1 WFV data. 

4 RESULTS AND ANALYSIS 

Through the above steps, the grassland FVC in the 
study area was estimated by four methods, and the 
results obtained by each method were shown in figure 
7- 10. 

4.1 Analysis of Calculation Results 

From Fig 5- 8, the results of FVC calculated by the four 
methods were consistent in the overall spatial 
distribution trend. The calculated by linear spectral 
unmixing method was obviously higher than the other 
three methods, the distribution range of high coverage 
area was also more than the other three methods. The 
average value of FVC calculated by the maximum three 
band gradient method is the lowest, and the low 
coverage area was the most widely distributed. 

Fig 5 FVC Distribution map by EM method 

Fig 6 FVC Distribution map by LSU method 

Fig 7 FVC Distribution map by PSP method 

Fig 8 FVC Distribution map by MTGD method 
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Table 2 Accuracy of Estimation Table 
Methods Pearson correlation RMSE (%) Average error (%) 
Empirical model 0.94 10.14 7.66 
Sub-pixel model 0.94 12.69 10.10 
Linear spectral unmixing 0.92 11.99 8.64 
Maximum three bands gradient difference 0.81 24.88 19.20 

From the section of estimation accuracy 
verification in next part of this paper, the estimation 
accuracy of FVC calculated by empirical model was the 
highest. In this part, this paper took empirical model 
results as the standard to study grassland FVC spatial 
distribution characteristics. 

The spatial distribution of grassland FVC in study 
area was characterized by high coverage areas were 
mainly concentrated in mountain meadow and Lowland 
Meadow of the eastern and southern, low coverage 
areas were mainly distributed in the temperate desert 
steppe and temperate desert located in the central 
region. The extreme high vegetation coverage area 
(>90%) accounted for 31.4% of the total grassland area 
of the study area, the medium high vegetation coverage 
area (70%-90%) accounted for 15.25%, while the high 
vegetation coverage area (50%-70%) accounted for 
15.3%. The total areas of three types above accounted 
for 61.95% of the total grassland area, while the area 
with extremely low vegetation coverage (<10%) 
accounted for only 7.62% of the total area. The situation 
of grassland vegetation coverage in the study area was 
dominated by the high coverage. 

4.2 Verification of Ground Sample Points Accuracy 

In this paper, Pearson correlation coefficient, 
RMSE (root mean square error) and error were used as 
evaluation contents of calculation accuracy. And the 
results of calculation accuracy were shown in Table 2. 

The Pearson correlation coefficient of the empirical 
model and the partition sub-pixel model was the 
highest, reaching 0.94, and the RMSE and the average 
error of empirical model method were the minimum, 

with the values of 10.14 and 7.66. In general, the 
empirical model method had the highest precision. 
Compared with the other three methods, the maximum 
three band gradient difference method has low 
calculation accuracy, and the RMSE was 24.88. The 
scatter degree was also the highest from the scatter 
diagram. 

4.3 Evaluation of Different Grassland Types Accuracy 

After comparing the overall accuracy of each method, 
the accuracy of the main grassland types was analyzed 
and compared to show the applicability of different 
methods to different grassland types. From the Table 3, 
it can be seen that the minimum RMSE was the 
temperate meadow steppe using empirical model, with 
a value of 5.88. For partition sub-pixel model, the 
highest accuracy type was temperate desert, and its 
RMSE was 7.43. For linear spectral unmixing method, 
the highest accuracy type was mountain meadow, with 
RMSE of 9.34. For the maximum three band gradient 
difference method, the highest precision was temperate 
desert, and the RMSE was 12.88. 

From the average value column of Table 3, it can be 
seen that the highest average precision was temperate 
desert, and the RMSE was 10.21. The RMSE of alpine 
meadow was 36.41, which was the maximum in the 
main grassland types. The reasons why the alpine 
meadow estimation accuracy was low were uncertain. 
Parts of accumulated snow region had been identified 
and masked in the data pretreatment, but due to the 
influence of complex terrain and snow the estimation 
error were still larger than other types of grassland.  

Table 3 Accuracy of Estimation Table 
      Methods 

Grassland 
type 

Empirical model Sub-pixel model 
Linear 
spectral 
unmixing 

Maximum 
three bands 
gradient 
difference 

Average 
value 

Alpine meadow 27.19 23.95 25.50 14.38 36.41 
Mountain meadow 7.84 11.48 9.34 22.90 12.89 
Temperate desert 9.01 7.43 11.50 12.88 10.21 
Temperate desert 
steppe 8.34 12.33 14.00 16.04 12.68 

Temperate 
meadow steppe 5.88 8.96 14.34 35.63 16.20 

Temperate steppe 8.27 13.74 12.39 30.43 16.21 
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5 CONCLUSION AND DISCUSSION 

In this paper, based on the domestic GF-1 WFV 16 
meter multi-spectral data, eliminating interference of 
snow and forest to grassland FVC, using the model 
method, partition sub-pixel method, linear spectral 
unmixing method and maximum three band gradient 
difference method,  we retrieved the grassland FVC of 
Ili prefecture. A method of Estimating grassland FVC 
based on partition sub-pixel model was proposed, and 
the maximum three band gradient difference method 
was tentatively applied to the inversion of grassland 
FVC. The accuracy of each method was analyzed by the 
accuracy test with ground verification points, and the 
calculation accuracy of the main grassland types was 
also analyzed. Among them, the accuracy of FVC 
estimated by empirical model was the highest, reaching 
89.86%. The maximum three band gradient difference 
method had the lowest estimation, which was 75.21%. 
For the accuracy of all grassland types, the temperate 
meadow steppe with empirical model was the highest, 
reaching 94.12%; the average precision was the highest 
in temperate desert, reaching 89.79%, the lowest was 
alpine meadow, the average accuracy was only 63.59%. 

Through the inversion of Ili grassland FVC, we 
found that the high coverage areas are mainly 
distributed in the mountain meadow and lowland 
meadow area of eastern and southern regions, low 
coverage area was mainly distributed in temperate 
desert steppe and temperate desert of central region. 
The overall situation of grassland FVC in the study area 
was dominated by high vegetation coverage (>50%). 

Due to the high quality of ground verification points 
used in this study, the empirical model method 
possessed enough measured values for modeling. For a 
certain region, the empirical model had certain 
advantages with substantial ground measured data, so 
its estimation accuracy was higher. For the maximum 
three band gradient method, because the method was 
affected by complex soil background and the image 
brightness of different phase, its estimation accuracy 
was low. And subsequent research will continue to 
improve and optimize this method. For alpine meadow, 
the reasons for low estimation accuracy may be that the 
areas were influenced by complex topography and 
snow cover. On the other hand, due to the difficult 
sampling in the alpine region, the accuracy and 
representativeness of ground verification point data 
were affected inevitably. 

GF-1 satellite data, as an important component of 
domestic high resolution satellite system, had good 
spatial resolution and multi-spectral characteristics, 
which can provide necessary supplement and 
continuation for MODIS and LANDSAT data. It is of 
great significance to continuously explore and evaluate 

the use effect of GF-1 satellite data for the development 
and improvement of high resolution satellite system. 
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ABSTRACT - Orthophoto is different from general maps. It has no distortion, and reflects affluent true and 
objective information. The orthophoto not only contains geometric accuracy of map, but also has the features of 
remote sensing image. Thus, orthophoto has been applied in different fields, such as preventing disaster, planning 
public facilities construction, and so on. How to quickly acquire the ortho-rectified remote sensing image has 
become an urgently issue. However, conventional ortho-rectification techniques for remotely sensed imagery, 
which are performed on the basis of ground image processing platform, have been unable to meet the timeliness 
requirements. The speed of image processing can’t catch up with the speed of obtaining remote sensing images 
because of the limitation of image processing technology. Conventionally, to ortho-rectify the acquired images, 
these images need to be sent back to the ground perform systems. Moreover, the traditional image processing 
systems, such as ENVI and ERDAS IMAGINE, are serial instruction systems based on desk computer. Thus, these 
image processing systems hardly meet the demand in response of the time-critical disasters, which makes the 
abundant image resources be not fully used. To solve this problem, this paper presents the research on ortho-
rectification technique based on field programmable gate array (FPGA) platform, which can be implemented on-
board and spaceborne for a real-time processing. Through comparing the correction accuracy and the time 
consuming of traditional ortho-rectification method with the proposed method, it shows that the proposed FPGA-
based on-board ortho-rectification has great advantage over improving the image ortho-rectification speed and 
can reach the requirements of correction accuracy. 

1 INTRODUCTION 

Ortho-rectification is an image correction method, 
which aims to remove the geometric distortion and 
obtain the correct geographic coordinates of the 
remotely sensed image. However, the technology for 
processing remotely sensed (RS) images at a real-time 
manner is facing a bottleneck due to the limitation of 
image processing technology. The traditional image 
processing systems (such as ENVI and ERDAS 
IMAGINE) are serial instruction systems based on 
personal computer. However, since the demand in 
response of the time-critical disasters, the traditional 
method cannot meet this demand.  

An effective solution for real-time processing of 
image ortho-rectification is to perform the ortho-
rectification on hardware. In recent several decades, 
field programmable gate array (FPGA) has been widely 
used in image processing filed, which make the real-
time processing come true. For example, Klupsch et al. 
(2002) proposed a substantial speed up of image 
processing methods on 2D and 3D images making use 
of FPGA technology. The proposed method can enable 
the use of those flexible image processing methods in 
application s where real time performance is 
indispensable. Qu et al. (2013) designed a real-time 

image system based on FPGA and multi-DSP (digital 
signal platform), which solved complex algorithm that 
was difficult to achieve real-time processing of 
multiband image fusion within large amount of data. 
Greisen et al. (2011) presented a real-time processing 
platform for high-definition stereo video. In the hybrid 
FPGA-GPU-CPU platform, a high-density FPGA was 
used to perform the low-level image processing tasks 
and to carry out radial undistortion, image rectification, 
and disparity estimation. Tomasi et al. (2012) proposed 
a real-time implementation of stereo algorithm on 
FPGA, which was a phase-based model that allowed 
computation with sub-pixel accuracy. Colodro-Conde 
et al. (2014) presented an evaluation of area-based 
algorithms used for calculating distance in stereoscopic 
vision system, their hardware architectures for 
implementation on FPGA and the cost of their 
accuracies in terms of FPGA hardware resources. 
Abdul Waheed Malik et al. (2014) described a hardware 
architecture for real-time image component labelling 
and the computation of image component feature 
descriptors. The developed architecture could process 
390 video frames per second of size 640 × 480 pixels 
and the dynamic power consumption was 13mW at 86 
frames per second. 

  460

Recent Advances in Quantitative Remote Sensing - RAQRS 2017



To our knowledge, the hardware system for image 
correction is mainly about the field of video image real-
time correction, stereopair real-time correction, and so 
on. There is few research on RS image 
orthorectification which has high requirement in RS 
community. Thus, this paper develops a hardware 
platform based on FPGA for RS image ortho-
rectification. Through decomposing the ortho-
rectification algorithm, several basic algorithms of 
image processing can be obtained, which can reduce the 
complexity of algorithm and reach the purpose of real-
time correction. 

2 FPGA-BASED IMPLEMENTATION FOR ORTHO-
RECTIFICATION ALGORITHM 

2.1 A Brief Review of the Collinearity Condition 
Equation 

In recent decades, a lots ortho-rectification methods 
have been proposed, such as (Yang et al., 2013; 
Reinartz et al., 2011; Aguilar et al., 2013). In this paper, 
the collinearity condition equation (CCE) is chosen to 
implement the ortho-rectification of RS images, 
according to the type of image and the covered area. 
The CCE is suitable for various resolutions of images 
and the situation where the parameters of orbit are 
known or unknown. The indirect method of CCE is 
used to perform the ortho-rectification of RS images. 
The processes of the indirect method based on CCE can 
be divided into the following four parts: 
(1) Calculate the geodetic coordinates for pixels in the 
orthophoto: 

0

o 0

(I 0.5)

(J 0.5)

= + • + •∆
 = + • + •∆

geo

ge

X X S x
Y Y S y (1) 

where (Xgeo, Ygeo) are the geodetic coordinates of a pixel 
in the orthophoto; (X0, Y0) are the geodetic coordinates 
of marginal point on the left bottom of the orthophoto; 
S is the scale denominator; (I, J) are the column and row 
coordinates of a pixel in the orthophoto; (Δx, Δy) are 
the sampling interval of column and row. 
(2) Calculate the image plane coordinates: 

1 e 1 1
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3 3 3
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where (u, v) are the image plane coordinates of a pixel 
of orthophoto in the original image; (x0, y0, f) are the 
interior orientation elements; (Xe, Ye, Ze) are the exterior 
orientation elements; oh, ph, qh (h=1, 2, 3) are the 
coefficients of rotation matrix, which can be calculated 
by rotational angles (φ, ω, and κ) along the x-, y- and z-
axis; Zgeo can be got by digital elevation model (DEM). 
(3) Calculate scanning coordinates: 

1 1 1

2 2 2

′       
= +      ′      

a b ci u
a b cj v  (3) 

where (i', j') are the scanning coordinates; at, bt, and ct 
(t=1, 2) are the coefficients of affine transformation.  
(4) Calculate gray-scale for pixels in the orthophoto. 
Since the obtained scanning coordinates may not only 
be in the center of a pixel, a gray-scale interpolation 
process is required. In this paper, the bilinear 
interpolation method is applied. 

( , ) (1 )(1 ) ( , ) (1 ) ( , 1)
(1 ) ( 1, ) ( 1, 1)

+ + = − − + − +
+ − + + + +

f i r j s r s f i j r sf i j
r s f i j rsf i j  (4) 

where i and j are nonnegative integers; r and s are in the 
range of (0, 1); and f(i, j) are gray values. 

2.2 FPGA-based Modelling for CCE Model 

By analysing the structurer of CCE algorithm and 
optimizing it, an FPGA-based hardware architecture for 
implementing CCE algorithm was designed. As shown 
in Figure 1, the designed architecture can be divided 
into three parts: the first part is the input data model; the 
second part is the coordinate transformation model; and 
the third part is the interpolation model. In this paper, a 
pipe-line structure is applied, which can ensure that data 
are processed in real time. The details of these models 
are described as follows. 

Figure 1. The designed architecture based on FPGA 
for implementing CCE algorithm. GeoC: geodetic 
coordinate; ImgC: image plane coordinate; SanC: 
scanning coordinate. 

(1) Input data model. 
The raw image data and parameters (such as interior 

orientation elements, exterior orientation elements, and 
affine transformation coefficients) are stored in the 
random-access memory (RAM). They are sent to 
transformation model and interpolation model in the 
same clock cycle, when the enable signal is being 
received. 

(2) Transformation model. 
i) The transformation from geodetic coordinate to

image plane coordinate. 
According to Eq. (2), it can be divided into the 

following three parts. The parallel computation is 
implement in each parts. The first part is  

1 2 3; ;= − = − = −geo e geo e geo eP X X P Y Y P Z Z  (5) 
The second part is 

4 1 1 1 2 1 3

5 2 1 2 2 2 3

6 3 1 3 2 3 3

= + +
= + +
= + +

P o P p P q P
P o P p P q P
P o P p P q P

(6) 

The third part is 
7 4 6 8 5 6/ ; /= =P P P P P P (7) 
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According to Eq. (5), (6), and (7), the hardware 
implementation architecture can be designed as the 
following Figure 2. 

Figure 2. The hardware architecture for the 
transformation from geodetic coordinate to image plane 
coordinate. 

ii) The transformation from image plane coordinate
to scanning coordinate. 

To implement the parallel computation for Eq. (3), 
it can be divided into two parts: the first part is  

1 1 2 2;g A B g A B= =  (8) 
where A1=[a1, b1], A1=[a2, b2], and B=[u, v]T. 
The second part is: 

1 1 2 2' ; '= + = +i g c j g c  (9) 
According to Eq. (8) and (9), the hardware 

implementation architecture can be designed as the 
following Figure 3. 

Figure 3. The hardware architecture for the 
transformation from image plane coordinate to 
scanning coordinate. 

(3) Interpolation model. 
According to Eq. (4), it can be rewritten as the 

following Eq. (10). 
11 1 2 1

12 3 4 3

11 12 11

( )
( )
( )

= + −
 = + −
 = + −




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D D s D D
D D s D D
D D r D D
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where D1 to D4 are the values of gray-scale of input 
image; D11 and D12 are the intermediate variables; Dout 
is the interpolation result; r=|i′-INT(i′)| and s=|j′-
INT(j′)| are the weights. 

According to Eq. (8) and (9), the hardware 
implementation architecture can be designed as the 
following Figure 4. 

Figure 4. The hardware architecture for collinearity 
interpolation algorithm. 

3 EXPERIMENT 

3.1 Hardware, Software, and Data 

In this paper, the AC701 Evaluation Kit of Artix-7 
series produced by Xilinx company is used. The version 
of FPGA is Xilinx Artix-7 XC7A200T 
FBG676ACX1349 D4658436A ZC. The design tool is 
ISE 4.7 and System Generator. The simulation tool is 
ModelSim SE10.1a. FPGA Evaluation Kit can be 
connected with computer by using the UART and 
JTAG ports. 

The data is acquired from an ERDAS IMAGINE 
example dataset, i.e., ps_napp.img (2294 × 2294) (see 
Figure 5) and ps_dem.img (see Figure 6). 

Figure 5. The original aerial image covering the study 
area (from ERDAS IMAGINE 9.2). 

The ortho-rectified results by the proposed FPGA-
based platform and PC-based platform are shown in 
Figure 7. 

Table 1. Statistics of difference value of geodetic coordinate. 
# Max Min Mean Standard Deviation 

X coordinates 1.31 m 0.41 m 1.11 m 0.14 m 
Y coordinates 1.94 m 0.80 m 1.59 m 0.38 m 
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Figure 6. Digital elevation model (DEM) covering the 
study area (from ERDAS IMAGINE 9.2). 

Figure 7. The ortho-rectified results by (a) the PC-based 
platform; and (b) the proposed FPGA-based platform. 

3.2 Analysis 

To validate the rectified accuracy of the proposed 
FPGA-based platform, ninety check points were 
selected. Through computing the differences of 
coordinates obtained by the PC-based platform and the 
proposed FPGA-based platform, some statistics (such 
as maximum value, minimum value, standard deviation, 
and mean of difference value) are calculated (see Tab.1) 

Additionally, the consuming time of processing 
between the PC-based platform and the proposed 
FPGA-based platform. The total consuming time of the 
proposed FPGA-based platform and the PC-based 
platform are 0.47 seconds and 2.04 seconds, 
respectively. The total time decreases by about 77% 
using the proposed FPGA-based platform.  

4 CONCLUSION 

In this paper, an FPGA-based ortho-rectification 
method is proposed, and the data acquired from an 
ERDAS IMAGINE example dataset are used to 
validate the proposed method. Compared to traditional 
method based on PC platform, the ortho-rectification 
accuracy of our method can meet the requirement of 
correction, and the total consuming time of ortho-
rectification decreases by 77%. This research can 
quickly provide reliable results for ortho-rectification. 
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Abstract: Land surface temperature (LST) is a key parameter in the interaction of the land-atmosphere system. 
Nevertheless, on the regional scale, the actual weather is cloudy for half a year in most regions. Therefore, how 
to get all-weather LST from thermal-infrared remote sensing data is necessary and urgent. In this paper, an 
approach with multi-temporal and spatial neighboring-pixel in combination with diurnal solar radiation and 
surface temperature evolution is proposed to estimate daytime all-weather LST using FY-2D data. Evaluation of 
the accuracy of the algorithm is performed against the simulated data and the in situ measurements. The root 
mean square error (RMSE) between the actual and estimated LSTs under cloud-free condition is approximately 
1.84 K for the simulated data, while the RMSE of LST under cloud-free condition varies from 3.42 to 5.1 K for 
the in situ measurement, and RMSE of LST under cloudy sky is approximately 7 K. The results indicate that the 
new algorithm is practical for retrieving the daytime all-weather LST at high-temporal resolution without any 
auxiliary field measurement, although some uncertainties exist. 

1 Introduction 

Land surface temperature (LST) is one of the most 
important variables in monitoring surface energy and 
global climate change, and it controls many biological 
and physical processes between atmosphere and land. 

Due to the characteristic of the remote sensing, 
such as simultaneous observation, speediness and 
comprehensiveness, the technology is the only means 
to observe LST over the entire globe with some 
temporal resolution and spatial coverage. Because of 
the simplicity and practicality of the general split 
window method (GSW), currently, LST is obtained 
from thermal infrared remote sensing data. But the 
method is only used to estimate LST under the cloud-
free condition (Tclear) and many products only supply 
the LST for clear pixels while invalid value was filled 
for cloudy pixels. However, on the regional scale, the 
actual weather is cloudy for half a year in most 
regions (Duan et al, 2017). Therefore, how to get all-
weather LST is necessary and urgent.  

At present, some methods have been developed to 
estimate all-weather daytime LST. Due to the 
penetrability of the microwave, LST under the 
cloudy-sky condition (Tcloud) is retrieved using the 
data. Many researchers proposed some methods to 
estimate LST, especially under the cloudy-sky 
condition (Shwetha and Kumar, 2016), but the 
accuracy is poor.  

Most methods are used to estimate LST using 
thermal infrared data. In order to obtain the real LST 

under the cloudy-sky condition, Jin et al. (2000) 
proposed a ‘spatial neighboring-pixel’ approach to 
estimate the Tcloud from polar-orbiting satellite data, in 
which Tcloud is interpolated from LST observations of 
surrounding Tclear pixels within 100 to 300 km or 
within two days based on the surface energy balance. 
However, the method is limited if the clear and 
cloudy pixels are not homogeneous or the 
atmospheric conditions are non-uniform. To 
overcome this deficiency, a method is proposed using 
temporal-based Tclear to estimate Tcloud (Lu et al., 
2011). At the same time, the result is also compared 
with the LST estimated using the spatial-based 
neighboring-pixel method. The result shows that the 
temporal ‘neighboring-pixel’ method is better than a 
spatial approach, and the absolute error is within 1.5 
K. However, some disadvantages of this approach are 
inevitable. First, the method is proposed based on the 
same or similar Tclear of temporal neighboring-pixel. 
In fact, because the difference of Tclear at two times is 
obvious especially for the longer time interval, large 
estimation errors of Tcloud will be produced if the time 
interval is longer between the time that cloud appears 
and that the sky is clear. Second, some errors can be 
caused due to the inconsistence that Tcloud is 
interpolated from Tclear of temporally neighboring 
pixels, whereas the difference in net solar shortwave 
radiation (NSSR) is obtained from spatially 
neighboring pixels. Third, auxiliary field 
measurements like solar radiation need to be input in 
the method. To avoid the weakness, Yu et al. (2014) 
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proposed a spatially and temporally neighboring-pixel 
method to reconstruct cloud-contaminated pixels 
using daily MODIS LST products based on the 
consideration of the surface energy balance. 
Nevertheless, ground-based measurements are often 
needed to calculate Tcloud, which makes it difficult to 
implement for the fewer observation regions. In order 
to reduce the input of the in-situ measurement data, 
Zhang et al. (2015) proposed a method to estimate 
Tcloud based on a one-dimensional heat transfer 
equation and the evolution of daily temperatures and 
NSSR. The method only uses multi-temporal satellite 
data to obtain Tcloud, but it is invalid when Tclear on 
one day is less than six observations.  

To reduce the dependence on auxiliary field 
measurements, this study aims to develop an 
improved flexible and effective method to retrieve all-
weather daytime LST. The advantage of the improved 
approach is that it can generate more accurate LST for 
all the pixels, without depending on ground-based 
ancillary data and the amount of Tclear on one day and 
the method can provide LST at high-temporal 
resolution. This approach could be valuable in 
meteorological and hydrological studies and 
applications. In the following sections, the 
methodology is firstly put forward in section 2; next, 
the data including simulated data, satellite data and 
field measurement are described in section 3; then, 
the method’s performance is demonstrated based on 
both simulated and field measurement in section 4; 
Finally, the conclusion is drawn in section 5. 

2 Methodology 

All-weather daytime LST is retrieved with two steps: 
one step is to estimate the Tclear using GSW method; 
the other step is to estimate the Tcloud using multi-
temporal pixel or spatial neighboring-pixel method in 
combination with the diurnal solar radiation and the 
surface temperature evolution.  

2.1. Estimation of LST under the cloud-free condition 

Due to the simplicity and operability of GSW method, 
LST is retrieved using the GSW method for most 
satellite data including polar-orbiting and 
geostationary satellite. Considering that onboard S-
VISSR sensor of FY-2D has two adjacent thermal 
infra-red channels, LST under the cloud-free 
condition is estimated using GSW algorithm proposed 
by Sobrino et al.(1999). The specific formula can be 
expressed as following: 

εε ∆+−+−+−++= 54
2

3210 )1()()( aaTTaTTaTaaT ijijiis  (1) 

where Ts is LST, Ti and Tj are the top of the 
atmosphere (TOA) brightness temperatures measured 
in channels i (11.0µm) and j (12.0 µm), respectively, 

Δε=(εi-εj)/2, εi and εj are the land surface emissivities 
(LSEs) in channels i and j, respectively. a0-a5 are 
unknown coefficients which will be obtained through 
statistical regression method from simulated data 
mentioned in section 3.1. 

2.2. Estimation of LST under the cloudy-sky 
condition 

If the pixel is overcast by cloud, the LST cannot be 
obtained through GSW method. LST under the 
cloudy-sky condition can be derived using multi-
temporal pixel method in combination with diurnal 
solar radiation and surface temperature evolution if 
the clear-sky LSTs observations on one day are more 
than 6 and the clear-sky LSTs observations in the 
morning are more than 2 (Zhang et al. 2015b). 
However, if the conditions cannot be met, LST under 
cloudy-sky condition should be estimated using 
spatial neighboring-pixel method in combination with 
diurnal solar radiation and surface temperature 
evolution.  

2.2.1. Estimation of cloudy LST using multi-
temporal pixel method 
Assuming the variation in the LST is caused by 
variations in insolation (ΔS), Zhang et al. (2015b) 
proposed a method to calculate the LST under 
cloudy-sky condition. 

Tcloud=Tclear-10*ΔS/P (2) 

where Tcloud is the LST under cloudy–sky 
condition, Tclear is the hypothetic LST under cloud-
free condition at the same time, and ΔS is the 
difference between a hypothetic clear-sky NSSR and 
real NSSR under cloudy–sky condition at the same 
time, and P represents the resistance to a temperature 
change in the upper few centimeters of the surface 
throughout the day. The estimation of ΔS and P are 
described in detail by Zhang (2015b) if there are more 
than six observations including Tclear and NSSR (at 
least include two observations in the morning) in one 
day can be obtained. 

If the condition cannot be met, Tcloud cannot be 
obtained using this method. At this time, a novel 
algorithm which uses spatial neighboring-pixel 
method to estimate Tcloud in combination with diurnal 
solar radiation and surface temperature evolution is 
proposed.  

2.2.2. Estimation of cloudy LST using spatial 
neighboring-pixel method  
If there are less than six LST observations under a 
clear sky in one day or less than two clear-sky LST 
observations in the morning, retrievals of LST under 
cloudy condition need to use spatial neighboring-
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pixel method in combination with diurnal solar 
radiation and surface temperature evolution. The 
specific process is as follows: first, spatial 
neighboring-pixels which met the conditions (more 
than six Tclear observations in one day and more than 
two Tclear observations in the morning) are searched 
within 50*50 windows (within 250 km); then, the 
distance between estimated pixel and searched pixel 
is calculated using Eq. (3), and the nearest pixel 
which met the condition is selected as spatial 
neighboring-pixel; third, assuming that the 
coefficients of diurnal temperature cycle (DTC) for 
the estimated pixel are the same as that for the spatial 
neighboring-pixel, and LST at any time in one day for 
the estimated pixel can be obtained to be regarded as 
hypothetic clear-sky LST; at the same time, the 
coefficient in the expression of TOA solar irradiation 
is related to the declination and longitude just as 
shown in Eq. (4), so, the coefficients in the diurnal 
solar cycle (DSC) model fitted by the spatial 
neighboring-pixel clear-sky NSSR observations are 
adjusted as the actual coefficients of estimated pixel 
using the declination and longitude which is shown in 
Eq. (5), thereby, the hypothetic clear-sky NSSR at any 
time in one day for the estimated pixel can be 
obtained; meanwhile, assuming the P of the estimated 
pixel is the same as that of the spatial neighboring-
pixel; last, LST can be estimated with Eq. (2). 

2 2
, ( ) ( )i j i j i jD x x y y= − + −

(3) 

where x and y are the spatial coordinate of a pixel, i 
and j are the estimated and spatial neighboring-pixel 
respectively. 

(1 ) cos( ) (1 ) (cos( ) cos( ) cos( ) sin( )sin( ))s sNSSR A S Zn A S wtτ τ λ δ λ δ= − = − + (4) 

where S is the solar constant, τ is the transmission, A 
is the broadband albedo, Zn is the solar zenith, λ is 
the latitude, δs is the solar declination, NSSR is the 
net shortwave solar radiation (W/m2). 
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where Smin_near and Smax_near represent the Smin and 
Smax fitted by the spatial neighboring-pixels NSSR 
observations under cloud-free sky, respectively, λest 
and δest represent the longitude and declination of 
estimated pixels respectively, λnear and δnear represent 
the longitude and declination of the spatial 
neighboring-pixels. 

3 Data 

3.1. Simulated data 

For clear pixels, the popular method to estimate LST 
is the GSW method (Wan and Dozier. 1996). The 
coefficients of GSW should be estimated using bright 
temperature (BT) and corresponding LST under 
various kind of atmospheric and surface conditions. 
So far, there is no available database of field LST 
measurement in coincidence with FY-2D. Therefore, 
it is more effective to make radiative transfer 
simulation for wide ranges of atmospheric and 
surface conditions. In this work, the top of the 
atmosphere (TOA) radiance and the atmospheric 
parameters (Latm↑, Latm↓, τ) ranging from 0.3 to 5 
µm and 8.5 to 14.5 µm at an interval of 1 µm were 
simulated using atmospheric radiative transfer model 
(MODTRAN 5.2) under various kinds of atmospheric 
conditions obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) 
reanalysis and nine types of surface cover including 
soil, vegetation canopy, grassland, wetland, city, 
desert and ocean surface, new snow and sea ice. In 
addition, the view zenith angle (VZA) ranging from 
0° to 60° at an interval of 1°, relative azimuth angle 
(RAA) ranging from 0° to 120° at an interval of 60° 
and the solar zenith angle (SZA) ranging from 0° to 
60° at an interval of 10° and atmospheric water 
vertical content (WVC) ranging from 0 to 6.5 g/cm2 
at an interval of 1 g/cm2 are all inputted into the 
MODTRAN5 as input parameters. In order to make 
the simulation more representatives, according to the 
atmospheric temperature Ta in the first boundary 
layer, LST are varied in a wide range from Ta-5K to 
Ta+15K. Moreover, according to the character of the 
most land covers, the averaged emissivity ranges 
from 0.90 to 1.0 with a step of 0.01 and the emissivity 
difference ranges from -0.01 to 0.01 with a step of 
0.005. 

Then, the TOA radiance and the atmospheric 
parameters (Latm↑, Latm↓, τ) corresponding to the 
upgraded Stretched-Visible and Infrared Spin-Scan 
Radiometer (S-VISSR) onboard FY-2D were obtained 
with the appropriate thermal infrared and VIS channel 
response function of the S-VISSR onboard FY-2D. 
Last, for given LST, in combination with the 
atmospheric parameters (Latm↑, Latm↓, τ) obtained 
from the output result of MODTRAN 5.2 and the 
emissivity of two thermal infrared channels, the 
channel brightness temperature (BT) at the TOA can 
be determined with the inverse of Planck’s law. So 
far, the database including LST and BT corresponding 
to different WVC, view zenith angle, solar zenith 
angle, emissivity, and surface condition is set up and 
4755135 different situations are included in the 
database. 
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3.2. Satellite data 

3.2.1. MODIS data 
MODIS (Moderate Resolution Imaging Spectro-
radiometer) is a key instrument carried on the Terra 
and Aqua satellites. Terra's orbit around the Earth is 
timed so that it passes from north to south across the 
equator in the morning, while Aqua passes south to 
north over the equator in the afternoon. 

MODIS data products have been available and 
widely used in many studies and applications since 
2000. In the study, the required MODIS data products 
include the MODIS/Aqua LST Daily L3 Global 1 km 
Grid product (MOD11A, Collection 6) which was 
used to provide LST and daily emissivity and land use 
product (MCD12) which is used to discriminate 
different land. In order to match MOD11A product 
and FY-2D data in a consistent system, the MODIS 
Re-projection Tool (MRT) is used to re-project 
MOD11A product and MCD12 from a sinusoidal 
projection to a geographical projection. 

3.2.2. FY-2D data 
In this study, FY-2D data downloaded from the China 
Meteorological website 
(http://satellite.cma.gov.cn/PortalSite/Data/Satellite.as
px) was used to evaluate the proposed work-frame. 
FY-2D, a geostationary meteorological satellite 
developed by Shanghai Academy of Space Flight 
Technology and China Academy of Space Technology 
was launched on 8, December 2006 and is located 
above the Equator at longitude 86.5° E and 35,800 
km away. The S-VISSR as the main sensor are loaded 
on the satellite, and it can acquire one full disc image 
covering the Earth surface from 60° N to 60° S in 
latitude and from 45° E to 165° E in longitude per 
hour and 30 min per acquisition for flood season. S-
VISSR consists of 5 channels, including a VIS 
channel and 4 infrared channels. Latitude, longitude, 
VZA, SZA, and RAA besides radiances of VIS and 
thermal infrared channel were also provided by the 
downloaded disc image file. Considering the method 
is different for the clear and cloud pixels, cloud 
products of FY-2D were also used to discriminate the 
different weather conditions. Meanwhile, geolocation 
files are used to provide the latitude and longitude for 
each pixel.  

3.3. Ground data 

Field measurements were collected to evaluate the 
proposed method from Taiyuan Xiaodian 
meteorological station (112°33′ E, 37°47′ N) with the 
elevation of 780m and Changwu ecological station 
(107°40′E, 35°12′N) with the elevation of 1300m, 
which is located in Shaanxi Province and joined the 
Chinese Ecosystem Research Network in 1991. In 

this study, LST data are detected using PTB100 and 
collected at 1minute intervals from March 1 to April 
26, 2012. In situ LST data corresponding to the image 
time of FY-2D are selected for validation. 

4 Results and Validation 

4.1 Retrieval of LST under clear conditions 

As is shown in Eq. (1), LSEs are required as a model 
input in GSW algorithm. In the following, the method 
to obtain LSEs is described. 

LSEs in channels IR1 and IR2 of S-VISSR can be 
obtained from the daily MODIS LST product 
(MOD11A1) at 1 km resolution. Due to the slight 
difference between the two split-window channels of 
MODIS and S-VISSR, the relationships between 
MODIS and S-VISSR on LSEs are proposed using 
the spectral databases from the Johns Hopkins 
University (JHU) (http://speclib.jpl.nasa.gov/), which 
were shown in Eqs. (6) and (7). 

εIR1= 0.0068 + 0.9942ε31 (6) 

εIR2 = 0.0042 + 0.9981ε32 (7) 

Due to the difference of spatial resolution of S-
VISSR and the MODIS, they should be matched 
accurately. First, LSEs from MOD11A1 were 
aggregated into WGS 84 (World Geodetic System 
1984) coordinate system with the spatial resolution of 
5KM using weighed averaged method. Then, LSEs 
were extracted using spatial nearest neighboring 
method according to the geolocation from FY-2D. 

In order to improve the accuracy of estimation of 
LST, WVC is divided into some sub-ranges ranging 
from 0 to 6.5 g/cm2 at an interval of 1 g/cm2 while 
determining the a0-a5 coefficients in Eq. (1). The 
retrieval of WVC using three methods is compared by 
Zhang et al. (2015a) with MSG2-SEVIRI Thermal-IR 
data and the better result is got from split window co-
variance ratio method. So, WVC is obtained using 
this method in this study assuming that the ratio of 
two adjacent thermal infra-red channel emissitivities 
equals to 1. 

The determination of coefficients a0-a5 is 
performed after dividing the WVC into six sub-ranges 
with an overlap of 0.5 g/cm2: [0, 1.5], [1.0, 2.5], [2.0, 
3.5], [3.0, 4.5], [4.0, 5.5], and [5.0, 6.5] g/cm2. 
Meanwhile, a0-a5 is interpolated according to θ at an 
interval 1o. Tclear is calculated using the GSW 
algorithm with the coefficients corresponding to kinds 
of the sub-range WVC under view zenith angle. The 
result shows that the RMSE between the actual Tclear 
and estimated Tclear is 1.82K with a mean error of 
1.43K for all conditions. Meanwhile, the errors 
between the actual and estimated LST is distributed 
within ±6 K. Due to errors in the parameters inputted 
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in the algorithm cause the increasing of estimated 
Tclear, in the following, Tclear errors caused by the 
uncertainty in instrumental noises (NEΔT) and LSEs 
(i.e. sensitivity analysis) are performed. 

An error from -0.5 to 0.5 K at an interval of 0.1 K 
is respectively added to the TOA brightness 
temperatures Ti and Tj, the RMSE of LST under kinds 
of θ is obtained and the results show that 1) The 
RMSE of actual and estimated LST is increasing with 
the increase of the absolute (δTi-δTj); 2) The RMSE 
reached minimums when the WVC ranges from 2 to 
3.5 g/cm2, whereas the RMSE reached maximums 
when the WVC ranges from 4 to 5.5 g/cm2, and the 
RMSE reached 8 K when (δTi-δTj) is ±1 K; 3) The 
RMSE is all less than 4K when the WVC is less than 
4.5 g/cm2; 4) The RMSE is less than 4 K when the 
absolute (δTi-δTj) is less 0.4 K. 

Similarly, an error from -0.01 to 0.01 K at an 
interval of 0.005 is respectively added to LSEs (εi and 
εj), the RMSE of LST is obtained and results show 
that RMSE of actual and estimated LST are all less 
than 0.5 K, and a conclusion that the sensitivity 
caused by the uncertainty in LSEs is unobvious can 
be drawn. 

In addition, the in situ LST measurement at two 
sites (Taiyuan Xiaodian and Changwu station) is used 
to evaluate the accuracy of LST under the cloud-free 
conditions. The RMSEs of measured LST and 
estimated LST are 3.42 and 5.12 K with a mean error 
(ME) of 0.004 and 3.03 K, respectively for Taiyuan 
Xiaodian and Changwu station, which is shown in 
Figs. (1) and (2). Three reasons can explain the 
relatively large RMSE values associated with Tclear. 
One reason is due to the spatial scale inconsistency 
between the all-weather LST and the in situ LST 
measurements. The in situ LST were measured within 
a very small area (4m*4m), while the satellite 
measurement was collected in a very large region 
(nearly 5 km * 5 km) and reflected an integrated 
response over a heterogeneous area. The second 
reason is the uncertainty of the measurement and that 
of GSW algorithm caused by the errors of the input 
parameters. Just as shown in sensitivities analysis, the 
RMSE of LST reached 8K when the difference of NE
ΔT between IR1 and IR2 channel is ±1 K for WVC 
more than 4 g/cm2. The last reason is associated with 
the quality of FY-2D cloud product. The misjudgment 
of cloud will affect the right choice of the algorithm. 
4.2 Estimation of LST under cloudy conditions 

Figs. (1) and (2) show a comparison of the 
estimated daytime all-weather LST using the 
proposed method and the daytime all-weather LST 
measured at the Changwu Ecosystem experimental 
station and Taiyuan Xiaodian meteorological 
observation station from March 1 to April 26 in 2012. 

The scatter plot shows that the RMSE is 7.59 K and 
7.87 K with a mean error of -3.84K and 3.15K under 
cloudy condition, respectively for Taiyuan and 
Changwu station. Compared to the results presented 
in previous studies, the error appears relative larger, 
such as, the errors of LST under cloudy sky obtained 
using spatial neighboring-pixel method proposed by 
Jin et al. (2000) are 2K for most situations and some 
errors reached 8-10K. But the result is performed 
based on the simulated data and shows a better.  

Figure 1. Comparison of LST estimated using 
proposed method and in situ LST from Taiyuan 

experiment station 

Figure 2. Comparison of LST estimated using 
proposed method and in situ LST from Changwu 

experiment station 

The bias of LST under the cloudy sky is mainly 
caused by four reasons. The first reason is the spatial 
scale inconsistency between the estimated LST and in 
situ LST measurements which the spatial resolution 
of 4 m for in situ LST measurement and the spatial 
resolution of 5 km for the estimated LST in 
evaluating the Tclear. The second reason is the 
uncertainty of some parameters (Tclear, NSSR, WVC, 
LSEs, θ etc.) input in the proposed algorithm. The 
third reason is the uncertainty in the proposed 
algorithm, such as some assumption in the algorithm 
(e. g. the parameters of DTC of estimated pixel are 
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the same as that of the spatial neighboring-pixel. In 
fact, due to the heterogeneity of surface and 
atmospheric conditions, the parameters will display 
difference and it will yield more uncertainty in 
estimating Tcloud). The last reason is associated with 
the quality of FY-2D cloud product. The choice of 
algorithm depends on the cloudy judgment and 
cloudy misjudgment will decrease the accuracy of 
Tcloud. In addition, uncertainty of field measurement 
also affects the result. 

5 Conclusion 

With increasingly more geostationary 
meteorological satellites in operation, it is possible 
and realized to obtain all-weather LST at high-
temporal resolution using multi-temporal satellite 
data without any auxiliary field measurement. In this 
paper, we proposed a method to estimate daytime all-
weather LST by combining diurnal solar radiation 
with diurnal surface temperatures under different 
conditions without any auxiliary field measurement. 
The method consists of two steps, including the 
estimation of LST under cloud-free sky using general 
split window method and the estimation of LST under 
cloudy sky using multi-temporal data in combination 
with spatial neighboring-pixel method. Data collected 
S-VISSR sensor aboard the FY-2D was used as an 
example data for input into the proposed algorithm. 

Considering the retrieval of Tcloud is based on 
the Tclear, in this study, first, the GSW method is 
used to obtain Tclear, and the coefficients of the GSW 
for FY-2D data is calculated using simulated data 
obtained from atmospheric radiative transfer model 
(MODTRAN 5.2) under various kinds of atmospheric 
and surface condition. The RMSE between the actual 
Tclear and estimated Tclear is 1.82K with a mean error 
of 1.43K for all the condition and most scatters are 
concentrated on [-1,1] for the simulated data. 
Meanwhile, in situ measurements from Taiyuan 
Xiaodian and Changwu station were used to evaluate 
the accuracy of the algorithm under the cloudy-free 
condition. The RMSE of LST under the cloudy-free 
condition varies from 3.42 to 5.12 K with a mean 
errors varying from 0.004 to 3.02K. At the same time, 
the RMSEs of LST under cloud condition are 
calculated and the value varies from 7.59 to 7.87 K 
with the mean errors varying from -3.84 to 3.15 K. 
Considering the spatial scale inconsistency between 
the LST from satellite data and the in situ 
measurements and the sensitivity to instrumental 
noises, the error can be accepted and the proposed 
method can be used to retrieve the daytime all-
weather LST at high-temporal resolution using 
geostationary meteorological satellite data without 
any auxiliary field measurement. The availability of 

all-weather LST at a high temporal resolution would 
benefit many research field including climate change, 
soil moisture and evapotranspiration etc. 

Notably, the proposed method assumes that the 
variation in the LST is caused by variations in 
insolation (which is related to cloudiness) during the 
daytime and the parameters of the DTC model of 
estimated pixel are the same as that of the spatial 
neighboring-pixel. Therefore, the approach can only 
be used during the daytime. Furthermore, the DTC 
parameters should display some differences especially 
for heterogeneity pixels. How to calibrate the 
parameters and retrieve the all-weather nighttime LST 
at high-temporal resolution need to be further 
deepened and explored.  
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